
ar
X

iv
:1

00
5.

43
94

v1
 [

cs
.D

S]
 2

4
M

ay
 2

01
0

Scheduling Packets with Values and Deadlines in Size-bounded Buffers∗

Fei Li†

May 9, 2018

Abstract

Motivated by providing quality-of-service differentiated services in the Internet, we consider buffer
management algorithms for network switches. We study a multi-buffer model. A network switch
consists of multiple size-bounded buffers such that at any time, the number of packets residing in
each individual buffer cannot exceed its capacity. Packets arrive at the network switch over time;
they have values, deadlines, and designated buffers. In each time step, at most one pending packet
is allowed to be sent and this packet can be from any buffer. The objective is to maximize the total
value of the packets sent by their respective deadlines. A 9.82-competitive online algorithm has been
provided for this model (Azar and Levy. SWAT 2006), but no offline algorithms have been known yet.
In this paper, We study the offline setting of the multi-buffer model. Our contributions include a few
optimal offline algorithms for some variants of the model. Each variant has its unique and interesting
algorithmic feature. These offline algorithms help us understand the model better in designing online
algorithms.

∗Research is partially supported by NSF grant CCF-0915681.
†Department of Computer Science, George Mason University, Fairfax, VA 22030, USA. lifei@cs.gmu.edu

http://arxiv.org/abs/1005.4394v1

1 Introduction

Motivated by providing quality-of-service differentiated services in the Internet, we consider buffer
management algorithms for network switches. We study a multi-buffer model. A network switch consists
of m size-bounded buffers Q1, Q2, . . ., Qm; their sizes are denoted as B1, B2, . . . , Bm respectively.
At any time, the number of packets residing in each individual buffer Qi cannot exceed its capacity Bi.
Time is discretized into time steps. Packets arrive at the network switch over time and each packet p
has an integer arriving time (release time) rp ∈ R

+, a non-negative value vp ∈ R
+, an integer deadline

dp ∈ Z
+, and a designated buffer bp ∈ {Q1, . . . , Qm} that it can reside in. The deadline dp specifies

the time by which p should be sent. This model is preemptive such that the packets already existing
in the buffers can be dropped at any time before they are transmitted. A dropped packet cannot be
delivered any more. In each time step, at most one pending packet is allowed to be sent and this packet
may be from any buffer. The objective is to maximize weighted throughput, defined as the total value
of the packets transmitted by their respective deadlines.

The first QoS buffer management model is introduced in [1]. Since then, quite a few researchers have
studied this model as well as other variants, mostly in the online settings [7, 6, 3, 8, 5]. A well-studied
model is called the bounded-delay model. In this model, there is only one buffer. Packets have integer
release time, integer deadlines, and non-negative values. The objective is to maximize the total value of
the packets sent by their deadlines. An implicit assumption on this model is the buffer’s sufficiently large
size. All released packets can be stored in the buffer before they are delivered or they get to expire. For
the bounded-delay model, an optimal offline algorithm running in O(n log n) time has been proposed
in [7], where n is the number of packets released. We call the bounded-delay model a bounded-buffer
model in case the buffer size is enforced to be finite. The bounded-buffer model generalizes the bounded-
delay model, if we allow the buffer size to be larger than any packet’s slack time. (A packet’s slack time
is defined as the difference between its deadline and release time.) The bounded-buffer model is one
variant of the multi-buffer model proposed by Azar and Levy [2]. A 9.82-competitive online algorithm
has been provided for this model [2], but no offline algorithms have been known yet. In this paper,
we study the offline setting of the multi-buffer model. Our contributions include a few optimal offline
algorithms for some variants of the model. Each variant has its unique and interesting algorithmic
feature. These offline algorithms help us understand the model better when we are designing online
algorithms.

The variants and their algorithms’ running complexities are summarized in Table 1. In the uniform-
value setting, all packets have the same value. In the non-uniform-value setting, packets are allowed to
have arbitrary values. (In designing offline algorithms, there is no difference between preemptive and
non-preemptive settings.)

uniform-value setting non-uniform-value setting

m = 1 Ω(n logmin{B, n}) O(n2)

m > 1 (packets sharing a common deadline) O(n log n) O(n2 log n)

Table 1: Summary of the running complexities of the optimal offline algorithms for some variants of the
multi-buffer model. n is the number of packets in the input sequence. For the bounded-buffer model,
the buffer size is B ∈ Z

+.

2 The Bounded-buffer Model, m = 1

Let OPT denote an optimal offline algorithm. Without loss of generality, we assume OPT is non-idling,
that is, OPT sends a packet as long as the buffer is non-empty.

2.1 The uniform-value setting. In the uniform-value setting, all packets have the same ‘weight’ and
the objective is to maximize the number of packets delivered successfully. An optimal offline algorithm
called DOS (which stands for ‘Deadline-Order-Sorting/Sending’) works simply as follows.

Algorithm 2.1. All packets in the buffer are organized by their deadlines using an augmented red-
black tree [4]. Upon each new arrival, we insert it into the packet queue in increasing order of deadlines.
Let the current time be t. If the buffer is full or if more than t′ − t packets are to be sent by some
deadline t′ (we call these cases ‘tight’), we drop the packet with the earliest deadline. In each time step,
the earliest-deadline packet in the buffer is sent.

Lemma 2.1. For the bounded-buffer model in the uniform-value setting, there exists an optimal offline
algorithm running in O(n log min{B, n}) time, where n is the number of packets released and B is the
buffer size.

Proof. We first prove DOS’s correctness using a loop invariant. The loop invariant is: At any time,
there exists a one-to-one mapping (injection) from each packet q in OPT’s buffer to a packet j in DOS’s
buffer such that dq ≤ dj . Without loss of generality, we align the mappings such that an earlier-deadline
packet in OPT’s buffer maps to an earlier-deadline packet in DOS’s buffer. For example, assume q1 and
q2 in OPT’s buffer map to j1 and j2 in DOS’s buffer respectively. If dq1 < dq2 but dj1 ≥ dj2 , we swap
the mappings and let q1 map to j2 and q2 map to j1. Note dq1 ≤ dq2 ≤ dj2 ≤ dj1 and dq2 ≤ dj2 ≤ dj1 .

This invariant holds before any packet is released. Let us assume it holds at time t. Consider a new
arrival p accepted by OPT. p is either accepted by DOS or there exists a packet j which is not mapped
yet by any packet in OPT’s buffer has a deadline dj ≥ dp. (In this case, we can map p in OPT’s buffer
to j in DOS’s buffer.) Otherwise, we can drop j and accept p or OPT’s buffer is ‘tight’ as well and OPT
rejects p. In each time step, both OPT and DOS send one packet as long as their buffers are non-empty.
Without loss of generality, we can assume OPT sends the earliest-deadline packet in its buffer. Thus,
the loop invariant still holds after each step’s deliveries. The loop invariant implies the correctness of
the algorithm.

For each new arrival, it takes O(logmin{B, n}) to insert p into or drop p out of the packet queue
in DOS’s buffer. The algorithm has an upper bound of running time O(n logmin{B, n}). The proof is
completed. �

The following instance shows that no algorithm has a running complexity asymptotically better
than Ω(n logmin{B, n}).

Example. Assume B ≥ n. All packets are released at the same time 0. To identify whether all packets
can be delivered successfully, we have to sort them by deadlines such that packets can be delivered in
an earliest-deadline-first (EDF) manner. The lower bound of sorting n numbers takes Ω(n log n) [4].

Corollary 2.1. Consider the bounded-buffer model in the uniform-value setting. If packets’ deadlines
are weakly increasing along with their release time, EDF is an optimal algorithms running in linear
time. Specifically, EDF runs in an online manner.

2.2 The non-uniform-value setting. If B ≥ n, the optimal offline algorithm [7] for the bounded-
delay model applies on the bounded-buffer model and has a running time of O(n log n). We assume
B < n. Fix an input sequence I. We have the following algorithm.

Algorithm 2.2. We sort all packets in I in non-increasing value order, with ties broken in favor of the
one with a later deadline. We start from a set of packets S = ∅. For each packet j ∈ (I \ S), we pick

up j in order and run EDF to examine whether all packets in S ∪ {j} can be delivered successfully by
their respective deadlines. (Actually, we can start from the time rj to run EDF over the packets S∪{j}
instead of from scratch; though this does not help to reduce the asymptotic running complexity.) If
“yes”, we update S with S ∪ {j}. For each examined packet j, no matter whether we insert j into S or
not, we drop it out of I. We examine all packets in I in order till I gets empty.

Lemma 2.2. For the bounded-buffer model in the non-uniform-value setting, there exists an optimal
offline algorithm running in O(n2) time, where n is the number of packets released.

Proof. We claim that the schedule of S we finally have from Algorithm 2.2 is optimal, based on the
matroid property of this model. Consider a set of packets that can be delivered successfully by their
deadlines in an EDF manner. Then, its any subset can be delivered successfully as well and the heredity
property is satisfied. Also, in each time step, only one packet is allowed to send, and thus, the exchange
property holds.

Let |I| = n. Sorting packets in I takes O(n log n) time. The buffer has at most B packets at
any time, thus, each packet insertion (in increasing deadline order) takes O(logB) time. Running
EDF over a set of packets S ∪ {j} takes time |S| + 1 ≤ n. For each packet j, examining S ∪ {j}
of being successfully sent takes time O(logB + n). Thus, the total running time of the algorithm is
O(n log n + n(n + logB)) = O(n2 + n logB). Thus, our algorithm has a running time of O(n2). The
proof is completed. �

3 Scheduling Packets with a Common Deadline or Without Deadlines, m > 1

Let OPT denote an optimal offline algorithm. Without loss of generality, we assume OPT is non-idling.
In scheduling packets without deadlines, we assume all packets have a common deadline rmax+n, where
rmax is the largest release time. We also note that when there are no new arrivals, all packets already
in the buffers can be sequentially delivered.

Let Pi(t) denote the set of packets released at time t targeting the buffer Qi. Since each buffer Qi

cannot accommodate more than Bi packets at any time, we assume that for each Qi, at any release time
t, |Pi(t)| ≤ Bi. Let Qi(t) and |Qi(t)| denote the packet queue in the buffer Qi and its size, respectively.
Let rimax denote the largest release time of a packet targeting the buffer Qi. Let D be the common
deadline.

3.1 The uniform-value setting. In the uniform-value setting, all packets have the same ‘weight’
and the objective is to maximize the number of packets delivered successfully. Instead of directly
targeting maximizing the total number of packets delivered, we tackle this variant from the perspective
of minimizing the number of packets dropped. For each buffer, our idea is to calculate the number of
buffer slots that we have to reserve in order to accept future arrivals (that is, minimizing the number
of packets dropped due to ‘packet overflow’). This value indicates us the latest time that we have to
deliver a packet from a buffer.

Algorithm 3.1. For each buffer Qi, consider Pi(t) in decreasing order of release time t. Define a
variable Zi(t) to denote the number of buffer slots that are needed from the buffer Qi to accommodate
packets released at/after time t. Set Zi(r

i
max) = max{|Pi(r

i
max)|, D− rimax}. In reverse order of release

time, we calculate Zi(t) = min{Bi, Zi(t
′) + |Pi(t)| − (t′ − t)}, where t′ is the immediate next release

time (of packets) after time t for Qi.
For each new arrival, if its designated buffer is full, drop the packet. Otherwise, append the packet

to the queue. In each time step t, send any packet from the buffer Qi if Zi(t̃) + |Qi(t)| ≥ Bi, where t̃ is
the immediate next release time of packets for the buffer Qi. Ties are broken arbitrarily. If all buffers

Qi have Zi(t̃) + |Qi(t)| < Bi, choose any packet to send. We switch to another buffer to send a packet
only if this buffer is empty or if another buffer Qi satisfies Zi(t̃) + |Qi(t)| ≥ Bi at time t.

Theorem 3.1. In scheduling packets with the same value and same deadline, there exists an optimal
offline algorithm running in O(n log n) time, where n is the number of packets released.

Proof. We first show the correctness of Algorithm 3.1 using the exchange argument. We call our
algorithm TS (standing for ‘Tight Schedule’). Remember that all packets are with the same value and
same deadline and TS accepts packets in a greedy manner for each buffer, thus, as long as OPT and
TS schedule packets from the same buffer in each time step, they achieve the same throughput. Let O
denote the set of packets sent by OPT. Let t be the first time step in which OPT and TS deliver packets
from different buffers. OPT sends a packet q1 from a buffer Q1 and TS sends a packet p2 from a buffer
Q2. If p1 /∈ O, it is fine for OPT sends p1 in this time step such that O is updated with O∪{p1} \ {q1}.
Here, we assume p1 ∈ O. Since we choose Q2 to send a packet, one of the following cases must happen.
At time t, we use t̂ and t̃ to differentiate the two (possibly) distinct next release time of packets targeting
buffers Q1 and Q2 respectively.

1. Assume Z1(t̂) + |Q1(t)| < B1 and Z2(t̃) + |Q2(t)| < B2. In this case, delivering either p1 or q1 will
not result packet overflow for both buffers Q1 and Q2. Thus, OPT can be changed to choose Q2

to send a packet.

2. Assume Z1(t̂) + |Q1(t)| < B1 and Z2(t̃) + |Q2(t)| ≥ B2. In this case, if TS does not choose
Q2 to send a packet, one packet released at time t̃ or future will not be delivered successfully.
Let this packet be p. Then, among all packets in Q2’s current buffer and those packets released
later targeting Q2, one of them must not be in O. Otherwise, OPT will choose Q2 to send a
packet to avoid Q2’s packet overflow. Assume the packet sending sequence since time t for OPT is
q1, . . . , p1, We modify the sequence for OPT as p1, . . . , p, . . . and updateO as O∪{p}\{q1}.
Since p1 is delivered in this time step, there exists an extra buffer slot (compared with that of the
unmodified OPT which does not send p1 for step t) to accommodate p in the buffer Q2 and thus,
the new packet sequence is feasible. After our modification, OPT’s total gain is not reduced and
OPT chooses the same queue as TS does to send a packet in this time step.

3. Assume Z1(t̂) + |Q1(t)| ≥ B1 and Z2(t̃) + |Q2(t)| ≥ B2. In this case, delivering either p1 or q1 will
result packet overflow for the other buffer. Thus, with the same analysis as the above case, OPT
can be changed to choose Q2 to send a packet.

We then show the running time of Algorithm 3.1. Sorting all distinct release time for each buffer
takes O(n log n) time. Calculating the variables Zi(t) takes linear time O(n). For each time t, we
identify the buffer to send a packet and this takes time O(m). In total, the running complexity of our
algorithm is O(n log n). The proof is completed. �

The proof of Theorem 3.1 immediately implies the following corollary.

Corollary 3.1. In scheduling packets with the same value and same deadline, Algorithm 3.1 provides
a way to identify whether a set of packets can be delivered successfully.

3.2 The non-uniform-value setting. We realize that when each buffer size is large enough, the
multi-buffer model is same as the bounded-delay model since all arriving packets can be accommodated
in the buffers. Hence, we have two trivial results on the non-uniform-value setting.

Lemma 3.1. For the multi-buffer model, if all buffers have their sizes larger than the maximum slack
of a packet targeting at them, the multi-buffer model is same as the bounded-delay model. An optimal
offline algorithm running in time O(n log n) exists, where n is the number of packets released.

Corollary 3.2. For the multi-buffer model, if there is no future arrivals, there exists an optimal offline
algorithm sending the packets in the buffers, running in O(n log n) time, where n is the number of packets
in the current buffers.

In scheduling weighted packets sharing a common deadline, our idea is to combine Algorithm 2.2
and Algorithm 3.1. We note that this variant is a matroid as well (this can be verified easily as in the
proof of Lemma 2.2). Then a greedy algorithm scheduling packets with more values is optimal. Let S
be a set of packets we decide to send. Initially, S is empty. We order packets in decreasing order of
values. Then, we examine packets one by one, as long as the new one and those already selected packets
can be delivered by the common deadline, we add this new packet into S. Otherwise, we drop this
newly considered packet. There is a questions unsolved: How do we identify whether a set of selected
packets can be delivered as they belong to multiple buffers at different time? We apply the idea of
Algorithm 3.1, specifically, the result of Corollary 3.2.

Algorithm 3.2. Fix an input instance I. We sort all packets in I in non-increasing value order. We
start from a set of packets S = ∅. For each packet j ∈ (I \ S), we pick up j in order and examine
whether all packets in S ∪ {j} can be delivered successfully. (See below.) If ‘yes’, we update S with
S ∪ {j}. For each examined packet j, no matter whether we insert j into S or not, we drop it out of I.
We examine all packets in I in order till I gets empty.

Let P ′
i (t) denote a subset of selected packets (S) which are released at time t targeting the buffer

Qi. For each buffer Qi, consider Pi(t) in decreasing order of release time t. In reverse order of release
time, we calculate Zi(t) = min{Bi, Zi(t

′) + |Pi(t)| − (t′ − t)}, where t′ is the immediate next release
time (of packets) after time t for Qi.

For each new arrival, if its designated buffer is full, drop the packet and return ‘no’. Otherwise,
append the packet to the queue. In each time step t, send any packet from the buffer Qi if
Zi(t̃) + |Qi(t)| ≥ Bi, where t̃ is the immediate next release time of packets for the buffer Qi. Ties
are broken arbitrarily. If all buffers Qi have Zi(t̃) + |Qi(t)| < Bi, choose any packet to send. We
switch to another buffer to send a packet only if this buffer is empty or if another buffer Qi satisfies
Zi(t̃) + |Qi(t)| ≥ Bi at time t.

Theorem 3.2. In scheduling packets with the same deadline, there exists an optimal offline algorithm
running in O(n2 log n) time, where n is the number of packets released.

Proof. The correctness of Algorithm 3.2 depends on the matroid property of this variant and
Corollary 3.2.

We then show the running time of Algorithm 3.2. Sorting all distinct release time for each buffer
takes O(n log n) time. Calculating the variables Zi(t) takes linear time O(n). For each time t, we
identify the buffer to send a packet and this takes time O(m). In total, the running complexity of
our algorithm in examining one packet is O(n log n). Thus, the total running time of Algorithm 3.2 is
O(n2 log n). The proof is completed. �

4 Conclusion

In this paper, we design offline algorithms for some variants of the multi-buffer model. We show that if
the number of buffers is restricted to 1 or if all packets share a common deadline, some efficient offline

algorithms can be developed. However, for the general case of the multi-buffer model, the constraints
from the buffer sizes, packets’ deadlines and packets’ values complicate this packet scheduling problem.
An optimal offline algorithm for the general multi-buffer model is being under developed.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue policies for differentiated services.
Journal of Algorithms, 55(2):113–141, 2005.

[2] Y. Azar and N. Levy. Multiplexing packets with arbitrary deadlines in bounded buffers. Lecture Notes in
Computer Science (SWAT), pages 5–16, 2006.

[3] M. Chrobak, W. Jawor, J. Sgall, and T. Tichy. Improved online algorithms for buffer management in QoS
switches. ACM Transactions on Algorithms, 3(4), Article number 50, 2007.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 3rd
edition, 2009.

[5] M. Englert and M. Westermann. Considering suppressed packets improves buffer management in QoS
switches. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
209–218, 2007.

[6] B. Hajek. On the competitiveness of online scheduling of unit-length packets with hard deadlines in slotted
time. In Proceedings of 2001 Conference on Information Sciences and Systems (CISS), pages 434–438, 2001.

[7] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviridenko. Buffer overflow
management in QoS switches. SIAM Journal of Computing (SICOMP), 33(3):563–583, 2004.

[8] F. Li, J. Sethuraman, and C. Stein. An optimal online algorithm for packet scheduling with agreeable
deadlines. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 801–802, 2005.

	1 Introduction
	2 The Bounded-buffer Model, m = 1
	2.1 The uniform-value setting.
	2.2 The non-uniform-value setting.

	3 Scheduling Packets with a Common Deadline or Without Deadlines, m > 1
	3.1 The uniform-value setting.
	3.2 The non-uniform-value setting.

	4 Conclusion

