Skip to main content

Diameter-Constrained Steiner Tree

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6509))

Abstract

Given an edge-weighted undirected graph G = (V,E,c,w), where each edge e ∈ E has a cost c(e) and a weight w(e), a set S ⊆ V of terminals and a positive constant D 0, we seek a minimum cost Steiner tree where all terminals appear as leaves and its diameter is bounded by D 0. Note that the diameter of a tree represents the maximum weight of path connecting two different leaves in the tree. Such problem is called the minimum cost diameter-constrained Steiner tree problem. This problem is NP-hard even when the topology of Steiner tree is fixed. In present paper we focus on this restricted version and present a fully polynomial time approximation scheme (FPTAS) for computing a minimum cost diameter-constrained Steiner tree under a fixed topology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reliable Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. (2009), doi:10.1016/j.tcs.2009.08.003

    Google Scholar 

  3. Drake, D.E., Hougrady, S.: On Approximation Algorithms for the Terminal Steiner Tree Problem. Information Processing Letters 89, 15–18 (2004)

    Article  MathSciNet  Google Scholar 

  4. Du, D.Z., Smith, J.M., Rubinstein, J.H.: Advances in Steiner Trees. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  5. Fuchs, B.: A Note on the Terminal Steiner tree Problem. Information Processing Letters 87, 219–220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  7. Gouveia, L., Magnanti, T.L.: Network Flow Models for Designing Diameter-Constrained Minimum Spanning and Steiner Trees. In: Operations Research Center Working Papers. Operations Research Center, Massachusetts Institute of Technology (2001)

    Google Scholar 

  8. Hassin, R.: Approximation Schemes for the Restricted Shortest Path Problem. Mathematics of Operations Research 17, 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics 53 (1992)

    Google Scholar 

  10. Ibarra, O., Kim, C.: Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems. Journal of the ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, G.H., Xue, G.: On the Terminal Steiner Problem. Information Processing Letters 84, 103–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Robins, G., Zelikovsky, A.: Improved Steiner Tree Approximation in Graphs. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2000), pp. 770–779 (2000)

    Google Scholar 

  13. Dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving Diameter Constrained Minimum Spanning Tree Problems in Dense Graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 458–467. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Sahni, S.: General Techniques for Combinatorial Approximations. Operations Research 35, 70–79 (1977)

    MathSciNet  Google Scholar 

  15. Tamir, A.: An O(pn 2) Algorithm for the p-Median and Related Problems on Tree Graphs. Operations Research Letters 19, 59–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, L.S., Jia, X.H.: Note Fixed Topology Steiner Trees and Spanning Forests. Theoretical Computer Science 215(1-2), 359–370 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xue, G., Xiao, W.: A Polynomial Time Approximation Scheme for Minimum Cost Delay-Constrained Multicast Tree under a Steiner Topology. Algorithmica 41(1), 53–72 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial Time Approximation Algorithms for Multi-Constrained QoS Routing. IEEE/ACM Transactions on Networking 16, 656–669 (2008)

    Article  Google Scholar 

  19. Zelikovsky, A.: An \(\frac{11}{6}\)-Approximation Algorithm for the Network Steiner Problem. Algorithmica 9(5), 463–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, W., Lin, G., Xue, G. (2010). Diameter-Constrained Steiner Tree. In: Wu, W., Daescu, O. (eds) Combinatorial Optimization and Applications. COCOA 2010. Lecture Notes in Computer Science, vol 6509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17461-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17461-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17460-5

  • Online ISBN: 978-3-642-17461-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics