GPU-based Parallel Collision Detection for
Real-Time Motion Planning

Jia Pan and Dinesh Manocha

Abstract We present parallel algorithms to accelerate collision queries for sample-
based motion planning. Our approach is designed for current many-core GPUs and
exploits the data-parallelism and multi-threaded capabilities. In order to take advan-
tage of high number of cores, we present a clustering scheme and collision-packet
traversal to perform efficient collision queries on multiple configurations simul-
taneously. Furthermore, we present a hierarchical traversal scheme that performs
workload balancing for high parallel efficiency. We have implemented our algo-
rithms on commodity NVIDIA GPUs using CUDA and can perform 500,000 colli-
sion queries/second on our benchmarks, which is 10X faster than prior GPU-based
techniques. Moreover, we can compute collision-free paths for rigid and articulated
models in less than 100 milliseconds for many benchmarks, almost 50-100X faster
than current CPU-based planners.

1 Introduction

Motion planning is one of the fundamental problems in algorithmic robotics. The
goal is to compute collision-free paths for robots in complex environments. Some of
the widely used algorithms for high-DOF (degree-of-freedom) robots are based on
randomized sampling. These include algorithms based on PRMs [12] and RRTs [14].
These methods tend to capture the topology of the free configuration space of the
robot by generating a high number of random configurations and connecting nearby
collision-free configurations (i.e. milestones) using local planning methods. The re-
sulting algorithms are probabilistically complete and have been successfully used to
solve many challenging motion planning problems.

In this paper, we address the problem of designing fast and almost real-time plan-
ning algorithms for rigid and articulated models. The need for such algorithms arises
not only from virtual prototyping and character animation, but also task planning for
physical robots. Current robots (such as Willow Garage’s PR2) tend to use live sen-
sor data to generate a reasonably accurate model of the objects in the physical world.
Some tasks, such as robot navigation or grasping, need to compute a collision-free
path for the manipulator in real-time to handle dynamic environments. Moreover,
many high-level task planning algorithms perform motion planning and subtask ex-
ecution in an interleaved manner, i.e. the planning result of one subtask is used to
construct the formulation of the following subtask [27]. A fast and almost real-time
planning algorithm is important for these applications.

It is well known that a significant fraction (e.g. 90% or more) of randomized
sampling algorithms is spent in collision checking. This includes checking whether

University of North Carolina, Chapel Hill, NC, USA
{panj,dm} @cs.unc.edu
http://gamma.cs.unc.edu/gplanner

2 Jia Pan and Dinesh Manocha

a given configuration is in free-space or not as well as connecting two free-space
configurations using a local planning algorithm. While there is extensive literature
on fast intersection detection algorithms, some of the recent planning algorithms are
exploiting the computational power and massive parallelism of commodity GPUs
(graphics processing units) for almost real-time computation [23, 22]. Current GPUs
are high-throughput many-core processors, which offer high data-parallelism and
can simultaneously execute a high number of threads. However, they have a different
programming model and memory hierarchy as compared to CPUs. As a result, we
need to design appropriate parallel collision and planning algorithms that can map
well to GPUs.
Main Results: We present a novel, parallel algorithm to perform collision queries
for sample-based motion planning. Our approach exploits parallelism at two levels:
it checks multiple configurations simultaneously whether they are in free space or
not and performs parallel hierarchy traversal for each collision query. Similar tech-
niques are also used for local planning queries. We present clustering techniques
to appropriately allocate the collision queries to different cores, Furthermore, we
introduce the notion of collision-packet traversal, which ensures that all the config-
urations allocated to a specific core result in similar hierarchical traversal patterns.
The resulting approach also exploits fine-grained parallelism corresponding to each
bounding volume overlap test to balance the workload.

The resulting algorithms have been implemented on commodity NVIDIA GPUs.
In practice, we are able to process about 500,000 collision queries per second on
a $400 NVIDIA GeForce 480 desktop GPU, which is almost 10X faster than prior
GPU-based collision checking algorithms. We also apply our collision checking
algorithm for GPU-based motion planners to high DOF rigid and articulated robots.
The resulting planner can compute collision-free paths in less than 100 milliseconds
for various benchmarks and appears to be 50-100X faster than CPU-based planners.

The rest of the paper is organized as follows. We survey related work on real-time
motion planning and parallel collision-checking algorithms in Section 2. Section 3
gives an overview of our approach and we present our new parallel algorithm for
parallel collision queries in Section 4. We highlight the performance of our algo-
rithm on different benchmarks in Section 5.

2 Previous Work
In this section, we give a brief overview of prior work in real-time motion planning
and parallel algorithms for collision detection.

2.1 Real-time Motion Planning

An excellent survey of various motion planning algorithms is given in [17]. Many
parallel algorithms have also been proposed for motion planning by utilizing the
properties of configuration spaces [20]. The distributed representation [5] can be
easily parallelized. In order to deal with very high dimensional or difficult planning
problems, distributed sampling-based techniques have been proposed [25].

The computational power of many-core GPUs has been used for many geomet-
ric and scientific computations [21]. The rasterization capabilities of a GPU can
be used for real-time motion planning of low DOF robots [10, 26] or improve the
sample generation in narrow passages [24, 7]. Recently, GPU-based parallel motion
planning algorithms have been proposed for rigid models [23, 22].

GPU-based Parallel Collision Detection for Real-Time Motion Planning 3

2.2 Parallel Collision Queries

Some of the widely used algorithms for collision query are based on bound-
ing volume hierarchies (BVH), such as k-DOP trees, OBB trees, AABB trees,
etc [18]. Recent developments include parallel hierarchical computations on multi-
core CPUs [13, 28] and GPUs [16]. CPU-based approaches tend to rely on fine-
grained communication between processors, which is not suited for current GPU-
like architectures. On the other hand, GPU-based algorithms [16] use work queues
to parallelize the computation on the multiple cores. All these approaches are pri-
marily designed to parallelize a single collision query for sample-based motion plan-
ning.

The capability to perform a high number of collision queries efficiently is es-
sential in motion planning algorithms, e.g. for parallel collision queries in mile-
stone computation and local planning. Some of the prior algorithms perform paral-
lel queries in a simple manner: each thread handles a single collision query in an
independent manner [23, 22, 3, 2]. As current multi-core CPUs have the capability
to perform multiple-instruction multiple-data (MIMD) computations, these simple
strategies can work well on CPUs. On the other hand, current GPUs offer high
data parallelism and the ability to execute a high number of threads in parallel to
overcome the high memory latency. As a result, we need different parallel collision
detection algorithms to fully exploit their capabilities.

3 Overview

In this section, we first provide some background on current GPU architectures.
Next, we address some issues in designing efficient parallel algorithms to perform
collision queries.

3.1 GPU Architectures

In recent years, the focus in processor architectures has shifted from increasing
clock rate to increasing parallelism. Commodity GPUs such as NVIDIA Fermi'
have theoretical peak performance of Tera-FLOP/s for single precision computa-
tion and hundreds of Giga-FLOP/s for double precision computations. This peak
performance is significantly higher as compared to current multi-core CPUs, thus
outpacing CPU architectures [19] at relatively modest cost of $300 to $400. How-
ever, GPUs have different architectural characteristics and memory hierarchy, that
impose some constraints in terms of designing appropriate algorithms. First, GPUs
usually have a high number of independent cores (e.g. the newest generation GTX
480 has 15 cores and each core has 32 streaming processors resulting in total of
480 processors while GTX 280 has only 240 processors). Each of the individual
cores is a vector processor capable of performing the same operation on several
elements simultaneously (e.g. 32 elements for current GPUs). Secondly, the mem-
ory hierarchy on GPUs is quite different from that of CPUs and cache sizes on the
GPUs are considerably smaller. Moreover, each GPU core can handle several sep-
arate tasks in parallel and switch between them in the hardware when one of them
is waiting for a memory operation to complete. This hardware multithreading ap-

"'nttp://www.nvidia.com/object/fermi_architecture.html

4 Jia Pan and Dinesh Manocha

proach is thus designed to hide the memory access latency. Thirdly, all GPU threads
are logically grouped in blocks with a per-block shared memory, which provides
a weak synchronization capability between the GPU cores. Overall, shared mem-
ory is a limited resource on GPUs: increasing the shared memory distributed for
each thread can limit the extent of parallelism. Finally, the threads are physically
processed in chunks in SIMT (single-instruction, multiple-thread). This is different
from SIMD (single-instruction multiple-data) and each thread can execute indepen-
dent instructions. The GPU’s performance can reduce significantly when threads in
the same chunk diverge considerably, because these diverging portions are executed
in a serial manner for all the branches. As a result, threads with coherent branch-
ing decisions (e.g. threads traversing the same paths in the BVH) are preferred on
GPUs in order to obtain higher performance [8]. All of these characteristics imply
that — unlike CPUs — achieving high performance in current GPUs depends on sev-
eral factors: (1) generating a sufficient number of parallel tasks so that all the cores
are highly utilized; (2) developing parallel algorithms such that the total number of
threads is even higher than the number of tasks, so that each core has enough work to
perform while waiting for data from relatively slow memory accesses; (3) assigning
appropriate size for shared memory to accelerate memory accesses and not reduce
the level of parallelism; (4) performing coherent or similar branching decisions for
each parallel thread within a given chunk. These requirements impose constraints in
terms of designing appropriate collision query algorithms.

3.2 Notation and Terminology
We define some terms and highlight the symbols used in the rest of the paper.

chunk The minimum number of threads that GPUs manage, schedule and execute
in parallel, which is also called warp in the GPU computing literatures. The size
of chunk (chunk-size or warp-size) is 32 on current NVIDIA GPUs (e.g. GTX
280 and 480).

block The collection of GPU threads that will be executed on the same GPU core.
These threads synchronize by using barriers and communicate via a small high-
speed low-latency shared memory.

BVH, The bounding volume hierarchy (BVH) tree for model a. It is a binary tree
with L levels, whose nodes are ordered in the breadth-first order starting from the
root node. Each node is denoted as BVH,[i] and its children nodes are BVH,[2i]
and BVH,[2i+ 1] with 1 <i <251 —1. The nodes at the I-th level of a BVH tree
are represented as BVH,[k],2! <k < 2!*! — 1 with 0 < < L. The inner nodes
are also called bounding volumes (BV) and the leaf nodes also have a link to the
primitive triangles that are used to represent the model.

BVTT,;, The bounding volume test tree (BVTT) represents recursive collision
query traversal between two objects a,b. It is a 4-ary tree, whose nodes are or-
dered in the breadth-first order starting from the root node. Each node is de-
noted as BVTT,;[i] = (BVH,[m], BVHy[n]) or simply (m,n), which checks
the BV or primitive overlap between nodes BVH,[m] and BVH,[n|, while m =
li— 52 4 oM = {221 4 oM and M = |loga(3i —2)]. BVTT node
(m,n)’s children are (2m,2n), (2m,2n+1), 2m+1,2n), 2m+1,2n+1).

GPU-based Parallel Collision Detection for Real-Time Motion Planning 5

q A configuration of the robot, which is randomly sampled within the configura-
tion space ¢-Space. q is associated with the transformation Ty. The BVH of a
model a after applying such a transformation is given as BVH,(q).

3.3 Collision Queries: Hierarchical Traversal

Collision queries between the geometric models are usually accelerated with hierar-
chical techniques based on BVHs, which correspond to traversing the BVTT related
with the BVHs of the models [15]. The simplest parallel algorithms to perform mul-
tiple collision queries are based on each thread traversing the BVTT and checking
whether a given configuration is in free space or not. Such a simple parallel algo-
rithm is highlighted in Algorithm 1. This strategy is easy to implement and has been
used in previous parallel planning algorithms based on multi-core or multiple CPUs.
But it may not result in high parallel efficiency on current GPUs due to the follow-
ing reasons. First, each thread needs a local traverse stack on the shared memory
which may not be effective for complex models with thousands of polygons. Sec-
ond, different threads may traverse the BVTT tree with incoherent patterns: there
are many branching decisions performed during the traversal (e.g. loop, if, return
in the pseudo-code) and the traversal flow of the hierarchy in different threads di-
verges quickly. Finally, different threads can have varying workloads; some may be
busy with the traversal while the others may have finished the traversal early due
to no overlap and are idle. These factors can affect the performance of the parallel
algorithm.

The problems of low parallel efficiency in Algorithm 1 become more severe in
complex or articulated models. For such models, there are longer traversal paths
in the hierarchy and the difference between these paths can be large for different
configurations. As a result, differences in the workloads between different threads

Algorithm 1 Simple parallel collision checking; Such approaches are frequently used on multi-
core CPUs

1: Input: N random configurations {qi}ﬁ\': 1» BVH,, for the robot and BVH,, for the obstacles
2: Output: return whether one configuration is in free space or not

3: tiq < thread id of current thread

4 qqy,

5: < traverse stack S[] is initialized with root nodes

6

7

8

. shared S[] = local traversal stack
: S[1+BVTTJ[1] = (BVH,(q)[1],BVH,[1])
: < traverse BVTT for BVH,(q) and BVH,,
9: loop
10: (x,y) < pop(S).
11: if overlap(BVH,(q)[x],BVH,[y]) then

12: S+ (2x,2y), (2x,2y+ 1), (2x+1,2y), (2x+ 1,2y + 1) if lisLeaf (x) &&!lisLeaf(y)
13: S[1 « (2x,2y),(2x,2y+ 1) if isLeaf (x) && lisLeaf(y)

14: S[1 < (2x,2y), (2x+1,2y) if lisLeaf (x) && isLeaf(y)

15: return collision if isLeaf (x) && isLeaf(y) && exactIntersect(BVH,(q)[x],BVH,[y])
16: endif

17: end loop

18: return collision- free

6 Jia Pan and Dinesh Manocha

can be high. For articulated models, each thread checks the collision status of all the
links and stops when a collision is detected for any link. Therefore, more branching
decisions are performed within each thread and this can lead to more incoherence.
Similar issues also arise during local planning when each thread determines whether
two milestones can be joined by a collision-free path by checking the collisions
along the trajectory connecting them.

4 Parallel Collision Detection on GPUs

In this section, we present two novel algorithms for efficient parallel collision check-
ing on GPUs between rigid or articulated models. Our methods can be used to check
whether a configuration lies in the free space or to perform local planning com-
putations. The first algorithm uses clustering and fine-grained packet-traversal to
improve the coherence of BVTT traversal for different threads. The second algo-
rithm uses queue-based techniques and lightweight workload balancing to achieve
higher parallel performance on the GPUs. In practice, the first method can provide
30%-50% speed up. Moreover, it preserves the per-thread per-query structure of the
naive parallel strategy. Therefore, it is easy to implement and is suitable for cases
where we need to perform some additional computations (e.g. retraction for han-
dling narrow passages [29]). The second method can provide 5-10X speed up, but
is relatively more complex to implement.

4.1 Parallel Collision-Packet Traversal

Our goal is to ensure that all the threads in a block performing BVTT-based collision
checking have similar workloads and coherent branching patterns. This approach is
motivated by recent developments related to interactive ray-tracing on GPUs for vi-
sual rendering. Each collision query traverses the BVTT and performs node-node or
primitive-primitive intersection tests. In contrast, ray-tracing algorithms traverse the
BVH tree and perform ray-node or ray-primitive intersections. Therefore, parallel
ray-tracing algorithms on GPUs also need to avoid incoherent branches and varying
workloads to achieve higher performance.

In real-time ray tracing, one approach to handle the varying workloads and inco-
herent branches is the use of ray-packets [8, 1]. In ray-tracing terminology, packet
traversal implies that a group of rays follows exactly the same traversal path in
the hierarchy. This is achieved by sharing the traversal stack (similar to the BVTT
traversal stack in Algorithm 1) among the rays in the same warp-sized packet (i.e.
threads that fit in one chunk on the GPU), instead of each thread using an inde-
pendent stack for a single ray. This implies that the same additional nodes in the
hierarchy may be visited during ray intersection tests, even though there are no in-
tersections between the rays and those nodes. But the resulting traversal is coherent
for different rays, because each node is fetched only once per packet. In order to
reduce the number of computations (i.e. unnecessary node intersection tests), all the
rays in one packet should be similar to one another, i.e. have similar traversal paths
with few differing branches. We extend this idea to parallel collision checking and
refer to our algorithm as multiple configuration-packet method.

The first challenge is to cluster similar collision queries or the configurations
into groups. In some cases, the sampling scheme (e.g. the adaptive sampling for lazy

GPU-based Parallel Collision Detection for Real-Time Motion Planning 7

PRM) can provide natural group partitions. However, in most cases we need suitable
algorithms to compute these clusters. Clustering algorithms are natural choices for
such a task, which aims at partitioning a set 2" of N data items {x; }f’: | into K groups
{Ck}kK:l such that the data items belonging to the same group are more “similar”
than the data items in different groups. The clustering algorithm used to group the
configurations needs to satisfy some additional constraints: |Cy| = chunk-size,1 <
k < K, i.e. each cluster should fit in one chunk on GPUs, except for the last cluster
and K = (W} Using the formulation of k-means, the clustering problem can
be formally described as: compute K = (#kme] items {c,}X_, that minimizes

K

leiECk||Xi—ck||7 (1)

i=1k=1

M=

with constraints |Cy| = chunk-size,1 < k < K. To our knowledge, there are no clus-
tering algorithms designed for this specific problem. One possible solution is clus-
tering with balancing constraints [4], which has additional constraints |Cy| > m, 1 <
k <K, where m < %

Instead of solving Equation (1) exactly, we use a simpler clustering scheme to
compute an approximate solution. First, we use k-means algorithm to cluster the N
queries into C clusters, which can be implemented efficiently on GPUs [6]. Next,
for k-th cluster of size Sy, we divide it into [dmnsﬁw sub-clusters, each of which
corresponds to a configuration-packet. This simple method has some disadvantages.
For example, the number of clusters is ¥$_; [Chmfﬁ] >K= fﬁkwj and there-
fore Equation (1) may not result in an optimal solution. However, as shown later,
even this simple method can improve the performance of parallel collision queries.

Next we map each configuration-packet to a single chunk. Threads within one
packet will traverse the BVTT synchronously, i.e. the algorithm works on one BVTT
node (x,y) at a time and processes the whole packet against the node. If (x,y) is a
leaf node, an exact intersection test is performed for each thread. Otherwise, the
algorithm loads its children nodes and tests the BVs for overlap to determine the re-
maining traversal order, i.e. to select one child (x;,,y,,) as the next BVTT node to be
traversed for the entire packet. We select (x,,,y,) in a greedy manner: it corresponds
to the child node that is classified as overlapping by the most threads in the packet.
We also push other children into the packet’s traversal stack. In case no BV overlap
is detected in all the threads or (x,y) is a leaf node, (x,ym) would be the top ele-
ment in the packet’s traversal stack. The traversal step is repeated recursively, until
the stack is empty. Compared to Algorithm 1, all the threads in one chunk share one
traversal stack in shared memory, instead of using one stack for each thread. There-
fore, the size of shared memory used is reduced by chunk-size times and results in
higher parallel efficiency.

The traversal order described above is a greedy heuristic that tries to minimize
the traversal path of the entire packet. For one BVTT node (x,y), if the overlap is not
detected in any of the threads, it implies that these threads will not traverse the sub-
tree rooted at (x,y). Since all the threads in the packet are similar and traverse the
BVTT in nearly identical order, this implies that other threads in the same packet

8 Jia Pan and Dinesh Manocha

might not traverse the sub-tree either. We define the probability that the sub-tree
rooted at (x,y) will be traversed by one thread as py, = %. For any
traverse pattern P for BVTT, the probability that it is carried on by BVTT traversal
will be pp =[] (xy)ep Px,y- As aresult, our new traversal strategy guarantees that the
traversal pattern with higher traverse probability will have a shorter traversal length,
and therefore minimizes the overall path for the packet.

The decision about which child node is the candidate for next traversal step is
computed using sum reduction [9], which can compute the sum of n items in par-
allel with O(log(n)) complexity. Each thread writes a 1 in its own location in the
shared memory if it detects overlap in one child and O otherwise. The sum of the
memory locations is computed in 5 steps for a size 32 chunk. The packet chooses
the child node with the maximum sum. The complete algorithm for configuration-
packet computation is described in Algorithm 2.

Algorithm 2 Multiple Configuration-Packet Traversal

1: Input: N random configurations {qi}f\': 1» BVH,, for the robot and BVH,, for the obstacles
2: tiy < thread id of current thread
3t qqp,
4: shared CN[]= shared memory for children node
5: shared 7' S[]= local traversal stack
6: shared SM[]= memory for sum reduction
7: return if overlap(BVH,(q)[1], BVH,[1]) is false for all threads in chunk
8: (x,) = (1,1)
9: loop
10: ifisLeaf(x) && isLeaf(y) then
11: update collision status of q if exactIntersect(BVH,(q)[x],BVH,[y])
12: break, if 7S is empty
13: (x,y) « pop(TS)
14: else
15: <1 decide the next node to be traversed
16: CNI] < (x,y)’s children nodes
17: for all (x.,y.) € CN do
18: < compute the number of threads that detect overlap at node (xc,y.)
19: write overlap(BVH,(q)[x.],BVH,[y.]) (0 or 1) into SM|t;4] accordingly
20: compute local summation s, in parallel by all threads in chunk
21: end for
22: if max.s. > 0 then
23: < select the node that is overlapped in the most threads
24: (x,y) ¢ CN]argmax, s.| and push others into 7'S
25: else
26: < select the node from the top of stack
27: break, if 7S is empty
28: (x,y) = pop(TS)
29: end if
30: endif

31: end loop

GPU-based Parallel Collision Detection for Real-Time Motion Planning 9

4.2 Parallel Collision Query with Workload Balancing

Both Algorithm 1 and Algorithm 2 use the per-thread per-query strategy, which is
easy to implement. However, when the idle threads wait for busy threads or when
the execution path of threads diverges, the parallel efficiency on the GPUs is low.
Algorithm 2 can reduce this problem in some cases, but it still distributes the tasks
among the separate GPU cores and cannot make full use of the GPU’s computational
power.

In this section, we present the parallel collision query algorithm based on work-
load balancing which further improves the performance. In this algorithm, the task
of each thread is no longer one complete collision query or continuous collision
query (for local planning). Instead, each thread only performs BV overlap tests. In
other words, the unit task for each thread is distributed in a more fine-grained man-
ner. Basically, we formulate the problem of performing multiple collision queries
as a pool of BV overlap tests which can be performed in parallel. It is easier to
distribute these fine-grained tasks in a uniform manner onto all the GPU cores, and
thereby balancing the load among them, than to distribute the collision query tasks.

All the tasks are stored in Q large work queues in the GPU’s main memory, which
has a higher latency compared to the shared memory. When computing a single col-
lision query [16], the tasks are in the form of BVTT nodes (x,y). Each thread will
fetch some tasks from one work queue into its local work queue on the shared mem-
ory and traverse the corresponding BVTT nodes. The children generated for each
node are also pushed into the local queue as new tasks. This process is repeated
for all the tasks remaining in the queue, until the number of threads with full or
empty local work queues exceeds a given threshold (we use 50% in our implemen-
tation) and non-empty local queues are copied back to the work queues on main
memory. Since each thread performs simple tasks with few branches, our algorithm
can make full use of GPU cores if there are sufficient tasks in all the work queues.
However, during BVTT traversal, the tasks are generated dynamically and thus dif-
ferent queues may have varying numbers of tasks and this can lead to an uneven
workload among the GPU cores. We use a balancing algorithm that redistributes the
tasks among work queues (Figure 2). Suppose the number of tasks in each work
queue is n;, 1 <i < Q. Whenever 3i, n; < T; or n; > T,,, we execute our balancing
algorithm among all the queues and the number of tasks in each queue becomes

n; = @, 1 <i<Q, where T; and T, are two thresholds (we use chunk-size for
T; and the W — chunk-size for T,,, where W is the maximum size of work queue).

In order to handle N collision queries simultaneously, we use several strategies,
which are similar to the ones highlighted in Figure 1. First, we can repeat the sin-
gle query above algorithm [16] for each query. However, this has two main disad-
vantages. First, the GPU kernel has to be called N times from the CPU, which is
expensive for large N (which can be > 10000 for motion planning applications).
Secondly, for each query, work queues are initialized with only one item (i.e. the
root node of the BVTT), therefore the GPU’s computational power cannot be fully
exploited at the beginning of each query, as shown in the slow ascending part in
Figure 1(a). Similarly, at the end of each query, most tasks are finished and some

—_
(=]

Jia Pan and Dinesh Manocha

throughput

(a) time

Ii T -

/ Y Y o

throughput

throughput

(c) time

Fig. 1 Different strategies for parallel collision query using work queues. (a) Naive way: repeat
the single collision query algorithm in [16] one by one; (b) Work queues are initialized by some
BVTT root nodes and we repeat the process until all queries are performed. (c) is similar to (b)
except that new BVTT root nodes are added to the work queues by the pump kernel, when there
are not a sufficient number of tasks in the queue.

of the GPU cores become idle, which corresponds to the slow descending part in
Figure 1(a).

As a result, we use the strategy shown in Figure 1(b): we divide the N queries
into [%] different sets each of size M with M < N and initialize the work queues
with M different BVTT roots for each iteration. Usually M cannot be N because
we need to use ¢ - M GPU global memory to store the transform information for the
queries, where constant ¢ < #gl”h‘llw and we usually use M = 50. In this case,
we only need to invoke the solution kernel [%} times. The number of tasks available
in the work queues changes more smoothly over time, with fewer ascending and
descending parts, which implies higher throughput of the GPUs. Moreover, the work
queues are initialized with many more tasks, which results in high performance at
the beginning of each iteration. In practice, as nodes from more than one BVTT
of different queries co-exist in the same queue, we need to distinguish them by
representing each BVTT node by (x,y,i) instead of (x,y), where i is the index of
collision query.

We can further improve the efficiency by using the pump operation (Algo-
rithm 3 and Fig 2). That is, instead of initializing the work queues after it is com-
pletely empty, we add M BVTT root nodes of unresolved collision queries into
the work queues when the number of tasks in it decreases to a threshold (we use
10 - chunk-size). As a result, the few ascending and descending parts in Figure 1(b)
can be further flattened as shown in Figure 1(c). Pump operation can reduce the
timing overload of interrupting traversal kernels or copying data between global
memory and shared memory, and therefore improve the overall efficiency of colli-
sion computation.

GPU-based Parallel Collision Detection for Real-Time Motion Planning 11

Algorithm 3 Traversal with Workload Balancing

1: task _kernel()

2: input abort signal signal, N random configurations {qi}ﬁ": 1» BVH, for the robot and BVH,,

for the obstacles

3: shared WQI[] = local work queue

4: initialize WQ by tasks in global work queues

5: < traverse on work queues instead of BVTTs
6: loop
7.
8

(x,3,) <= pop(WQ)
if overlap(BVH,(q;)[x],BVH,[y]) then

9: if isLeaf(x) && isLeaf(y) then

10: update collision status of i-th query if exactIntersect(BVH,(q;)[x],BVH,[y])
11: else

12: WOQIl < (x,y,i)’s children

13: end if

14: endif

15: if WQ is full or empty then

16: atomiclnc(signal), break

17: endif

18: end loop

19: return if signal > 50%Q

1: balance_process()

2: copy local queue back to global work queue <! manage_kernel
3: compute size of each work queue n;,1 <i<Q

4: if 3i,n; < T;||n; > T, then
5
6
7

1Y
rearrange the tasks so that each queue has n} = % tasks <1 balance_kernel

add more tasks in global queue if 21?:1 e < Tpump < pump_kernel
: end if

4.3 Analysis

In this section, we analyze the algorithms described above using the parallel random
access machine (PRAM) model, which is a popular tool to analyze the complexity
of parallel algorithms [11]. Of course, current GPU architectures have many prop-
erties that can not be described by PRAM model, such as SIMT, shared memory,
etc. However, PRAM analysis can still provide some insight into GPU algorithm’s
performance.

Suppose we have n collision queries, which means that we need to traverse n
BVTT of the same tree structure but with different geometry configurations. We also
suppose the GPU has p parallel processors. For convenience, assume n = ap,a € Z.
Let the complexity to traverse the i-th BVTT be W (i), 1 < i < n. Then the com-
plexity of a sequential CPU algorithm is Tg(n) = Y% W(i) and the complexity
of Algorithm 1 would be Ty(n) = ZZ;(I) max§=1W(kp + j). If we sort {W (i)},
in ascending order and denote W*(i) as the i-th element in the new order, we can
prove Y{_) max?z1 W(kp + j) > Y{_, W*(kp). Therefore Ty(n) > Y¢_, W*(kp).

Moreover, it is obvious that Y | W(i) > Ty(n) > zt"%w(;)
O(Ts(n)), i.e. Ty(n) is work-efficient [11].

, which means Ty (n) =

12 Jia Pan and Dinesh Manocha

Core 1 [Core k hY [Coren

Task k+i ﬂ
abort or abort or abort or
continue continue

continue
tilzation [l l

manage kernel l \

[0 (o (o i 2 [1)

Task PoolsHh”Hu_>hlULH empty

balance kernel l
p

ook ool —
pump kernel H“J!J!HI" __________ hbduu_ empty

Fig. 2 Load balancing strategy for our parallel collision query algorithm. Each thread keeps its
own local work queue in local memory. After processing a task, each thread is either able to run
further or has an empty or full work queue and terminates. Once the number of GPU cores termi-
nated exceeds a given threshold, the manage kernel is called and copies the local queues back onto
global work queues. If no work queue has too many or too few tasks, the task kernel restarts. Oth-
erwise, the balance kernel is called to balance the tasks among all queues. If there are not sufficient
tasks in the queues, more BVTT root nodes will be ’pumped’ in by the pump kernel.

|uI) yse}

According to the analysis in Section 4.1, we know that the expected complexity
W (i) for i-th BVTT traversal in Algorithm 2 should be smaller than W (i) because
of the near-optimal traversing order. Moreover, the clustering strategy is similar
to ordering different BVTTs, so that the BVTTs with similar traversal paths are
arranged closely to each other and thus the probability is higher that they would
be distributed on the same GPU core. Of course we can not implement ordering
exactly because the BVTT traversal complexity is not known a priori. Therefore the
complexity of Algorithm 2 is Tp(n) ~ Y¢_, W*(kp), with W* < W*.

= Z?%W(l) + B(n), where the
first item is the timing complexity for BVTT traversal and the second item B(n)
is the timing complexity for balancing step. As B(n) > 0, the acceleration ratio of
GPU with p-processors is less than p. We need to reduce the overload of balancing
step to improve the efficiency of Algorithm 3.

Therefore, all three algorithms are work-efficient. If B(n) = o(Ts(n)), then
Ty(n) > Tp(n) > Tp(n) and Algorithm 3 is the most efficient one. If B(n) is
O (Ts(n)), which means the overhead of balancing kernel is large, then it is possible
to have Tp(n) > Tp(n). Moreover, for large models, W (i) would be quite different
and the performance difference between three algorithms would be larger.

The complexity for Algorithm 3 is simple: Tg(n)

5 Implementation and Results

In this section, we present some details of the implementation and highlight the
performance of our algorithm on different benchmarks. All the timings reported
here were recorded on a machine using an Intel Core 17 3.2GHz CPU and 6GB

GPU-based Parallel Collision Detection for Real-Time Motion Planning 13

| |piano|large-pianolhelicopter [humanoid|

#robot-faces |6540| 34880 3612 27749

#obstace-faces| 648 13824 2840 3495
DOF 6 6 6 38

Table 1 Geometric complexity of our benchmarks. Large-piano is a piano with more vertices and
faces by subdividing the piano model.

(a) piano (b) helicopter (¢) humanoid
Fig. 3 Benchmarks for parallel collision queries.

memory. We implemented our collision and planning algorithms using CUDA on a
NVIDIA GTX 480 GPU with 1GB of video memory.

We use the motion planning framework called gPlanner introduced in [23, 22],
which uses PRM as the underlying planning algorithm as it is more suitable to ex-
ploit the multiple cores and data parallelism on GPUs. It can either compute a com-
plete roadmap or we use a lazy version to perform a single motion planning query.
We replace the collision module in gPlanner with the new algorithms described
above. As observed in [23], more than 90% time of the planning algorithm is spent
in collision queries, i.e. milestone computation step and local planning step.

In order to compare the performance of different parallel collision detection algo-
rithms, we use the benchmarks highlighted in Figure 3. Their geometric complex-
ities are highlighted in Table 1. For rigid body benchmarks, we generate 50,000
random configurations and compute a collision-free path by using different variants
of our parallel collision detection algorithm. For articulated model benchmark, we
generate 100,000 random configurations. For milestone computation, we directly
use the collision detection algorithms. For local planning, we first need to unfold all
the interpolated configurations: we denote the BVTT for the j-th interpolated query
between the i-th local path as BVTT(i, j) and its node as (x,y, i, j). In order to avoid
unnecessary computations, we first add BVTT root nodes with small j into the work
queues, i.e. (1,1,i,j) < (1,1,i,), ifj < j/. As aresult, once a collision is found at
BVTT(i, jo), we need not to traverse BVTT(i, j) when j > jo.

For Algorithm 1 and Algorithm 2, we further test the performance for differ-
ent traversal sizes (32 and 128). Both algorithms give correct results when using a
larger stack size (128). For smaller stack sizes, the algorithms will stop once the
stack is filled. Algorithm 1 may report a collision when the stack overflows while
Algorithm 2 returns a collision-free query. Therefore, Algorithm 1 may suffer from
false positive errors while Algorithm 2 may suffer from false negative errors. We
also compare the performance of Algorithm 1 and Algorithm 2 when the clustering
algorithm described in Section 4.1 is used and when it is not.

The timing results are shown in Table 2 and Table 3. We can observe: (1) Al-
gorithm 1 and Algorithm 2 both work better when local traverse stack is smaller

14 Jia Pan and Dinesh Manocha

| | Algorithm 1 | Algorithm 2 | Algorithm 3 |
| |32, no—C|32, C| 128, no—C| 128, C|32, no—C|32, C| 128, no—C| 128, C|traverse|balancing|

piano 117 113 239 224 177 131 168 130 68 3.69
large-piano| 409 387 738 710 613 535 617 529 155 15.1
helicopter 158 151 286 272 224 166 226 163 56 2.3
humanoid | 2392 |2322| 2379 2316 | 2068 |1877| 2073 1823 | 337 106

Table 2 Comparison of different algorithms in milestone computation (timing in milliseconds). 32
and 128 are the different sizes used for the traversal stack; C and no-C means using pre-clustering
and not using pre-clustering, respectively; timing of Algorithm 3 includes two parts: traversal part
and balancing part.

| | Algorithm 1 | Algorithm 2 | Algorithm3 |
| [32, no-C[32, C[128, no-C[128, C[32, no-C|32, C[128, no-C[128, C]traverse|balancing|
piano 1203 [1148| 2213 2076 | 1018 | 822 1520 1344 | 1054 34
large-piano| 4126 |[3823| 8288 7587 | 5162 |4017| 7513 6091 | 1139 66
helicopter | 4528 |4388| 7646 7413 | 3941 |3339| 5219 4645 | 913 41
humanoid | 5726 (5319 9273 8650 | 4839 (4788 9012 8837 | 6082 1964

Table 3 Comparison of different algorithms in local planning (timing in milliseconds). 32 and
128 are the different sizes used for the traversal stack; C and no-C means using pre-clustering and
not using pre-clustering, respectively; timing of Algorithm 3 includes two parts: traversal part and
balancing part.

and when pre-clustering is used. However for large models, traversal stack of size
32 may overflow and the collision results will be incorrect, which happens for the
large-piano benchmarks in Table 2 and Table 3. Algorithm 1’s performance will be
terribly reduced when traverse stack size increases to 128 while Algorithm 2 does
not change much. The reason is that Algorithm 2 uses per-packet stack, which is
about 32 times less than using per-thread stack. Clustering and packet can result in
a more than 50% speed-up. Moreover, the improvement of Algorithm 2 over Algo-
rithm 1 is increased on larger models (large-piano) than on smaller models (piano).
(2) Algorithm 3 is usually the fastest one among all the variations of the three algo-
rithms. It can result in more than 5-10x increase in acceleration.

As observed in [23, 22], all these benchmarks are dominated by milestone com-
putation and local planning steps as part of the overall parallel motion planning
framework. The two parts take more than 50% running time in both the basic PRM
and lazy PRM. Therefore, the overall planning algorithm can be improved by at
least 40%-45%.

In Figure 4, we also show how the pump kernel increases the GPU throughput
(i.e. the number of tasks available in work queues for GPU cores to fetch) in work-
load balancing based algorithm Algorithm 3. The maximum throughput (i.e. the
maximum number of BV overlap tests performed by GPU kernels) increases from
8 x 10* to nearly 10° and the minimum throughput increases from 0 to 2.5 x 10%.
For piano and helicopter, we can compute a collision-free path from the initial to
the goal configuration in in 879ms and 778ms separately using PRM or 72.79ms or
72.68ms using lazy PRM.

GPU-based Parallel Collision Detection for Real-Time Motion Planning 15

4 4
8)(10 10){10

=

GPU throughput
~ -
GPU throughput

% 002 008 006 008 01 o012 % 00z oo+ 006 008 01 o012

timing timing
Fig. 4 GPU throughput improvement caused by pump kernel. Left figure shows the throughput
without using the pump and right figure shows the throughput using the pump.

6 Conclusion and Future Work

In this paper, we introduce two novel parallel collision query algorithms for real-
time motion planning on GPUs. The first algorithm is based on configuration-packet
tracing, is easy to implement and can improve the parallel performance by perform-
ing more coherent traversals and reduce the memory consumed by traversal stacks.
It can provide more than 50% speed-up as compared to simple parallel methods. The
second algorithm is based on workload balancing, and decomposes parallel collision
queries into fine-grained tasks of BVTT node operations. The algorithm uses a light-
weight task-balancing strategy to guarantee that all GPU cores are fully loaded and
achieves close to the peak performance on GPUs. It can provide 5-10X speed-up
compared to simple parallel strategy. The overall performance of the GPU-based
randomized planner also increases more than 50% when compared to the previous
GPU planner.

There are many avenues for future work. We are interested in using more ad-
vanced sampling schemes with the planner to further improve its performance and
allow us to work on motion planning problems with narrow passages. Furthermore,
we would like to adjust the planner to generate smooth paths and integrate our plan-
ner with certain robots (e.g. PR2).

Acknowledgements This work was supported in part by ARO Contract W911NF-
04-1-0088, NSF awards 0636208, 0917040 and 0904990, DARPA/RDECOM Con-
tract WR91CRB-08-C-0137, and Intel.

References

1. Aila, T, Laine, S.: Understanding the efficiency of ray traversal on GPUs. In: High Perfor-
mance Graphics, pp. 145-149 (2009)

2. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: Probabilistic
roadmaps of trees for parallel computation of multiple query roadmaps. In: Robotics Research,
Springer Tracts in Advanced Robotics, vol. 15, pp. 80-89. Springer Berlin / Heidelberg (2005)

3. Amato, N., Dale, L.: Probabilistic roadmap methods are embarrassingly parallel. In: Interna-
tional Conference on Robotics and Automation, pp. 688 — 694 (1999)

4. Banerjee, A., Ghosh, J.: Scalable clustering algorithms with balancing constraints. Data Min-
ing and Knowledge Discovery 13(3), 365-395 (2006)

5. Barraquand, J., Latombe, J.C.: Robot motion planning: A distributed representation approach.
International Journal of Robotics Research 10(6) (1991)

16

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Jia Pan and Dinesh Manocha

. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A performance study

of general-purpose applications on graphics processors using cuda. Journal of Parallel and
Distributed Computing 68(10), 1370-1380 (2008)

. Foskey, M., Garber, M., Lin, M., Manocha, D.: A voronoi-based hybrid planner. In: Interna-

tional Conference on Intelligent Robots and Systems, pp. 55 — 60 (2001)

. Gunther, J., Popov, S., Seidel, H.P., Slusallek, P.: Realtime ray tracing on GPU with BVH-

based packet traversal. In: IEEE Symposium on Interactive Ray Tracing, pp. 113—-118 (2007)

. Harris, M.: Optimizing parallel reduction in CUDA. NVIDIA Developer Technology (2009)
. Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.: Interactive motion planning using hard-

ware accelerated computation of generalized voronoi diagrams. In: International Conference
on Robotics and Automation, pp. 2931 — 2937 (2000)

JaJa, J.: An introduction to parallel algorithms. Addison Wesley Longman Publishing Co.,
Inc. (1992)

Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automa-
tion 12(4), 566-580 (1996)

Kim, D., Heo, J.P.,, Huh, J., Kim, J., Yoon, S.E.: HPCCD: Hybrid parallel continuous collision
detection using cpus and gpus. Computer Graphics Forum 28(7), 1791-1800 (2009)

Kuffner, J., LaValle, S.: RRT-connect: An efficient approach to single-query path planning.
In: International Conference on Robotics and Automation, pp. 995 — 1001 (2000)

Larsen, E., Gottschalk, S., Lin, M., Manocha, D.: Distance queries with rectangular swept
sphere volumes. In: International Conference on Robotics and Automation, pp. 3719-3726
(2000)

Lauterbach, C., Mo, Q., Manocha, D.: gproximity: Hierarchical gpu-based operations for col-
lision and distance queries. Computer Graphics Forum 29(2), 419-428 (2010)

LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

Lin, M., Manocha, D.: Collision and proximity queries. In: Handbook of Discrete and Com-
putational Geometry, pp. 787-808. CRC Press, Inc. (2004)

Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified graphics and
computing architecture. IEEE Micro 28(2), 39-55 (2008)

Lozano-Perez, T., O’Donnell, P.: Parallel robot motion planning. In: International Conference
on Robotics and Automation, pp. 1000-1007 (1991)

Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kriiger, J., Lefohn, A.E., Purcell, T.:
A survey of general-purpose computation on graphics hardware. Computer Graphics Forum
26(1), 80-113 (2007)

Pan, J., Lauterbach, C., Manocha, D.: Efficient nearest-neighbor computation for GPU-based
motion planning. In: International Conference on Intelligent Robots and Systems (2010). To
appear

Pan, J., Lauterbach, C., Manocha, D.: g-planner: Real-time motion planning and global navi-
gation using GPUs. In: AAAI Conference on Artificial Intelligence, pp. 1245-1251 (2010)
Pisula, C., Hoff, K., Lin, M.C., Manocha, D.: Randomized path planning for a rigid body
based on hardware accelerated voronoi sampling. In: International Workshop on Algorithmic
Foundation of Robotics, pp. 279-292 (2000)

Plaku, E., Bekris, K.E., Kavraki, L.E.: Oops for motion planning: An online open-source
programming system. In: International Conference on Robotics and Automation, pp. 3711-
3716 (2007)

Sud, A., Andersen, E., Curtis, S., Lin, M., Manocha, D.: Real-time path planning for virtual
agents in dynamic environments. In: IEEE Virtual Reality, pp. 91-98 (2007)

Talamadupula, K., Benton, J., Schermerhorn, P.: Integrating a closed world planner with an
open world. In: ICAPS Workshop on Bridging the Gap Between Task and Motion Planning
(2009)

Tang, M., Manocha, D., Tong, R.: Mccd: Multi-core collision detection between deformable
models. Graphical Models 72(2), 7-23 (2010)

Zhang, L., Manocha, D.: A retraction-based RRT planner. In: International Conference on
Robotics and Automation, pp. 3743-3750 (2008)

