
Evacuation of rectilinear polygons?

Sándor Fekete, Chris Gray, and Alexander Kröller

Department of Computer Science, TU Braunschweig, Germany.
{fekete,gray,kroeller}@ibr.cs.tu-bs.de

Abstract. We investigate the problem of creating fast evacuation plans
for buildings that are modeled as grid polygons, possibly containing
exponentially many cells. We study this problem in two contexts: the
“confluent” context in which the routes to exits remain fixed over time,
and the “non-confluent” context in which routes may change. Confluent
evacuation plans are simpler to carry out, as they allocate contiguous
regions to exits; non-confluent allocation can possibly create faster evac-
uation plans. We give results on the hardness of creating the evacuation
plans and strongly polynomial algorithms for finding confluent evacu-
ation plans when the building has two exits. We also give a pseudo-
polynomial time algorithm for non-confluent evacuation plans. Finally,
we show that the worst-case bound between confluent and non-confluent
plans is 2−O( 1

k
).

1 Introduction

A proper evacuation plan is an important requirement for the health and safety
of all people inside a building. When we optimize evacuation plans, our goal is
to allow people to exit the building as quickly as possible. In the best case, each
of a building’s exits would serve an equal number of the building’s inhabitants.
However, there might be cases in which this can not happen. For instance, when
there is a bottleneck between two exits, it might make sense for most of the
building’s inhabitants to stay on the side of the bottleneck closer to where they
begin, even if this means that one exit is used more than the other.

In this research, we study the computation of evacuation plans for buildings
that are modeled as grid polygons. We make the assumption that every grid
square is occupied by exactly one person and that at most one person can occupy
a grid square at any given time. The first assumption may seem a bit contrived,
but in many cases it is impossible for a building designer to know exactly where
people will be in the building in the moments before an evacuation, and this
pessimistic view of the situation is the only sensible one to take. Also remember
that in some cases, such as in airplanes, the situation in which nearly every
bit of floor space is occupied before an evacuation is more common than the
alternative.
? This research was funded by the German Ministry for Education and Research
(BMBF) under grant number 03NAPI4 “ADVEST”, which fully funded Chris Gray.

ar
X

iv
:1

00
8.

44
20

v1
  [

cs
.D

S]
  2

6 
A

ug
 2

01
0



Evacuation plans can be divided into two distinct types. In the first, signs are
posted that direct every person passing them to a specific exit. In the second,
every person is assigned to a distinct exit that does not necessarily depend on
the exits to which his or her neighbors are assigned. The first type of evacuation
plan generates what is known as a confluent flow and the second generates a
non-confluent flow. More precise definitions of these terms will be given later.

It is clear that in a non-confluent flow, people can be evacuated as quickly
as in a confluent flow, and we show that in certain instances people can be
evacuated significantly more quickly in a non-confluent flow than in a confluent
flow. However, a confluent flow is significantly easier to carry out than a non-
confluent one, so we also give results related to it. We first show that the problem
of finding an optimal confluent flow belongs to the class of NP-complete problems
if the polygon has “holes”—that is, if it represents a building with completely
enclosed rooms or other spaces. We then give an algorithm with a running time
linear in the description complexity of the region (which can be exponentially
smaller than the number of cells) that computes an evacuation plan for buildings
without holes that have two exits; a generalization to a constant number of exits
is more complicated, but seems plausible. Finally, we show that the worst-case
ratio between the evacuation times for confluent flows and non-confluent flows
for k exits is 2−O( 1k ).

1.1 Preliminaries

We are given a rectilinear polygon P on a grid. There exists, on the boundary
of P , a number of special grid squares known as exits. We call the set of exits
E = {e1, . . . , ek}. We assume that every grid square in P contains a person. A
person can move vertically or horizontally into an empty grid square or an exit.
The goal is to get each person to an exit as quickly as possible. When an exit
borders more than one grid square, we specify the squares from which people
can move into the exit.

The area of P is denoted by A and the number of vertices of P is denoted by
n. Note that A can be exponential in n. The set of people that leave P through
the exit e is called the e-exit class. We also write exit class to refer to the set of
people who leave through an unspecified exit. The grid squares that are adjacent
to the boundary of P are known as boundary squares.

There are two versions of the problem that we consider. We call these conflu-
ent flows and non-confluent flows. In the first, we add the restriction that every
grid square has a unique successor. Thus, for every grid square s, people passing
through s leave s in only one direction. This restriction implies that evacuation
plans are determined by space only. It does not exist for non-confluent flows. It
can be argued that informing people which exit to use is easier in the case of
confluent flows since a sign can be placed in every grid square, informing the peo-
ple who pass through it which exit to use. However, we show that non-confluent
flows can lead to significantly faster evacuations.

The major difficulty in the problem comes from bottlenecks. We define a k-
bottleneck to be a rectangular subpolygon B of P such that two parallel boundary

2



edges of B are the same as two edges of P , where the distance between the
common edges is k.

1.2 Related Work

The problem when restricted to confluent flows is similar in many ways to the
unweighted Bounded Connected Partition (or 1-BCP) problem [12]. In this prob-
lem, one is given an unweighted, undirected graph G = (V,E) and k distin-
guished vertices. The goal is to find k connected subsets of V , where each subset
contains exactly one of the distinguished vertices and where each has the same
cardinality. If we define the dual of the grid contained in our polygon to be the
graph formed by connecting adjacent faces and let the distinguished vertices be
the exits, then 1-BCP is clearly the same as evacuation restricted to confluent
flows with k exits.

It was independently shown by Lovász [8] and Györi [7] that a solution to the
1-BCP problem can be found for every graph that is k-connected. However, their
proofs are not algorithmic. Thus, there has been some work on finding partitions
of size k for low values of k. For example, Suzuki et al. give an algorithm for 2-
partitioning 2-connected graphs [14]. One algorithm claiming a general solution
for k-partitioning k-connected graphs [10] is incorrect.

Unfortunately, when P contains 1-bottlenecks, the graph obtained by finding
the dual of the grid inside P is 1-connected. Therefore, the results of Lovás and
Györi do not apply. Also, since the dual of the grid contained in our polygon can
have size exponential in the complexity of the polygon, we would probably need
to merge nodes and then assign weights to the nodes of the newly-constructed
graph. The addition of weights, however, makes the BCP problem NP-complete,
even in the restricted case in which the graph is a grid [3].

Another connection is to the problem of partitioning polygons into subpoly-
gons that all have equal area. The confluent version of our problem, indeed, can
be seen as the “discrete” version of that problem. The continuous version has
been studied. One interesting result from this study is that finding such a de-
composition while minimizing the lengths of the segments that do the partition-
ing is NP-hard even when the polygons are orthogonal [1]. However, polynomial
algorithms exist for the continuous case when that restriction is removed [9].

Baumann and Skutella [2] consider evacuation problems modeled as earliest-
arrival flows with multiple sources. They achieved a strongly-polynomial-time
algorithm by showing that the function representing the number of people evac-
uated by a given time is submodular. Such a function can be optimized using the
parametric search technique of Megiddo. Their approach is different from ours
in that they are given an explicit representation of the flow network as input.
We are not given this, and computing the flow network that is implicit in our
input can take exponential time. Also, their algorithm takes polynomial time in
the sum of the input and output sizes. However, the complexity of the output
can be exponential in the input size.

Another, perhaps more surprising, related problem is machine scheduling.
Viewed simply, confluent flows correspond to non-preemptive scheduling prob-

3



lems, while non-confluent flows correspond to preemptive scheduling problems.
The NP-hardness result for optimal confluent flows is inspired by the hardness
of scheduling jobs on non-preemptive machines [5], while the worst-case ratio
between confluent and non-confluent flows is inspired by the list-scheduling ap-
proximation ratio [6].

2 Confluent Flows

As mentioned in the introduction, in a confluent flow, every grid square has the
property that all people that pass through it use the same exit.

In this section, we present our results related to confluent flows. First, we
show the NP-completeness of the problem of finding an optimal evacuation plan
with confluent flows in a polygon with holes. This holds even for polygons with
two exits. We then give a linear-time algorithm for polygons with two exits.

2.1 Hardness

Weak NP-hardness with two exits. We first show that the evacuation problem
with confluent flows is NP-hard if we allow P to have holes. We reduce from the
problem Partition, which is well-known to be NP-complete [5]. In this problem,
we are given a set S = {c1, c2, . . . , cm} of integers and we are asked to determine
whether we can find S1, S2 ⊆ S such that

∑
ch∈S1

ch =
∑

ci∈S2
ci.

We note that if we scale all of the numbers in a Partition instance by an
integer `, the answer remains the same—that is, a partition can be found in the
new set if and only if a partition could be found in the old set—but the difference
between the size of non-optimal sets is at least `. This is because

∑
ch∈S1

`ch −
∑
ci∈S2

`ci = `

( ∑
ch∈S1

ch −
∑
ci∈S2

ci

)
≥ `

if the sums are not equal.
To transform the Partition problem into our problem, we first scale the

input by a factor of 2m+ 1. We then do the following to make the polygon P :

– We make a rectangle whose width is m + 1 +
∑

ci∈S ci and whose height is
5.

– We remove all the grid squares of P on the second and fourth rows except
those that are at position

∑j
i=1 ci + j for all 0 < j ≤ m.

– We remove all grid squares from the third row that are at position
∑j

i=1 ci+j
for all 0 < j ≤ m.

– We add a large number of squares (at least equal to the current area of P )
to the left end of the first and fifth rows.

– We add an exit e1 to the right end of the first row and an exit e2 to the right
end of the fifth row.

4



e1

e2

Fig. 1. The polygon P given a Partition instance of {11, 6, 9}. To keep the picture a
manageable size, the elements have not been scaled and the left ends of the first and
fifth rows are truncated.

See Figure 1 for a small example. We say that the connected sets of grid squares
in the third row each correspond to one of the elements of the given Partition
instance. This leads to the following lemma.

Lemma 1. The polygon P with holes can be divided into two confluent exit
classes of equal size if and only if the given instance of Partition has a “yes”
answer.

Proof. First, assume that the Partition instance has a “yes” answer and that
we are given S1 and S2, the sum of whose elements are equal. We then take the
grid squares from the third row that correspond to elements in the set S1 and
send them to e1. We take the remaining grid squares from the third row and
send them to e2. We also send all the grid squares in the first and second rows
to e1 and all the grid squares in the fourth and fifth rows to e2.

It is obvious that the number of grid squares in the rows other than the third
row are equal. Since the sum of the elements in S1 is equal to the sum of the
elements in S2, the number of grid squares sent to e1 and e2 is equal.

Now assume that the Partition instance does not have a “yes” answer. This
implies that |

∑
ci∈S1

ci−
∑

cj∈S2
cj | ≥ 2m+1 for any S1 and S2 that are subsets

of S. Since we are dealing with a confluent flow, if any grid square from the first
row exits through e2, then all grid squares to the left of it must exit through e2.
This would mean that the number of grid squares exiting through e2 would be
more than 2/3 the number of grid squares in P (because of the “large number” of
grid squares added to the left end of the first and fifth rows). Therefore, we can
assume that no grid square from the first row exits through e2 and similarly we
can assume that no grid square from the fifth row exits through e1. This implies
that the only grid squares that can “choose” which exit to go through are those
in the second, third, and fourth rows.

There are exactly 2m grid squares in the second and fourth rows. Because the
Partition instance does not have a “yes” answer, the number of grid squares
from the third row going through e1 has a difference of at least 2m+1 with the
number of grid squares going through e2. Therefore, there is no way that the
number of grid squares going through e1 is equal to the number of grid squares
going through e2. ut

We define the decision version of the problem of evacuation with confluent
flows to be: “Given a grid polygon P with k exits and a natural number `, can
a confluent flow be found in which the largest exit class has size at most `?”

5



Since areas of polygons can be computed in time proportional to their number
of vertices, we can verify if a solution is correct in O(kn) time (where n is the
number of vertices of the polygon and k is the number of exits). This, along with
Lemma 1, implies that the decision problem is NP-complete in polygons with
holes. We summarize this result in the following theorem.

Theorem 1. The problem of finding an optimal confluent flow in a polygon with
holes is NP-complete.

Strong NP-hardness. Theorem 1 shows that the problem is weakly NP-complete.
This means that the hardness of the problem depends on the areas of subpolygons
being exponential in the complexity of the input. This implies that a pseudo-
polynomial algorithm might exist.

However, we will now show that if we allow O(n) exits, the problem is strongly
NP-complete. This means that the problem is still NP-complete when all of its
numerical parameters are polynomially bounded in the size of the input.

Our reduction is from Cubic Planar Monotone 1-in-3 Satisfiability
(or CPM 1-in-3 SAT for short). This is a variant of the Satisfiability problem
in which

– every clause contains exactly 3 literals,
– every variable is in exactly 3 clauses,
– the graph generated by the connections of variables to clauses is planar,
– every literal in every clause is non-negated, and
– a clause is satisfied if exactly one of its variables is true.

We use a reduction that is almost equivalent to the one showing that tiling a
finite subset of the plane with right trominoes is NP-complete [11], so we will
summarize that reduction and describe our modifications to it.

A right tromino is a type of tile that consists of only three grid squares
arranged in an “L” shape. Moore and Robson showed [11] that tiling a finite
subset of the plane (that is, a polygon with holes) with right trominoes is NP-
complete. Since their reduction contains no numerical parameters and all the
coordinates used are polynomially-sized integers, it is clear that the problem is
strongly NP-complete.

The reduction uses gadgets—small sections of polygons that can be put to-
gether to form a larger polygon—to create a polygon that can be tiled by right
trominoes if and only if a given instance of CPM 1-in-3 SAT is satisfiable. The
reduction is as follows. First, the graph G = (V,E) generated by connecting
variables to clauses is embedded on a grid. The embedding must have the prop-
erty that every vertex is on a grid point and the set of edges is a set of disjoint
paths along grid lines. Then every grid point that is occupied is replaced by
an appropriate gadget (rotated appropriately). The vertices that correspond to
variables are replaced by variable gadget; those that correspond to clauses are
replaced by a clause gadget. A grid point that is occupied by an edge is replaced
by a wire gadget when the edge continues in the same direction through the grid

6



True FalseTrue False
(a) (b)

Fig. 2. (a) The variable gadget. (b) The wire gadget.

False

True FalseFalse False

True

False

False

True

Fig. 3. The clause gadget, showing the three ways that people can evacuate such that
each exit handles exactly three people.

point and by a turn gadget when the edge turns at the grid point. Since G is a
planar graph, it should be clear that the constructed polygon has holes.

The gadgets shown in Figures 2–4 are the same as those in the proof by
Moore and Robson, we have only added exits to them so that the entire polygon
can be evacuated with a maximum of three people going through each exit if
and only if the polygon can be tiled by right trominoes.

The paths indicated in Figures 2–4 indicate the possible evacuation routes
that satisfy the requirement that every exit handles at most three people. They
correspond to the possible tiling of each gadget by right trominoes in the proof
by Moore and Robson. We summarize.

Theorem 2. The problem of finding an optimal confluent flow in a polygon with
holes and O(n) exits is strongly NP-complete.

Since this implies that finding an optimal confluent flow in a polygon with
holes in polynomial time is unlikely, we assume in the rest of the paper that P
is a simple grid polygon without holes.

2.2 Two Exits

When the polygon P has only two exits, e1 and e2, we can find an optimal
confluent flow in O(n) time. We first present an algorithm that takes cubic time
that can be modified fairly easily into an algorithm that takes linear time.

True False

Fig. 4. The turn gadget.

7



Naïve algorithm Notice that the case in which P has two exits is simpler than
the case in which P has more exits because of the fact that both exit classes
must each have one contiguous connection to the boundary of P .

We begin with a decomposition of P into rectangles. This decomposition is
the overlay of two simpler decompositions: the vertical and horizontal decom-
positions. The vertical decomposition of a rectilinear polygon P is the partition
of P into rectangles by the addition of only vertical line segments. Similarly,
the horizontal decomposition of P is the partition of P into rectangles by the
addition of only horizontal line segments. We call the overlay ω and its dual
graph ω∗. We add the vertical and horizontal line segments from the grid points
on opposite sides of e1 and e2 to ω as well. We then do the following for every
pair of rectangles r1 and r2 in ω that have at least one edge of the boundary of
P . We first ensure that e1 is between r1 and r2 and that e2 is between r2 and
r1. We also ensure that there are no bottlenecks of size 1 between r1 and r2. If
either of these conditions are not met, we proceed to the next pair of rectangles.
We then set the e1-exit class to be all the grid squares along the boundary of P
between r1 and r2. We then add all the grid squares surrounded by the e1-exit
class to the e1-exit class. We call the area of the e1-exit class A1. We define the
e2-exit class similarly and call its area A2. We call the larger of the two areas A`

and its corresponding exit e`. If A` is less than A/2, we can divide the rest of
the grid squares evenly among the exit classes—see Lemma 3 for details—and
return the solution. Otherwise, we attempt to make the e`-exit class as small as
possible (while staying above A/2) inside r1 and r2 and assign the rest of the
grid squares to the other exit class. We maintain a variable that tracks the area
of the smallest such exit class emin. If we get through all the possible pairs r1
and r2 without finding a pair that we can return, we return emin.

Lemma 2. The algorithm presented above is correct and takes O(n3) time.

Proof. We assume that the algorithm presented in Section 2.3 is correct and
runs in O(n) time.

The time complexity of the algorithm comes from the fact that there are
O(n) rectangles of ω with at least one edge on the boundary of the polygon.
We loop through each pair of these rectangles, and in each loop there is the
possibility that we must find the area of an exit class.

To show that the algorithm is correct, we must argue that it finds the e1-
and e2-exit classes and that

– both classes are connected and
– the size of the larger class is as small as possible.

Clearly, if we find connected exit classes that both have size A/2 (which we do
if we return early), we have satisfied both requirements. We find such a solution
if it exists because we try all combinatorially unique starting and ending points
for the connection of the e1-exit class to the boundary of P .

Therefore, it remains to argue that we find the optimum solution for the
case in which one exit class is larger than A/2. In this case, we also try all

8



combinatorially unique starting and ending points that minimize the size of
both the e1 and e2 exit classes. The exit classes that we return consist of the
smallest exit class that is larger than A/2 and its complement (which must be
smaller). This proves the lemma. ut

Linear algorithm The algorithm above has two steps that lead to it taking
cubic time: the loop over all pairs of rectangles on the boundary of P and the
computation of the minimum area for an exit class that has a connection to the
boundary that begins in one of the rectangles and ends in the other. In this
section, we give a more clever solution that avoids these problems.

We begin by observing that if we update the area, each time we change the
starting and ending points of the connection of the e1-exit class to the boundary
of the polygon rather than computing it anew, the total time spent computing
the area depends on the sum of the complexities of the updated areas.

We also observe that we loop over the rectangles of ω with at least one
edge attached to the boundary of P . This means that we do not really need to
compute the entire overlay ω—only the intersections of ω with the boundary of
P . These intersections can be computed in O(n) time by computing the vertical
and horizontal decompositions of P separately. We call the set of intervals thus
computed ω′. Once again, we are given the exits e1 and e2.

We create two pointers i1 and i2 with which we walk through the intervals in
ω′. For each pair of intervals pointed to by i1 and i2 that we visit, we measure
the number of squares that must be in the e1- and e2-exit classes if we assume
that the endpoints of their connections to the boundary of P begin and end in
i1 and i2. We call these areas A1 and A2 respectively. If we ever visit a pair
of intervals for which A1 and A2 are both less than A/2, then we divide the
remaining squares so that both A1 and A2 are A/2—see Lemma 3 for details—
and return the results. Otherwise, we return the exit class that has size greater
than A/2, but whose size is minimal.

(a) (b) (c) (d)

i1 i2

e1

e2

Fig. 5. An example of the linear-time algorithm. The pointers i1 and i2 denote the
endpoints of the connection of the e1-exit class to the boundary of the polygon.

9



To begin with, we set i1 and i2 to be the interval containing e2, so that
the endpoints of the connection of the e1-exit class are on either side of e2. See
Figure 5 (a). We call the area that the e1-exit class must have A1 and the area
that the e2-exit class must have A2. We then move i1 closer to e1 until it either
reaches e1 or would cause A2 to be greater than A/2. As we progress, we simply
update A1 and A2 and keep track of the smallest value for A1. See Figure 5 (b).

Once we have done this for i1, we do the same for i2. See Figure 5 (c). Finally,
we move i1 back towards e2. For each interval that we move i1 towards e2, we
move i2 as much as possible towards e1 so that A1 is as small as possible without
causing A2 to be larger than A/2. See Figure 5 (d). As before, we keep track of
the smallest value for A1. When i1 reaches e2 or i2 reaches e1, we stop.

When we have completed the algorithm for e1, we repeat the process, switch-
ing e1 and e2.

Theorem 3. In the confluent setting, the above algorithm finds the optimal
evacuation plan for a polygon P with two exits in O(n) time, where n is the
number of vertices in P .

Proof. It is easy to see that this algorithm runs in linear time since each time
we move a pointer, we only need to update the area currently assigned to the
e1-class. This takes time proportional to the complexity of the area that we are
adding or removing, and the sum of the complexities of the updated areas is at
most 2n.

We must argue, however, that the algorithm finds the minimum value for A1

if A1 must be greater than A/2 in the optimal layout (a symmetric argument
holds for A2). The first two phases of the algorithm simply reduce A1 as much as
possible while keeping i2 as close to e2 as possible. The third phase is similar to
the rotating calipers algorithm [15]. An invariant is established—in this case, A1

is as small as possible for the given interval i2 without making A2 be greater than
A/2—and then two pointers are moved in the same direction around P while
maintaining the invariant. In our algorithm i2 visits every reasonable interval
between e1 and e2, meaning that we eventually find the optimum interval. ut

2.3 Dividing the interior

As noted in the algorithms in Section 2.2, we need a subroutine that assigns
grid squares to exits once the grid squares along the boundary of P have been
assigned. Given a connected subpolygon P ′ ⊆ P , a natural number x, and an
initial connected set Ei ⊆ P ′ of squares that belong to the exit class e we wish to
find a set S of squares, where |S| = x (the size condition) and where both S∪Ei

and P−(S∪Ei) are connected (the connectivity condition). More precisely, since
x could be exponential in the complexity of the input, we would like to find a
polygon that has complexity linear in the input that represents the boundaries
of S.

We solve this problem for the useful case in which P ′ is assumed to have no
boundary squares except those that are in Ei. In this case, we do not need to

10



Ei

(a) (b)

P ′

Fig. 6. (a) P ′ and Ei. (b) The vertical decomposition and its dual.

worry about the connectivity condition as long as S ∪Ei is a connected polygon
without holes. This is because any square in P − (S ∪ Ei) has a path to the
boundary. Since Ei is a connected set, the boundary squares of P − (S ∪Ei) are
a connected subset of P .

It is thus relatively simple to find S given the assumption that P ′ may not
contain any boundary squares of P . First, we check whether |P ′| > x. If it
is not, we simply return the whole of P ′ ∪ Ei. Otherwise, we find the vertical
decomposition of P ′ ∪ Ei. We perform a breadth-first-traversal of the dual of
this vertical decomposition starting at a rectangle that contains a square of Ei,
and adding the squares from each visited rectangle to S as we go. We stop the
traversal when |S| + |Ei| ≥ x. We subtract the appropriate amount of squares
from S and return it.

Lemma 3. The above algorithm runs in O(n) time and has output size that is
linear in the input size.

Proof. Finding a vertical decomposition of a polygon can be completed in linear
time [4]. Since the area of each rectangle of the decomposition can be computed
in constant time, the time required for the breadth-first-traversal of the dual of
the decomposition is also O(n). Finally, we note that each rectangle that we add
during the traversal can be charged to one of the vertices of the input, proving
the second part of the lemma. ut

We conjecture that one can use algorithms similar to the naïve algorithm
given above to compute the evacuation of any polygon with a constant number
of exits, but the details become much more involved. We therefore leave this
question to future work.

3 Non-Confluent Flows

Compared with confluent flows, non-confluent flows are clearly a stronger model.
We note that any confluent flow is a non-confluent flow, but not vice versa. We
show that non-confluent flows can be as much as 2− 2/(k + 1) times as fast as

11



confluent flows by giving an example in which this is the case. We then argue
that the ratio our example achieves is optimal.

3.1 Pseudo-Polynomial Algorithm

In contrast to the case with confluent flows, for which we showed that finding an
assignment of people to exits is strongly NP-complete when we are dealing with
polygons with holes and O(n) exits, we can show that, for non-confluent flows,
a pseudo-polynomial algorithm exists.

The algorithm is based on the technique of using time-expanded networks to
compute flows over time [13]. Therefore, we compute a flow network from the
input polygon as follows. We create a source vertex s and a sink vertex t. For
each grid square in P , we create two vertices—an in vertex and an out vertex.
We connect the in vertex to the out vertex with an edge that has capacity 1
for every grid square. We then make, for some integer T ≥ 1, T copies of the
polygon P1, . . . , PT , where each copy has these vertices and edges added. For
every grid square of P1, we connect s to the in vertex of the grid square with an
edge that has capacity 1. We then connect the out vertex of every grid square
in Pi to the in vertex of all its neighbors in Pi+1 for all 1 ≤ i ≤ T − 1. Again,
the edges we use all have capacity 1. Finally, we connect the out vertex of every
exit to t with an edge that has capacity 1. We call this flow network G.

It is fairly easy to see that if we are able to find a maximum flow of value A
through G, then we are able to evacuate P in T time steps. However, we note
that both T and |G| can be exponential in the complexity of P , making this a
pseudo-polynomial algorithm.

Theorem 4. There exists a pseudo-polynomial algorithm to find an evacuation
of a polygon with a non-confluent flow.

3.2 Differences to Confluent Flows

The example that shows a large gap between confluent and non-confluent flows
is a horizontal rectangle of width 1 with length 2k+mk, for some integer m ≥ 1.
Attached to this rectangle are k vertical rectangles of width 1 and length mk—
one at every other square for the first 2k squares. Between each vertical rectangle
is an exit. Each exit can only be entered from the square to the left. See Figure
7(a).

We can see that the example has an optimal confluent flow that requires
2mk + 3 time steps: three to remove the people directly to the left of each exit
and all the people below the exits, mk to remove the people in the vertical
rectangles, and another mk for the people in the horizontal “tail” to go through
the rightmost exit. On the other hand, in the optimal non-confluent flow, all
exits can remain continuously busy. One way that this can happen is for m
people from the horizontal rectangle to leave through successive exits, while
people from the vertical rectangles are leaving through the other exits. Since
the exits are continuously busy, the amount of time for all people to leave is

12



x
y

s1

s2

sk

B
s3

. . .

(a) (b)

Fig. 7. (a) A polygon whose optimal non-confluent flow is nearly twice as fast as its
optimal confluent flow. (b) The general shape of any polygon that realizes the maximum
ratio between the confluent and non-confluent flows.

(k2m + (2 +m)k)/k = mk + 2 +m. The ratio between the confluent and non-
confluent flows in this case is

2mk + 3

mk +m+ 2
= 2− 2m+ 1

mk +m+ 2
→

m→∞
2− 2

k + 1
.

We now show that the ratio achieved in this example is tight. Our ratio is sim-
ilar to (and inspired by) the upper bound for the list-scheduling approximation
ratio [6] in machine scheduling.

Theorem 5. The maximum ratio between the confluent flow and non-confluent
flow in any grid polygon P is 2− (2/(k + 1)).

Proof. Let the ratio between the confluent flow and the non-confluent flow for
a given polygon P be known as RP . When calculating RP , we assume that the
confluent and non-confluent flows are calculated optimally for P .

We begin by observing that by reducing the size of the smallest bottleneck
in a polygon P can only increase RP . Suppose we have polygons Pa and Pb,
where Pa has a minimum bottleneck size of at least 2, and Pb is the same as Pa,
except that one grid square has been removed from the minimum bottleneck.
The number of exit classes on one side of the smallest bottleneck in the confluent
case can only decrease in Pb relative to Pa, while in the non-confluent case, they
may stay the same. Thus, it is possible that there exists an exit in the non-
confluent solution that is used for longer than in the confluent solution. This
implies that the number of steps that is required to evacuate the building in the
confluent setting increases faster than the number of steps required under the
non-confluent setting. Therefore, RPa is at least as large as RPb

, and might be
larger.

This implies that RP is maximized when the size of the minimum bottleneck
is minimized, so we can assume that the size of the minimum bottleneck is 1.
We call the subpolygons on either side of the bottleneck P1 and P2.

Furthermore, we can easily see that increasing the difference between the
number of exits in P1 and P2 can only increase RP . This is because the number
of people that must go through the bottleneck that separates P1 and P2 can
only be increased by increasing this difference. Therefore, we can assume that

13



all the exits are on one side of the bottleneck between P1 and P2. Without loss
of generality, assume that all exits are in P1.

Given this setup, we attempt to construct P so that as many exits as possible
are used during as many time steps as possible in the non-confluent case. This
implies that there must be some source of people in P1. This is because only
one person can go through the bottleneck between P1 and P2 per time step.
Therefore, at most one person from P2 can reach an exit per time step. However,
by creating a supply of people in P1, we allow the people from P2 to queue in
front of the exits.

So that the people from P2 can queue in front of the exits, the route taken by
the people in P1 from the supply to the exit must not interfere with the paths
of the people from P2 to the exits. This means that the number of people in P1

must be split and distributed to each exit.
Therefore, P has the form sketched in Figure 7(b). There is a bottleneck B.

The number of people behind B is x, the amount of space for these people to
queue in is y, and the supply of people for each exit ei is si.

In both the confluent and non-confluent solutions, it takes time 2y/k to
remove the y people in the queueing area. In the non-confluent solution, it is
necessary that this is the first step performed. After this is done, the people
from behind the bottleneck begin entering the queueing area. The people must
therefore take turns exiting from the queueing area and exiting from the supplies
that are attached to each exit. This implies that y is as small as possible (while
satisfying y ≥ 2k) and that si ≥ x for all 1 ≤ i ≤ k. Having different values of
si provides no advantage, so we assume that the value of si is some value sx for
all i.

The ratio between the confluent flow and non-confluent flow is thus

2y/k + 2sx + 2x

2y/k + 2sx + 2x/k

which is maximized according to our constraints when sx = x and when y = 2k.
This gives a ratio of

2x+ 2k/k

x+ x/k + 2k/k
=

2x+ 2

x+ x/k + 2
= 2− 2x+ 2k

xk + x+ 2k
→

x→∞
2− 2

k + 1

which is the claimed result. ut

4 Conclusions

We have discussed evacuations in grid polygons. We first showed that finding
evacuations with confluent flows in polygons with holes is hard, even for polygons
with only two exits. We then looked at algorithms to find evacuations with
confluent flows. Finally, we showed that, while the difference between confluent
and non-confluent flows is potentially significant, it is bounded.

Our work raises some questions that require further study. For simple poly-
gons, there is evidence that a constant number of exits allows strongly polynomial

14



solutions, even though some of the technical details are complicated. What is
the complexity of finding an evacuation plan with a confluent flow when the
number of exits is not constant? Next, can we find an fixed-parameter-tractable
algorithm to find the confluent evacuation of polygons? Finally, can we find
a polynomial algorithm that gives the optimal evacuation using non-confluent
flows? Note that it is not even clear that the output size of such an algorithm is
always polynomial.

Acknowledgments

We thank Estie Arkin, Michael Bender, Joe Mitchell, and Martin Skutella for
helpful discussions; Martin Skutella is also part of ADVEST.

References

1. H. Bast and S. Hert. The area partitioning problem. In Proc. 12th Can. Conf.
Comput. Geom. (CCCG ’00), pages 163—171, Fredericton, NB, Canada, 2000.

2. N. Baumann and M. Skutella. Earliest arrival flows with multiple sources. Math.
Oper. Res., 34(2):499–512, 2009. Journal version of 2006 FOCS article “Solving
evacuation problems efficiently”.

3. R. Becker, I. Lari, M. Lucertini, and B. Simeone. Max-min partitioning of grid
graphs into connected components. Networks, 32(2):115–125, 1998.

4. B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Compu-
tational Geometry, 6(5):485—524, 1991.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

6. R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416—429, 1969.

7. E. Györi. On division of graphs to connected subgraphs. In Combinatorics, pages
485–494, Keszthely, 1978.

8. L. Lovász. A homology theory for spanning trees of a graph. Acta Mathematica
Hungarica, 30(3):241–251, 1977.

9. V. Lumelsky. Polygon area decomposition for multiple-robot workspace division.
Int. Journal of Computational Geometry and Applications, 8(4):437–466, 1998.

10. J. Ma and S. Ma. An O(k2n2) algorithm to find a k-partition in a k-connected
graph. Journal of Computer Science and Technology, 9(1):86–91, 1994.

11. C. Moore and J. Robson. Hard tiling problems with simple tiles. Discrete and
Computational Geometry, 26(4):573–590, Dec. 2001.

12. L. R. Salgado and Y. Wakabayashi. Approximation results on balanced connected
partitions of graphs. Electr. Notes in Discrete Mathematics, 18:207–212, Dec. 2004.

13. M. Skutella. An introduction to network flows over time. In Research Trends in
Combinatorial Optimization, pages 451–482. Springer-Verlag, 2009.

14. H. Suzuki, N. Takahashi, and T. Nishizeki. A linear algorithm for bipartition of
biconnected graphs. Information Processing Letters, 33(5):227–231, 1990.

15. G. Toussaint. Solving geometric problems with the rotating calipers. In Proc.
IEEE MELECON ’83, pages 10—02, 1983.

15


