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Foreword

This book provides excellent coverage of the exciting results obtained in the last
decade regarding the complexity of doing cryptography.

Cryptography is concerned with the study of the design of systems that are easy
to operate but hard to abuse. Thus, a complexity gap between the ease of using such
systems and the difficulty of abusing them lies at the heart of cryptography. The
question addressed in the current book is how wide can this gap be. In a nutshell,
the work presented in this book asserts that the gap may be much wider than one
would have thought: The systems may be extremely easy to use (i.e., each output
bit can be computed based on a constant number of input bits), whereas no efficient
procedure may abuse them (i.e., the notion of security is the standard one).

Let me be somewhat more technical. The work provides strong evidence that
many cryptographic primitives and tasks can be implemented with very low com-
plexity. For example, it shows that the existence of one-way functions that can be
evaluated in NC1 (and even somewhat above NC1) implies the existence of one-way
functions that can be evaluated in NC0. Whereas the former are widely believed to
exist (e.g., based on the standard factoring assumption), most researchers have pre-
viously believed that the latter do not exist. Recall that evaluation in NC0 means that
each output bit only depends on a constant number of input bits. This work further
shows that dependence on four input bits suffices (whereas dependence on at least
three input bits is definitely necessary).

Let me briefly discuss the aforementioned beliefs. Recall that all known con-
structions of cryptographic primitives are based on complexity assumptions. In par-
ticular, all these assumptions (and actually also the very existence of these crypto-
graphic primitives) imply P �= NP and thus establishing any of these assumptions
would resolve the famous P-vs-NP question. Thus, unless one resolves the P-vs-NP
question, a result of the current type must be based on some assumptions. The com-
plexity assumptions used in the current work are among the weakest ones used in
cryptographic research.

Actually, the work presents a transformation of implementations of crypto-
graphic primitives, taking any implementation in a class between NC1 and NC2,
and producing an implementation in NC0. (Recall that NC is the class of problems
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viii Foreword

that are solvable by polynomial-size circuits of polylogarithmic depth, and NCi de-
notes the subclass in which the exponent of the polylogarithmic function is i.) The
transformation is based on “randomizing polynomials” a notion introduced a few
years ago for very different purposes. In particular, the original motivation was the
study of information-theoretic privacy in multi-party computation, whereas the cur-
rent context is complexity theoretic in nature.

The centerpiece of the book is presented in Chaps. 3 and 4, where the afore-
mentioned results are proved. Let me stress that these chapters present an amazing
breakthrough in the study of the theoretical foundations of cryptography. In particu-
lar, they provide extremely efficient implementations of several basic cryptographic
tools. As I noted above, this outstanding achievement took almost all experts in
the area by surprise. The following chapters (i.e., Chaps. 5–8) provide intriguing
follow-ups and extensions of the direction initiated in Chaps. 3 and 4. The book
also contains a nice exposition of the relevant background (specifically, Chap. 2).

Oded GoldreichWeizmann Institute of Science
May 2013



Preface

Cryptography is concerned with communication and computation in the presence of
adversaries. A fundamental challenge in theoretical and practical cryptography is to
minimize the computational complexity of honest parties while providing security
against computationally strong attackers. Ideally, one would like to construct cryp-
tographic tools or “primitives” which can be computed extremely fast and retain
strong security guarantees. These two targets, efficiency and security, are somewhat
contradictory as highly efficient functions may be too simple to generate crypto-
graphic hardness. Identifying the minimal level of efficiency which still guarantees
security is therefore a major research goal.

This book studies this question through the lens of parallel-time complexity. We
ask whether basic cryptographic primitives can be computed in constant parallel
time. Formally, we consider the possibility of computing instances of these primi-
tives using NC0 circuits, in which each output bit depends on a constant number of
input bits. Despite previous efforts in this direction, there has been no convincing
theoretical evidence supporting this possibility, which was posed as an open ques-
tion in several previous works (e.g., [50, 69, 85, 105, 112]). We essentially settle this
question by providing strong evidence for the possibility of cryptography in NC0.
In particular, we derive the following results.

Existence of Cryptographic Primitives in NC0 We show that many crypto-
graphic primitives can be realized in NC0 under standard intractability assump-
tions used in cryptography, such as those related to factoring, discrete logarithm,
or lattice problems. This includes one-way functions, pseudorandom generators,
symmetric and public-key encryption schemes, digital signatures, message authen-
tication schemes, commitment schemes, collision-resistant hash functions and zero-
knowledge proofs. Moreover, we provide a compiler that transforms an implemen-
tation of a cryptographic primitive in a relatively “high” complexity class into an
NC0 implementation. This compiler is also used to derive new unconditional NC0

reductions between different cryptographic primitives. In some cases, no parallel
reductions of this type were previously known, even in NC. Interestingly, we get
non-black-box reductions.

ix



x Preface

Pseudorandom Generators with Linear Stretch in NC0 The aforementioned
constructions of pseudorandom generators (PRGs) were limited to stretching a seed
of n bits to n + o(n) bits. This leaves open the existence of a PRG with a linear
(let alone superlinear) stretch in NC0. We construct a linear-stretch PRG in NC0

under a relatively new intractability assumption presented by Alekhnovich [5]. We
also identify a new connection between such pseudorandom generators and hard-
ness of approximations for combinatorial optimization problems. In particular, we
show that an NC0 pseudorandom generator with linear stretch implies that Max
3SAT cannot be efficiently approximated to within some multiplicative constant.
Our argument is quite simple and does not rely on PCP machinery.

Cryptography with Constant Input Locality After studying NC0 functions, in
which each output bit depends on a constant number of input bits, we move on to
study functions in which each input bit affects a constant number of output bits, i.e.,
functions with constant input locality. We characterize what cryptographic tasks can
be performed with constant input locality. On the negative side, we show that primi-
tives that require some form of non-malleability (such as digital signatures, message
authentication, or non-malleable encryption) cannot be realized with constant input
locality. On the positive side, assuming the intractability of certain problems from
the domain of error correcting codes, we obtain new constructions of one-way func-
tions, pseudorandom generators, commitments, and semantically secure public-key
encryption schemes whose input locality is constant. Moreover, these constructions
also enjoy constant output locality. Therefore, they give rise to cryptographic hard-
ware that has constant-depth, constant fan-in and constant fan-out.

A Study of Randomizing Polynomials Most of our results make use of the ma-
chinery of randomizing polynomials, which were introduced by Ishai and Kushile-
vitz [92] in the context of information-theoretic secure multiparty computation.
Randomizing polynomials allow us to represent a function f (x) by a low-degree
randomized mapping f̂ (x, r) whose output distribution on an input x is a random-
ized encoding of f (x). We present several variants of this notion along with new
constructions. Our new variants have applications not only in the domain of parallel
cryptography. For example, by extending the notion of randomizing polynomials to
the computational setting, we show that, assuming a PRG in NC1, the task of com-
puting an arbitrary (polynomial-time computable) function with computational se-
curity can be reduced to the task of securely computing degree-3 polynomials (say,
over F2) without further interaction. This gives rise to new, conceptually simpler,
constant-round protocols for general functions.

This Version This book is based on the author’s doctoral dissertation which was
submitted to the Technion in 2007. Some of the sections and proofs have been ex-
tended to provide more details and intuition. The content has also been updated to
reflect the main recent developments in the field of parallel-time cryptography. A de-
tailed chapter-by-chapter description of the contents and a high-level list of updates
appear in Sects. 1.2.2 and 1.3.

Benny ApplebaumTel Aviv, Israel
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