Pushing the Envelope:
General Game Players Prove Theorems

Sebastian Haufe! and Michael Thielscher 2

Department of Computer Science
Dresden University of Technology
sebastian.haufe@mailbox.tu-dresden.de
2 School of Computer Science and Engineering
The University of New South Wales
mitQ@cse.unsw.edu.au

Abstract. A general game player is a system that can play previously
unknown games given nothing but their rules. A key to success in this en-
deavour is the ability to automatically gain knowledge about new games
that follows from the rules without being explicitly given. In this paper,
we show how a recently developed, theoretical method for automated
theorem proving in general game playing can be put into practice. To
this end, we extend the method so as to allow a general game player to
systematically search and verify multiple temporal game properties at
once. We formally prove this extension to be correct, and we report on
extensive experiments that show how this improvement helps to signif-
icantly enhance the ability of a successful general game player to infer
new properties about a previously unknown game.

1 Introduction

General game playing is concerned with the development of systems that under-
stand the rules of previously unknown games and learn to play these games well
without human intervention. Identified as a Grand Challenge for AI, this en-
deavour requires to combine methods from a variety of sub-disciplines, including
automated reasoning, search, game playing, and learning [9, 5, 3,11, 2].

A key capability is to automatically gain knowledge about games that fol-
lows from the rules without being explicitly given. In [12,13] we have laid the
foundations for the use of Answer Set Programming [4] to automatically prove
properties of a game from its mere rules. While initial experiments had shown
that this provides a viable method for a general game player to establish the
truth of a specific property, the practice of general game playing requires a
player to systematically search large sets of potentially valid and useful proper-
ties in order to find those that actually hold [5,3,11]. Proving each candidate
formula individually constitutes a considerable computational burden [13].

In this paper, we extend the method in [13] so as to allow a general game
player to systematically search through and verify multiple temporal game prop-
erties at once. The correctness of our extended approach is formally proved, and

we report on extensive experiments that show how our improvement significantly
enhances the ability of a successful general game player to infer new properties
about a previously unknown game.

2 Background

2.1 Game Description Language

The Game Description Language (GDL) has been developed to formalise the
rules of any finite n > 1-player game with complete information in such a way
that the description can be automatically processed by a general game player.
Due to lack of space, we can give just a very brief introduction to GDL and have
to refer to [7] for details.

GDL is based on the standard syntax of logic programs, including negation.
We assume familiarity with the basic notions of logic programming. We adopt the
Prolog convention according to which variables are denoted by uppercase letters
and predicate and function symbols start with a lowercase letter. As a tailor-
made specification language, GDL uses a few pre-defined predicate symbols:

role(R) |R is a player
init(F) |F holds in the initial position
true(F) |F holds in the current position
legal (R,M) |player R has legal move M
does (R,M) |player R does move M
next(F) |F holds in the next position
terminal |the current position is terminal
goal (R,N) |player R gets goal value N

A further standard predicate is distinct (X,Y), which means syntactic inequal-
ity of the two arguments. GDL imposes restrictions on the use of these keywords:

— role only appears in facts (i.e., clauses with empty body);

— init and next only appear as head of clauses, and init does not depend
on any of true, legal, does, next, terminal, or goal;

— true and does only appear in clause bodies with does not depending on
any of legal, terminal, or goal.

Additional general restrictions are placed on a set of rules with the intention
to ensure finiteness of the set of derivable predicate instances. Specifically, the
set of rules must be stratified [1] and allowed [6]. Stratified logic programs are
known to admit a unique standard model [1]. As an example, Figure 1 shows an
excerpt of a GDL description for a game called “Quarto.”

Based on the concept of the standard model, a GDL description can be un-
derstood as a state transition system as follows [7]. To begin with, any valid
game description G in GDL contains a finite set of function symbols, includ-
ing constants, which implicitly determines a set of ground terms X. This set
constitutes the symbol base Y in the formal semantics for G.

role(rl). role(r2). init(cell(1,1,b)). ... init(cell(4,4,b)).

init(sctrl(rl)). init (pool(p0000)). ... init(pool(pl111)).
legal (R,select(P)) :- true(sctrl(R)),true(pool(P)).
legal(R,place(P,M,N)) :- true(pctrl(R)),true(slctd(P)),true(cell(M,N,b)).
legal (R,noop) :— role(R) ,not true(sctrl(R)),not true(pctrl(R)).
next (pool(P)) := true(pool(P)),not does(ril,select(P)),

not does(r2,select(P)).
next (slctd(P)) :— does(R,select(P)).

next(cell(M,N,P)) :- does(R,place(P,M,N)).
next (cell (M,N,P)) true(cell(M,N,P)) ,does(R,select(P)).
next(cell(M,N,P)) true(cell(M,N,P)) ,does(R,place(P,S,T)),!=(M,N,S,T).

next(sctrl(R)) :- true(pctrl(R)).
next(pctrl(rl)) :- true(sctrl(r2)).
next(pctrl(r2)) :- true(sctrl(rl)).

Fig.1. A GDL description of “Quarto” (without definitions for termination, goal val-
ues, and !'=/4). Two players take turns selecting one of 16 jointly used 4 -attributed
pieces p0000,p0001,...,p1111 which the other player must place on a 4 x 4 board.
The player wins who completes a line of 4 pieces with a common attribute.

The players R and the initial position of a game can be directly determined
from the clauses for role and init, respectively. In order to determine the legal
moves, update, termination, and outcome (i.e., goal values) for a given position,
this position has to be encoded first, using the keyword true. To this end, for
any finite subset S = {f1,...,fn} C X of a set of ground terms, the following
set of logic program facts encodes S as the current position:

gtree = ftrue(fi)., ..., true(f,).}
Furthermore, for any function A : ({ry,...,7} — X) that assigns a move to
each player r1,...,7; € R, the following set of facts encodes A as a joint move:
Ades = fdoes(ry, A(r1))., ..., does(ry, A(ry)).}

Definition 1. Let G be a GDL specification whose signature determines ground
terms Y. The semantics of G is the state transition system (R, Sinit, T, 1, u, g)
where?

— R={r:GErole(r)} (the players);

— Sinit = {f : GE init(f)} (the initial position);

— T={S:GUS*™ "k terminal} (the terminal positions);
1=A{(r,a,5) : GUS*™™ £ legal(r,a)} (the legality relation);

3 Below, entailment E is via the aforementioned standard model for stratified clause
sets.

— w(A,S) ={f: GuUS*™ U A%°s = next(f)} (the update function);
— g={(r,v,5) : GUS™ E goal(r,v)} (the goal relation,).

We write S A S if A: (R~ X) is such that (r,A(r),S) €l for each r € R
and ' = u(A,S) (and S & T). We call Sy 20 S§; A4 ... Amst G (where
m > 0) a sequence (of legal moves), sometimes abbreviated as (So, S1,...,Sm).
A state S is called reachable iff there is a sequence which starts in the initial
state Sin;: and ends in S .

This definition provides a formal semantics by which a GDL description is inter-
preted as an abstract k-player game: in every position S, starting with S,
each player r chooses a move a that is legal, i.e., satisfies (7, a,S). As a con-
sequence the game state changes to wu(A4,S), where A is the joint move. The
game ends if a position in T is reached, and then g determines the outcome.
The restrictions in GDL ensure that entailment w.r.t. the standard model is
decidable and that only finitely many instances of each predicate are entailed.
This guarantees that the definition of the semantics is effective [7].

2.2 Formalising and Encoding Temporal Game Properties

Next, we briefly summarise syntax and semantics of a language for formulating
individual game properties. We also recapitulate from [13] the so-called temporal
GDL eztension, which is needed for proving properties given in this language.

Definition 2. The set of formulas is (1) based on all ground atoms over the
signature of a GDL description which are different from init and next and
not dependent on does, and (2) closed under —,A,V,D,O. The degree of a
formula ¢ is the mazimal “nesting” of the unary O -operator in .

Modality O states that ¢ holds in all positions that are a direct, legal suc-
cessor of the current game state. An example property in the Quarto game is the
periodic return of “select control” to player r1 every four moves, which can be
formulated via the formula true(sctrl(r1)) D O*true(sctri(r1)) with degree 4.

A formula with degree n follows from a GDL description if it holds w.r.t. all
sequences of length n and all shorter sequences that end in a terminal state [13].

Definition 3. A sequence is called n-max iff it is of length n , or shorter and
ending in a terminal state. Let G be a GDL description and ¢ a formula
with degree n. We say that Sy satisfies ¢ (written Sy Ey @) if for all n-maz
sequences (So,...,Sm) (m < n) we have that (So,...,Sm) Ft ¢ according to
the following definition:

(Siy.. s Sm)Eep iff GUSI™Ep (p ground atom)

(Siy. -y Sm) Er @ iff (Siy...,Sm) B (likewise for A,V,D)

(Siyo oy Sm) EtOp iff i=m or (Sit1,.-.,5m) Et @

Automatically verifying properties over sequences of successive game states
against a given GDL specification G requires to build the temporal extension

of G (with some horizon n), denoted G,. It is obtained by joining timed
variants of G (which enrich predicates with a time argument) for each time
level 0 < i < n, omitting does-dependent rules for level n. We refer to [13]
for a formal definition and just give an example: Consider the fourth rule with
head next in the GDL description G of Figure 1. It depends on does, hence
the following timed variant is contained in G,, for every 0 <i <n—1:

true(cell(M,N,P),i+1) :- true(cell(M,N,P),i), does(R,select(P),i).

The definitions of S*"¢ and A%° (cf. Section 2.1) are similarly extended
to S*(0) and A%°S(4), respectively. The encoding of a formula ¢ can now be
related to a temporally extended GDL description G,, in a way that corresponds
to formula entailment w.r.t. G.

Definition 4. Let n(p) be a 0-ary atom which represents a unique name for
formula ¢ with degree n. An encoding of ¢, denoted Enc(yp), is a stratified set
of rules whose heads include 1n(p) and do not occur elsewhere, and such that for

all n-maz sequences Sy 49 Sy ... Aifl Sm of a GDL description G:
m—1
(So,-- > Sm) Fe iff SE(0) UG, U [AP°°°(i) U Enc(e) = n(p)
i=0

In the following we assume FEnc to be given, whose construction can be
easily automated. Recall, e.g., ¢ = true(sctrl(r1)) D O*true(sctri(rl)) from
above and let 7(y) = a, then the following set of rules encode ¢:

a :- not true(sctrl(r1),0). a :- terminal(0). a :- terminal(l).
a :- true(sctrl(rl),4). a :- terminal(2). a :- terminal(3).

3 Proving Multiple Temporal Game Properties At Once

In [13] we have shown how the encoding of a game property (i.e., a temporal
formula), together with the temporal extension of a given set of game rules, can
be fed into a system for Answer Set Programming (ASP) in order to establish
whether the rules entail the property.* Even though being the currently fastest
approach for calculating models of logic programs, requiring a general game
player to evoke an ASP system individually for each formula in a large set of
candidate properties is not feasible for the practice of general game playing with
a limited amount of time to analyse the rules of a hitherto unknown game.

In the following we therefore develop a crucial extension of our method that
enables a general game player to evoke an ASP system only once in order to
determine precisely which of a whole set @ of formulas is valid w.r.t. a given
game description. For this purpose, we construct two answer set programs for

* Answer sets are specific models of logic programs with negation; see e.g. [4].

@ | one to establish base case proofs and one for the induction steps. For any
@ € @, then, if all answer sets for the base case program satisfy ¢, then ¢ is
entailed in the initial state. If additionally all answer sets of the induction step
program satisfy ¢ D O, we can conclude that ¢ is entailed in all reachable
states. The encoding of each player performing a legal move in each nonterminal
state is given by a set of ASP clauses P'*9% | consisting of a set of negation-free
clauses which defines the domains of actions (adom) and the following clauses for
each 0 <i<nd

(c1) terminated (i) :- terminal(i).

(c2) terminated (i) :- terminated(i—1).

(c3) 1{does(R,A,%) :adom(R,A)}1 :- role(R), not terminated(s).
(c4) := does(R,A,7), not legal(R,A,i).

For a GDL description G and a finite set of formulas ¢ with maximal degree
7, the answer set program for the base case is defined as follows:

Py(G) = Si(0) U Gr U P U | Enc(y)
peP
Put in words, P°(G) consists of an encoding for the initial state, SE%(0); a
temporal GDL description up to time step 7, Gz; the necessary requirements
. legal , . .
concerning legal moves, P.”7"; and an encoding for each of the formulas in &,
Upes Enc(p). Encoding Enc(yp) ensures that if n(p) occurs in each answer set

for Pg"(G), then every state sequence starting at Sy, makes ¢ true—which
means that i, Fr .

For the induction step answer set program, instead of the state encoding
Stree(0) we need a “state generator” program whose answer sets correspond
exactly to the reachable states of a GDL description. These, however, cannot be
calculated efficiently in most cases, motivating an easily obtainable approxima-
tion which comprises some non-reachable states as well. The simplest approxi-
mation is the program 0{true(F,0) : fdom(F)}., which, together with stratified
clauses defining the domain of features (fdom), generates all states. Assuming a
(probably more informed) state generator S9¢", the induction step answer set
program is

P (G) = 89" U Gry U P U |) Ene(p 5 Og)
ped

Besides the state generator instead of the initial state, P5*(G) deviates from
PY(G) in that the maximal time step 7 is increased by one. Moreover, encoding
Enc(o D Ow) ensures that if n(¢ D O¢) occurs in each answer set for P (G),
then ¢ is entailed by each direct successor of a state that itself entails .

®In the following we use two common additions to ASP [8]: a weight atom
m {p:d(T) } n means that for atom p an answer set has at least m and at most
n different instances that satisfy d(Z). If n is omitted, there is no upper bound.
A constraint is a rule :- b1,...,br, which excludes any answer set that satisfies
bi,...,bg.

4 Expressiveness and Correctness of the Proof Method

We will now show that our generalisation is correct and that it is at least as
strong as the original Temporal Proof System [13]. We require two results, the
first of which concerns sequences that are longer than the degree of the formula
to be proved. The result refers to the standard restriction to playable GDL
games, meaning that every role has at least one legal move in every non-terminal
reachable state [7].

Lemma 1. Let ¢ be a formula with degree n and G be a GDL description,
then for all m > n:

(A) Every n-max sequence which does not satisfy ¢ can be reduced to an n-max
sequence which does not satisfy ¢.

(B) Let G be playable and S reachable. Then every n-maz sequence starting in
S which does not satisfy ¢ can be extended to an n-max sequence starting
in S which does not satisfy .

Note that item (B) is not true for non-reachable states Sy. Consider, e.g., formula
¢ = true(f) in a single-player game where f is true initially, where the only
action a is legal if £ holds, and where a makes f true in the direct successor
state. Assume the (non-reachable) empty state {} to be non-terminal. Then
sequence ({}) of length 0 does not satisfy ¢ but cannot be extended to any
1-max sequence, as the only action a is not legal in {}.

Our second lemma relates answer set programs to sequence-encoding strati-
fied programs (which in turn relate to formula entailment via Definition 4).

Lemma 2. For a GDL description G, let P = Sg°(0) UG, U P, Then P
has an answer set A, iff there is an n-max sequence (Sy A Aif Sm)
such that replacement of all rules of the form (c3) and (c4) in P (occurring in
P9) with \J75" A%es (i) yields a program with unique standard model A,,.
Correctness can now be established as follows.

Theorem 1. Let o € & and G be a playable GDL description with initial state
Sinit- If every answer set for P(G) contains n(p) and every answer set for
Pi(G) contains n(¢ D O), then for all finite sequences Sipiz 29 Sy ... eyt
Si we have Sk Fi ¢.

Proof. (Sketch) Induction on k, using Lemma 1 (B) and Lemma 2. Base case
k= 0: Syt By @ implies the existence of an answer set for PgC(G) that does
not contain 1(yp). Induction step: Sk Ft ¢, Sk A Spi1, and Spyq B o imply
the existence of an answer set for Py (G) which does not contain n(p O Q).

To show that our proof method is a generalisation of the original approach, we
need to restate the programs P2°(G) and P2 (G) [13], where ¢ has degree n:

PY(G) = 8E8(0) U Gy, U Py U Enc(p) U{:- nlp).}

init

PE(G) = $90U Gy 1 U P U Bnel(p) U Bne(Op)U
{:= not n(p).,:=- nOp)-}

The main difference is the reduced maximal time level n < n. Moreover the
encoding for ¢ in PﬁC(G) is constrained such as to only allow answer sets that
represent -violating sequences. Similarly, answer sets for Pé,s(G) represent
sequences (Sp, ..., Sn) where ¢ holdsin Sy but not in S; . Both ch(G) and
P} (G) being inconsistent yields S F; ¢ for all reachable states.

Theorem 2. Let ¢ € ® and G be a GDL description.

— If PY(G) is inconsistent then 1(p) is in all answer sets of Pye(G).
— If P¥(G) is inconsistent then n(e D O) is in all answer sets of Py’(G).

Proof. (Sketch) If there is an answer set for P3(G) (P¥(G)) that does not
contain n(p) (M(e D O)) then program transformations using Lemma 1 (A)

and Lemma 2 imply that there is an answer set for ch(G) (PX(@)).

It should be stressed that the converse of Theorem 2, however, does not hold:
An answer set for ij (@) represents an established n-max sequence Seq (cf.
Lemma 2) which violates ¢ D Q. Seq however might not be extendable to an
n-max sequence (cf. the remark following Lemma 1 (B)) which could serve as
counter example for ¢ O Q¢ in P (G). Hence our generalisation strengthens
the result, depending on the maximal degree n of the given formula set @.

5 Experimental Results

We have implemented our proof method using Fluxplayer [11] for the generation
of the ASP program, which is then processed by grounder Bingo and ASP solver
Clasp from a state-of-the-art answer set solving collection [10]. We use option
“cautious reasoning” for Clasp to compute the intersection of all answer sets.
In the following we sketch the formula sets we had the player try to prove. The
resulting proof times for a variety of games can be seen in Figure 2.

— Persistence (PP): Ground features f(f) which stay true [false] once they
become true [false] are proved using the set &P of all formulas of the form
[F]true(f(t)) D O-]true(f(¥)) . In the game Quarto, say, —true(pool(X)) D
O~ true(pool(X)) can be proved for all instances X € {p0000,...,p1111},
stating that once a piece is not available for selection anymore, it will not
be available throughout the remainder of the game.

— Euxistence (9"): We prove [non]existence of ground instances for each fea-
ture f;/k; and its interaction with ground instance existence of different
features f;/k; (fixing ¢ < j in an arbitrary total feature order). The set
9" of existential formulas contains all formulas of the form [=]¢y, /i, and
all formulas of the form ¢y, /x, V [Sley, /x, and =@y, k., V [2]ey, /k, . where
P17k = Vie(p,x..xpy) true(f(t)) (the finite sets D; C X' being calculated
automatically). For Quarto, the prover successfully shows —@gcrd/1V@petri/1
hence a selected piece always implies a player to have place control. Formulas
Opetrt/1V Psctri/t and Qe 1V Perr/1 Prove mutual exclusion of the two
control features and, together with —¢1r1/1V©cerryz and =@geiri/1VPcer/3s
imply existence of a cell instance in each reachable state.

Game P° P Pt PP U P U P!
3pttc 0.78 (77/362) | 0.45 (10/18)] 0.39 (3/9) | 1.55 (90/339)
bidding-tictactoe| 0.18 (9/108) | 0.31 (13/50)| 0.23 (0/12) | 0.51 (29/170)
breakthrough | 1.02 (32/260) | 0.78 (5/8) | 1.17 (4/6) | 1.69 (41/274)
capture_the king | 33.01 (7/1744) | 9.65 (5/32) |29.98 (10/12)| 85.05 (22/1788)
catcha_mouse 1.34 (359/998) | 1.05 (8/18) | 0.20 (4/6) | 2.50 (371/1022)
checkers 50.47 (41/1098) |10.16 (13/32)[56.79 (4/6) | 98.26 (58/1136)
chomp 0.09 (58/120) | 0.14 (6/18) | 0.12 (10/12)| 0.20 (75/150)
connect4 0.30 (294/508) | 0.32 (5/8) | 0.19 (4/6) | 0.73 (303/522)
endgame |453.48 (2/546) | 4.54 (12/18)[33.21 (4/6) |520.80 (18/570)
knightfight 3.91 (0/608) | 1.07 (2/18) | 3.18 (4/12)| 12.35 (6/638)
othello 3.89 (8/260) | 1.41 (5/8) | 4.00 (4/6) | 10.34 (17/274)
pawn_whopping | 0.45 (32/260) | 0.20 (5/8) | 0.22 (4/6) | 0.74 (41/274)
quarto 38.74 (32/616) |34.48 (6/50) [33.19 (4/12) |147.02 (42/678)
tictactoe 0.09 (27/58) | 0.10 (5/8) | 0.13 (4/6) | 0.14 (36/72)
tttecd 15.66 (311/1244)| 2.64 (7/18) | 3.90 (3/9) | 42.48 (321/1271)

Fig. 2. Property proof times, in seconds (average over 10 runs), for a variety of games
taken from www.general-game-playing.de. Each time indicates one proof attempt (one
ASP proof for the base case and one ASP proof for the induction step) of the respective
formula set. The numbers in parantheses mean: (number of proved properties/size of
the formula set). Experiments were run on an Intel Core 2 Duo CPU with 3.16 GHz.

— Control (¢°'"'): The periodic return of control features is proved via the

set @l of all formulas true(f(r)) D O"true(f(r)), where r is a role
and 2 < n < 4. In Quarto we obtain successful proofs for n = 4 and
f(r) € {pctri(white), pctri(black), sctri(white), sctri(black)}, indicating the
return of the same game phase every 4 steps.

In general, our timings for Control and Persistence are of the same order
as the runtimes for games and property instances we obtained for the original
method [13], since attempting proofs for all instances in one run spares the solver
to repeat similar processes multiple times. This amounts to a significant speedup,
which e.g. for Persistence means to check several hundred instances. Properties
like Existence and Persistence together with initially true [false] features provide
valuable information about reachable states, due to the fast timings their proofs
qualify as basis for further state generator restriction, thus obtaining better
timings and more accurate results for increasingly sophisticated properties. Joint
proof attempts for multiple classes of properties (cf. column &P U @ U petr!
in Figure 2), however, sometimes decrease performance (e.g. for titcc4) due to
less viable program rule optimisations, which suggests to divide properties in
classes of “similar” form. Note that sometimes more formulas are proved (e.g.
for bidding-tictactoe) with the joint approach thanks to the effect mentioned at
the end of Section 4.

6 Summary

A key to success in general game playing is the ability to automatically infer
properties of a new game that follow from the rules without being explicitly
given. By extending a recently developed, basic approach to automated theorem
proving for this purpose, we have developed a method that enables a general
game player to systematically and simultaneously search large sets of candidate
formulas in order to identify those whose validity can be established. We have
formally proved the correctness of this extended method, and we have conducted
systematic experiments with a variety of games that have been used by the
scientific community in the past. As the experimental data show, our extended
method allows to search through large sets of formulas of a similar form in times
comparable to proving just a single one of these properties using the original
method.

Acknowledgement. Michael Thielscher is the recipient of an Australian Research
Council Future Fellowship (project number FT 0991348).

References

1. Apt, K., Blair, H. A., Walker, A.: Towards a Theory of Declarative Knowledge. In:
Foundations of Deductive Databases and Logic Programming, 89-148 (1987)

2. Bjornsson, Y., Finnsson, H.: CADIAPLAYER: A Simulation-Based General Game
Player. IEEE Transactions on Computational Intelligence and Al in Games, 1(1):4-15
(2009)

3. Clune, J.: Heuristic Evaluation Functions for General Game Playing. In: AAAI,
1134-1139 (2007)

4. Gelfond, M.: Answer Sets. In: Handbook of Knowledge Representation, 285—-316.
Elsevier (2008)

5. Kuhlmann, G.; Dresner, K.; and Stone, P.: Automatic Heuristic Construction in a
Complete General Game Player. In: AAAI, 1457-1462 (2006)

6. Lloyd, J., and Topor, R.: A Basis for Deductive database Systems II. J. of Logic
Programming, 3(1):55-67 (1986)

7. Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Genesereth, M.: General Game
Playing: Game Description Language Specification. Technical Report, LG-2006-01,
Stanford University. Available at games.stanford.edu (2006)

8. Niemel4, I.; Simons, P.; and Soininen, T.: Stable Model Semantics of Weight Con-
straint Rules. In: Proceedings of LPNMR, vol. 1730 of LNCS, 317-331 (1999)

9. Pell, B.: Strategy Generation and Evaluation for Meta-Game Playing. Ph.D., Cam-
bridge (1993)

10. Potassco, Potsdam Answer Set Solving Collection. Available at potassco.
sourceforge.net (2008)

11. Schiffel, S., and Thielscher, M.: Fluxplayer: A Successful General Game Player. In:
AAAI, 1191-119 (2007)

12. Schiffel, S., and Thielscher, M.: Automated Theorem Proving for General Game
Playing. In: IJCAI, 911-916 (2009)

13. Thielscher, M., Voigt, S.: A Temporal Proof System for General Game Playing. In:
AAAT, 1000-1005 (2010)

