
Bounded Search Tree Algorithms for
Parameterized Cograph Deletion: Efficient

Branching Rules by Exploiting Structures of
Special Graph Classes?

James Nastos and Yong Gao ??

Department of Computer Science, Irving K. Barber School of Arts and Sciences.
University of British Columbia Okanagan, Kelowna, Canada V1V 1V7

jnastos@interchange.ubc.ca, yong.gao@ubc.ca

Abstract. Many fixed-parameter tractable algorithms using a bounded
search tree have been repeatedly improved, often by describing a larger
number of branching rules involving an increasingly complex case anal-
ysis. We introduce a novel and general search strategy that branches on
the forbidden subgraphs of a graph class relaxation. By using the class of
P4-sparse graphs as the relaxed graph class, we obtain efficient bounded-
search tree algorithms for several parameterized deletion problems. We
give the first non-trivial bounded search tree algorithms for the cograph
edge-deletion problem and the trivially perfect edge-deletion problems.
For the cograph vertex deletion problem, a refined analysis of the runtime
of our simple bounded search algorithm gives a faster exponential factor
than those algorithms designed with the help of complicated case dis-
tinctions and non-trivial running time analysis [21] and computer-aided
branching rules [11].

Keywords: Fixed-parameter tractability; edge-deletion; graph modifica-
tion; cographs; trivially perfect graphs; quasi-threshold graphs; bounded
search tree.

1 Introduction

A graph is a cograph [23] if it has no induced subgraph isomorphic to a P4, an
induced path on four vertices. The name originates from complement reducible
graphs as cographs are also characterized as being those graphs G which are
either disconnected or else its complement G is disconnected [23]. They are a
well-studied class of graphs and many NP-complete problems on graphs have
been shown to have polynomial time solutions when the input is a cograph [6].

A graph modification problem is a general term for a problem that takes
a graph as input and asks how the graph can be modified to arrive at a new
graph with a desired property. Usually, graph modifications are edge additions
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or deletions, vertex additions or deletions, or combinations of these. Our work
on the following problems originally stems from studying social networks from
which edge removals are made to reveal underlying structures in the network.

Many parameterized graph modification problems are tackled by a bounded
search tree method where the size of the search tree usually dominates the com-
putation time. This paper presents a framework for designing branching rules for
bounded search tree algorithms. Our strategy exploits the structure of special-
ized graph classes in order to design efficient algorithms for (hard) problems on
general graphs. We illustrate this method by giving algorithms that solve four
different graph modification problems.

The cograph edge-deletion problem is the problem of determining when a
graph G = (V,E) has a set S of at most k edges which can be removed in
order to make G2 = (V,E \ S) a cograph. This problem is known to be NP-
complete [18] and also known to be fixed parameter tractable [4]. Similarly, the
trivially perfect edge-deletion problem asks whether k edges can be removed to
turn a graph into a trivially perfect graph (a graph which is P4 and C4-free.) We
first show how to solve these problems in linear time on a relaxed graph class,
the P4-sparse graphs, and design algorithms to solve these problems on general
graphs by branching towards P4-sparse graphs. Furthermore, we give improved
algorithms for the vertex-deletion version of these problems.

We note that since the class of cographs is self-complementary, an algorithm
solving k-edge-deletion problem also serves as a solution to the problem of k-
edge-addition to cographs. Similarly, the k-edge-deletion problem to trivially
perfect graphs serves as a solution to the k-edge-addition problem to co-trivially
perfect graphs.

This paper is structured as follows: Section 2 summarizes previous results
related to graph modification problems and gives some background on the class
of P4-sparse graphs; Section 3 gives edge-deletion algorithms to cographs and to
trivially perfect graphs; Section 4 designs vertex deletion algorithms for cographs
and trivially perfect graph and their improvements using Hitting Set; Section
5 summarizes and discusses these results and suggestions a number of directions
for future work.

2 Previous Results and Background

2.1 Previous Fixed-Parameter Tractability Results

While cographs can be recognized in linear time [6], it is also known that it is NP-
complete to decide whether a graph is a cograph with k extra edges [18]. Graph
modification problems have been studied extensively: Yannakakis shows that
vertex-deletion problems to many types of structures is NP-hard [26]. Elmallah
and Colbourn give hardness results for many edge-deletion problems [18].

Recently, much research has been devoted to finding fixed-parameter tractable
algorithms for graph modification problems: Guo [12] studied edge deletion to
split graphs, chain graphs, threshold graphs and co-trivially perfect graphs;



Kaplan et al. [15] studied edge-addition problems to chordal graphs, strongly
chordal graphs and proper interval graphs; Cai [4] showed fixed-parameter tractabil-
ity for the edge deletion, edge addition, and edge editing problem to any class of
graphs defined by a finite set of forbidden induced subgraphs. The constructive
proof implies that k-edge-deletion problems to a class of graphs defined by a
finite number of forbidden subgraphs is O(Mkp(m+n)) where p is some polyno-
mial and M is the maximum over the number of edges in each of the forbidden
induced subgraphs defining that graph class in question. For k-edge-deletions
to P4-free graphs in particular, Cai’s result implies an algorithm running in
O(3k(m+ n)) time. This algorithm would work by finding a P4: a− b− c− d in
a graph and branching on the 3 possible ways of removing an edge in order to
destroy the P4 (that is, removing either the edge {a, b} or {b, c} or {c, d}).

Nikolopoulos and Palios study the edge-deletion to cograph problem for a
graph G−xy where G is a cograph and xy is some edge of G [22]. Lokshtanov et
al. study cograph edge-deletion sets to determine whether they are minimal, but
not a minimum edge-deletion set [17]. To the best of our knowledge, ours is the
first study that specifically addresses the edge-deletion problem to cographs. We
present a bounded search tree algorithm that solves k-edge-deletion to cographs
in O(2.562k(m+ n)) time by performing a search until we arrive at a P4-sparse
graph and then optimally solving the remainder of the problem using the struc-
ture of P4-sparse graphs.

Graph modification problems can also be regarded as a type of graph recog-
nition problem. Following the notation of Cai [4], for any class of graphs C, we
call C+ke the set of all graphs which cane be composed by adding k extra edges
to a graph from class C. Similarly, C − ke is the set of graphs which are formed
from a graph from class C with k edge removals. Replacing ‘edges’ by ‘vertices’ in
these definitions gives analogous classes for C+kv and C−kv. A k-edge-deletion
problem to a class of graphs C can thusly be restated as a recognition problem
for the class of C + ke graphs. Our results on cographs here can be restated as
recognition algorithms for the classes: Cograph+ke, Cograph-ke, Cograph+kv,
Trivially Perfect+ke.

2.2 Background Information: P4-sparse graphs

One generalization to the class of cographs is formed by allowing P4s to exist in
a graph but in restricted amounts. Hoáng [13] introduced P4-sparse graphs to be
those for which every induced subgraph on five vertices induces at most one P4.
This immediately implies a forbidden induced subgraph characterization which
restricts any subgraph of five vertices inducing two or more P4s. We include
these graphs in Figure 1.

A special graph structure called a spider [14] commonly occurs in graph
classes of bounded cliquewidth. We define two types of spiders here:

Definition 1. A graph G = (V,E) is a thin spider if V can be partitioned into
K, S and R such that:

i) K is a clique, S is a stable set, and |K| = |S| ≥ 2.
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Fig. 1. The forbidden induced subgraphs for P4-sparse graphs

ii) every vertex in R is adjacent to every vertex of K and to no vertex in S.

iii) each vertex in S has a unique neighbour in K, that is: there exists a bijection
f : S → K such that every vertex k ∈ K is adjacent to f(k) ∈ S and to no
other vertex in S.

A graph G is called a thick spider if G is a thin spider. Note that the vertex
sets K and S swap roles under graph complementation, that condition (i) and
(ii) hold for thick spiders, and that statement (iii) changes to saying that every
vertex in S has a unique non-neighbour in K. The sets K, S and R are called the
body, feet and head of the spider, respectively. The edges with one endpoint in
S are called thin legs or thick legs for thin spiders or thick spiders, respectively.
Examples of spiders are given in Figure 2.

Hoàng [13] defined a graph G to be P4-sparse if every induced subgraph
with exactly five vertices contains at most one P4. The following decomposition
theorem for P4-sparse graphs was proven in [14]:

Lemma 1. [14] Let G be a P4-sparse graph. Then exactly one of the following
is true:

i) G is disconnected

ii) G is disconnected

iii) G is a spider
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Fig. 2. (a) A thin spider and (b) thick spider with |K| = |S| = 5 and |R| = 2

We conclude our discussion of P4-sparse graphs with an observation that will
be useful to us:

Lemma 2. Let G be a spider with body K and feet S. Then every edge {k1, k2}
with k1, k2 ∈ K is in one P4 in K ∪ S.

Proof. A P4 can not contain 3 vertices of K. If G is a thin spider, let each ki
be adjacent to each si. The edge {k1, k2} is only in the P4 {s1, k1, k2, s2}. If G
is a thick spider, let each ki be adjacent to every foot sj where i 6= j. The edge
{k1, k2} is only in the P4 {s1, k2, k1, s2}. 2

3 Edge-Deletion Algorithms

In this section, we give algorithms for two edge-deletion problems.

Problem 1. Cograph Deletion (G, k):
Given graph G = (V,E), does there exist a set S of at most k edges such that
(V,E \ S) is a cograph?

A graph is trivially perfect if it has no induced subgraphs isomorphic to a P4

or a C4 [25]. Every trivially perfect graph is a cograph and every cograph is a
P4-sparse graph.

Problem 2. Trivially Perfect Deletion (G, k):
Given graph G = (V,E), does there exist a set S of at most k edges such that
(V,E \ S) is a trivially perfect graph?

The idea of the algorithms in this section is to focus on the forbidden sub-
graphs of P4-sparse graphs so that efficient branching rules can be designed
systematically. This depends critically on whether these problems can be solved
polynomially on P4-sparse graphs. We first show how to solve the cograph dele-
tion problem on P4-sparse graphs in linear time.



3.1 Computing Cograph Edge-Deletion Sets on P4-sparse Graphs
in Linear Time

We show that a linear time divide-and-conquer algorithm can be designed to
find the minimum cograph deletion set for P4-sparse graphs.

Definition 2. Let G be a graph and G be the complement of G. The vertex
sets corresponding to the maximal connected components of G are called the
co-components of G. If G is connected, then we say that G is co-connected.

Proposition 1. Let G be a P4-sparse graph and M(G) be the size of a minimum
edge-deletion set required to turn G into a P4-free graph. Then:

i) if G is disconnected with components V1, . . . , Vt, then M(G) =
∑t
i=1M(Vi)

ii) if G is disconnected with co-components V1, . . . , Vt, then M(G) =
∑t
i=1M(Vi)

iii) if G is a spider with head R, body K and feet S, then

M(R ∪K ∪ S) = M(R) +M(K ∪ S)

.

Proof. (i) This follows from the fact that a P4 is connected and so any P4 is in
only one connected component, even after some edge deletions.

(ii) It is easy to verify that an edge joining two vertices in separate co-
components can not be in a P4 (or else in the graph complement this would
imply a P4 contains vertices in separate connected components as a P4 is self-
complementary.) After any edge-deletions within a co-component are made, the
vertex sets of separate co-components are still completely joined, and so any new
P4s will not include any two vertices in separate co-components.

(iii) Call a leg edge any edge joining a vertex s ∈ S with a vertex k ∈ K, a
head edge any edge joining some r1 ∈ R with some r2 ∈ R, a body edge any edge
joining two vertices in K, and call a neck edge any edge joining some r ∈ R with
some k ∈ K.

The structural definition of a spider says that every vertex in K is adjacent
to every vertex in K∪R, even after the removal of any leg edges and head edges.
Thus a P4 can never contain an edge {r, k} with r ∈ R and k ∈ K even after leg
and head edge removals. We will show that there is an optimal solution without
body edges.

Consider an edge-deletion set E′ such that G − E′ is a cograph, and let
E′′ ⊂ E′ be the set of body edges and neck edges in E′. Consider the P4s in
G− E′ + E′′ (the P4s created when adding E′′ back to G.) In G− E′ + E′′, K
and R are completely joined and K is a clique and so no P4 crosses the neck.
So any P4s in G − E′ + E′′ are strictly in K ∪ S or strictly in R. Since E′ is
a cograph deletion set, the induced graph on R in G − E′ + E′′ is P4-free. In
K ∪ S, the body edges added back may be in a P4 with two leg edges, and if
so, this P4 will be unique by Lemma 2. Adding the body edges from E′′ can
not create a P4 involving a body edge not in E′′, so we just concentrate on the
unique P4 that each of these added body edges may have created. By deleting



one of these leg edges for each body edge that creates a P4, we create a new
deletion set E′ − E′′ + E′′′ where E′′′ is a set of leg edges and |E′′′| ≤ |E′′|, so
this new edge deletion set is a solution no larger than E′ which does not use
body or neck edges. 2

We note that parts (i) and (ii) of Proposition 1 apply to any graph G, and
not just P4-sparse graphs.

Lemma 3. Let G be a thin spider with body K = {k1, . . . , k|K|} and legs S =
{s1, . . . , s|K|}, and {si, kj} is an edge if and only if i = j. Then a minimum
cograph edge-deletion set for K ∪ S is {{si, ki}, i = 1..|K| − 1}.

Proof. Since K is a clique and S is stable, every P4 in K∪S has its endpoints in
S. Furthermore, every pair of vertices in S are in a unique P4. Deleting any |S|−1
thin legs will clearly destroy all of the P4s, so this edge-deletion set is indeed a
cograph edge-deletion set. To see that it is of minimum size, assume there is a
deletion set of size |K| − 2 or less in which two legs are not part of the deletion
set. Let these two legs be {s1, k1} and {s2, k2} and call them “permanent” in
this case. Since {s1, k1, k2, s2} is a P4 and the edges {s1, k1} and {s2, k2} are
not in the deletion-set, it must be that {k1, k2} is in the deletion set. There at
most |K| − 3 other edges in the deletion set. Now {s1, k1, kj , k2} induces a P4

for every j = 3 . . . |K|. This means that the permanent edge {s1, k1} is still in
|K| − 2 P4s and every pair of these P4s have distinct edges aside from {s1, k1}.
Thus it is impossible to destroy all of these remaining P4s with only |K| − 3
additional deletions or less. 2

Lemma 4. Let G be a thick spider with body K = {k1, . . . , k|K|} and feet S =
{s1, . . . , s|K|}, and {si, kj} is an edge if and only if i 6= j. Then a minimum
cograph edge-deletion set for K ∪ S is {{ki, sj}, i < j}.

Proof. Every edge in K ∪ S is in exactly one P4: an edge {ki, kj} is only in the
P4 {sj , ki, kj , si} and any edge {si, kj} is only in the P4 {si, kj , ki, sj} so the

number of P4s in K ∪ S is
(|S|

2

)
, and since no two of these P4s share an edge,

at least
(|S|

2

)
deletions are required. Consider the edge set T = {{ki, sj}, i < j}.

When deleting T from K ∪ S, K is still a clique and S is still a stable set, and
so if there is any P4 in (K ∪ S) \ T , its endpoints must still be in S. But after
deletion of T , we have that the neighbourhood of si is N(si) = {ki+1, . . . , k|K|}
which means that N(si) ⊂ N(sj) for all i > j, and so no two vertices in S can
be the endpoints of a P4. So T indeed destroys all the P4s in K ∪ S and since
|T | =

(|S|
2

)
, this is a minimum set. 2

Theorem 1. Algorithm 1 correctly solves the cograph edge-deletion problem for
P4-sparse graphs and can be implemented in O(m+ n) time.

Proof. The correctness of Algorithm 1 follows from Lemma 3, Lemma 4 and
Proposition 1.

Algorithm 1 can be implemented in linear time, as the spider structure of P4-
sparse graphs can be identified in linear time [14]. Identifying the connected or



co-components can also be done in linear time, as these types of vertex partitions
are special cases of the more general notion of a homogeneous set or module,
and there are a number of modular decomposition algorithms running in linear
time [19], [7]. 2

Our algorithm to find cograph edge-deletion sets in P4-sparse graphs is pre-
sented in Algorithm 1.

Algorithm Spider(G):
Input: A P4-Sparse Graph G = (V,E)
Output: A set S ⊂ E such that (V,E \ S) is a P4-free graph

if G (or G) is disconnected then
Let V1, . . . , Vt be the components or co-components of G;

S ← S
⋃t
i=1Spider(Vi);

end
G is a spider with K = {k1, . . . , k|K|} and S = {s1, . . . , s|K|};
if G is a thin spider then

Notation: ki adjacent to sj if and only if i = j;
Add edge {ki, si} to solution set S for every i = 1, . . . , |K| − 1;

end
if G is a thick spider then

Notation: ki adjacent to sj if and only if i 6= j;
Add edge {ki, sj} to solution set S for every pair i < j;

end
Return S ∪ Spider(R);

Algorithm 1: Cograph edge-deletion algorithm for P4-sparse graphs

3.2 A Bounded Search Tree Algorithm for Cograph Edge-Deletion

The bounded search tree algorithm (Algorithm 2) finds 5-vertex subsets that
induce at least 2 P4s, branches on the possible ways of destroying the P4s, and
then finally arrives at a P4-sparse graph and calls Algorithm 1. This algorithm
either terminates with a call to the subroutine (in the case that a spider structure
is encountered) or detects a cograph structure early, or else its integer parameter
k has been reduced to 0 or less in which case the number of allowed edge-deletions
has been exhausted without reaching a cograph.

Refer to Figure 1 for the possible subgraphs the general search algorithm
may encounter. We refer to specific edges as they are labeled in Figure 1 for each
subgraph. The pseudocode description of the general search algorithm branches
on one of the deletion sets given in the table below.



Let H be one of the forbidden subgraphs from Figure 1. The possible edge-
deletion sets to destroy the P4s in H are:

H =



Subgraph Minimal Edge Deletion Sets
C5 {a,c}, {a,d}, {b,d}, {b,e}, {c,e}
P5 {a,d}, {b}, {c}
P 5 {a,b}, {e,c}, {d,e}, {c,d}, {a,d,f}, {a,c,f}, {b,d,f}, {b,e,f}

4-pan {a,d}, {a,c}, {b,c}, {b,d}, {e}
co-4-pan {b,c}, {d}, {e}

fork {a,b}, {c}, {d}
kite {a,d}, {a,c,f}, {b,d,f}, {b,c}, {e}

Algorithm CographDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of edges of G with |S| ≤ k where (V,E \ S) is a cograph

if it exists, otherwise No

Initialize S = ∅;
if G is a cograph then

Return S;
end
if k ≤ 0 then

Return No;
end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S ∪ Spider(G);
If |S| ≤ k, return S; Otherwise, return No;

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal edge-deletion set E′ for H do

S ← S ∪ E′;
CographDeletion(G− E′, k − |E′|);

end

end

Algorithm 2: Bounded search tree algorithm computing a cograph edge-
deletion set

It is routine to verify that any edge-deletion set from each of the 7 induced
subgraph cases must contain one of the deletion set cases given in the table. Since
every P4 in the graph must be destroyed with an edge deletion, encountering any
of these 7 configurations necessitates the need to apply one of the corresponding
deletions.



The runtime of the algorithm is dominated by the size of the search tree.
The spider structure can be identified in linear time. When k is the parameter
measuring the number of edge deletions left to make, the size T (k) of the search
tree produced by this process is found from each branch rule separately:

1. C5: five branches, each reducing the parameter by 2 gives T (k) = 5T (k− 2)
and so T (k) ≤ 2.237k

2. P5: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

3. P 5: T (k) = 4T (k − 2) + 4T (k − 3) giving T (k) ≤ 2.383k

4. 4-pan: T (k) = T (k − 1) + 4T (k − 2) giving T (k) ≤ 2.562k

5. co-4-pan: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

6. fork: T (k) = 2T (k − 1) + T (k − 2) giving T (k) ≤ 2.415k

7. kite: T (k) = T (k − 1) + 2T (k − 2) + 2T (k − 3) giving T (k) ≤ 2.270k

The size of the search tree is thus upper-bounded by the worst case of deleting
P4s in a 4-pan: T (k) ≤ 2.562k.

Theorem 2. Algorithm 2 correctly solves the cograph k-edge-deletion problem
in O(2.562k(n+m)) time.

Proof. Jamison and Olariu [14] give a linear time recognition algorithm for P4-
sparse graphs. In the case that the graph being tested is not P4-sparse, the
algorithm terminates upon finding a 5-set of vertices isomorphic to one of the
forbidden subgraphs shown in Figure 1. In O(m + n) time on a general graph,
we can find one of the subgraphs in Figure 1 or else assert that our graph is
P4-sparse.

2

3.3 A Bounded Search Tree Algorithm for Edge-Deletion to
Trivially Perfect Graphs

In [12], Guo studied the edge-deletion problem for complements of trivially per-
fect graphs. We know of no prior study of the specific problem of deleting edges
to a trivially perfect graph. A näıve solution would find a subgraph isomorphic
to either a P4 or a C4 and then branch on the possible ways of deleting an edge
from that subgraph, resulting in a worst-case search tree of size O(4k). A minor
observation that deleting any one edge from a C4 always results in the other
forbidden subgraph, P4, allows us to branch on the 6 possible ways of deleting
any 2 edges from a C4. This results in a worst-case search tree of size O(3k) due
to the 3 edges in a P4.

We use our strategy of branching towards a relaxation class of trivially perfect
graphs. The 6 possible ways of deleting 2 edges from C4 yield a branching factor

of
√

6
k ≤ 2.45k, and since removing two edges from any C4 is necessary to arrive

at a (P4,C4)-free graph, our algorithm will begin by performing this branching
step before running a P4-sparse recognition algorithm. Then we proceed as in
the previous section, finding any P4-sparse forbidden subgraph and branching
on the ways of deleting P4s and C4s in it. Once no P4-sparse obstruction exists,



we solve the problem optimally on the resulting specialized structure (a C4-free
P4-sparse graph.) The branching rules become simpler in that only 5 of the 7
graphs in Figure 1 need consideration. In particular, the 4-pan that caused the
bottleneck of Algorithm 2, is no longer considered and this changes the runtime
of the process from O(2.562k) to O(2.450k).

One main difference in this algorithm from Algorithm 2 is that C4s are found
and destroyed first, and after any of the P4-sparse deletions are made, the process
restarts with looking for C4s to destroy again. Once the C4s are destroyed and the
resulting graph is P4-sparse, we proceed with removing edges with edge-deletion
algorithm for thin or thick spiders (Algorithm 1).

Algorithm TriviallyPerfectEdgeDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of edges of G with |S| ≤ k where (V,E \ S) is trivially

perfect if it exists, otherwise No

Initialize S = ∅;
if G is a trivially perfect then

Return S;
end
if k ≤ 0 then

Return No;
end
while There exists H isomorphic to C4 do

Create 6 branches corresponding to the possible ways of removing any
2 edges in H

end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S∪ Spider(G);
If |S| ≤ k, return S; Otherwise, return No.

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal vertex-deletion set S′ for H do

Add the vertices S′ to the solution set S;
TriviallyPerfectEdgeDeletion(G− S′, k − |S′|);

end

end

Algorithm 3: Bounded search tree algorithm finding a trivially perfect edge-
deletion set

The correctness of decomposing the edge-deletion problem into separate
problems on K ∪ S and R depends a proposition similar to Proposition 1.

Proposition 2. Let G be a C4-free graph and M(G) be the size of a minimum
edge-deletion set required to turn G into a (P4, C4)-free graph. Then:



i) if G is disconnected with components V1, . . . , Vt, then M(G) =
∑t
i=1M(Vi)

ii) if G is disconnected, G is a complete join between a clique and a smaller
C4-free graph, H, and M(G) = M(H).

iii) if G is a spider with head R, body K and feet S, then

M(R ∪K ∪ S) = M(R) +M(K ∪ S)

.

Proof. Case i): If G has more than one connected component, any edge deletions
made in one component cannot create a P4 or a C4 in a different connected
component.

Case ii): G is disconnected. Let H be a set of at least 2 vertices inducing
a connected component in G. Then H induces a C4-free graph in G since any
induced subgraph of a C4-free graph is C4-free. Since H is connected in G, there
must be two non-adjacent vertices u, v of H in G. Let x and y be any two vertices
not in H. If x and y are not adjacent, then {u, x, y, v} induces a C4 in G, which is
impossible. So any vertices outside of H must induce a clique in G. Furthermore,
since H is a connected component in G, every vertex in H is adjacent to every
vertex of the clique G \H. It follows, then, that no P4 in G includes a vertex of
G \H, and after any edge deletions in H, no P4 or C4 can include a vertex of
G \H. Hence M(G) = M(H).

Case iii): Notice that no C4 can include a vertex s from S in a spider even
after removals of leg edges and head edges since the neighbourhood of s induces
a clique. Since K is a clique, and every k ∈ K is adjacent to every r ∈ R, there
can not exist a C4 in K ∪ R unless the C4 is completely contained in R. So no
C4 contains an edge from R to K. Therefore, any edge e = {r, k} with r ∈ R
and k ∈ K is not in any C4 in G, and for any subset of leg edges and head
edges E′ the edge e = {r, k} is not in any C4 in G − E′. Combining this with
Proposition 1 for P4s establishes the decomposition. 2

Proposition 2 shows us that since all the C4s are destroyed in the branching
stage of TriviallyPerfectEdgeDeletion(G, k), once we arrive at a C4-free
spider, we are free to delete leg edges without creating a new C4.

The runtime of Algorithm 3 is dominated by the branching rules once again.
Encountering a C4 results in 6 branches which delete 2 edges each. The result-
ing recurrence is T (k) = 6T (k − 2) and so T (k) ≤ 2.450k. Having deleted all
the C4s, we no longer include the P 5 or the 4-pan cases in our analysis. The
runtime analysis for the rest remain unchanged: C5 : 2.237k, P5 : 2.415k, co-4-
pan: 2.415k, fork: 2.415k, kite: 2.270k. The search tree is thus bounded by the
C4 case of size O(2.450k). Finding a C4 directly is a problem that is currently
best-achieved using matrix multiplication [16], so this entire process as described
runs in O(2.450knα) where O(nα) is the time required for matrix multiplication
(α ≤ 2.376 [5]).

We can, in fact, modify the algorithm to run linearly in n and m by observing
that a graph is P4-free and C4-free if and only if it is a chordal cograph. By first
running a certifying chordal recognition algorithm [24], we can either deduce



that there is no C4 or else find a C4 or a C5 or a larger induced cycle (and thus
a P5) and branch on these subgraphs according to the rules we gave, and if the
graph is chordal then we apply a P4-sparse recognition algorithm to find one
of the other forbidden induced subgraph, branch on it, and then re-apply the
chordal recognition process.

Theorem 3. Finding a trivially perfect k-edge-deletion set can be solved in
O(2.450k(n+m)) time.

4 Vertex-Deletion Algorithms

This section shows how our general method can be used to solve vertex-deletion
version of our prior two problems:

Problem 3. Cograph Vertex-Deletion (G, k):
Given graph G = (V,E), does there exist a set S of at most k vertices such that
G− S is a cograph?

Problem 4. Trivially Perfect Vertex-Deletion (G, k):
Given graph G = (V,E), does there exist a set S of at most k vertices such that
G− S is a trivially perfect graph?

4.1 Vertex-Deletion to Cographs

Since removing a vertex set S from a graph G = (V,E) is equivalent to taking
the induced subgraph on the vertex set V \ S, these problems are also often
named maximum induced subgraph problems. In our case of asking if there is a
vertex set of size at most k that can be removed to leave behind a cograph, this
is equivalent to asking if there is an induced cograph subgraph of size at least
|V |−k. Removing a vertex from G can never create a new induced subgraph in G,
and so deleting vertices to destroy induced subgraphs is commonly modeled as a
Hitting Set problem. In this case in which each P4 maps to a 4-set in a Hitting
Set instance, we have the restricted problem of a 4-Hitting Set. Algorithms
for such vertex-deletion problems should always be compared against the state-
of-the-art algorithms of d−Hitting Set if not anything else. d-Hitting Set
is a well-studied NP-complete problem which admits fixed-parameter tractable
algorithms. The first improved analysis of d-Hitting Set by Niedermeier and
Rossmanith [21] give a search tree of size O(3.30k), and a more detailed and
involved analysis by Fernau [8] improves the bound to O(3.148k). This is the
best known bound for 4-Hitting Set to date.

The simple spider structure of P4 sparse graphs allows us to describe a simple
algorithm for the vertex-deletion problem to cographs. The runtime of this simple
algorithm matches that of [11] and of [21]. The algorithm in [11] used branching
rules that were designed by breaking the P4s in every subgraph of size t. Testing
various values of t deduced that rules based on subgraphs of size 7 yielded
the optimal runtime of an algorithm of this sort, with runtime O(3.30k). Their



algorithm builds branching rules from 447 graphs of size 7, while our algorithm
only involves seven graphs on 5 vertices (Figure 1.)

In the following subsection, we use the analysis technique of [21] to show that
the runtime of our bounded search tree algorithm is O(3.115k), hence improving
on Fernau’s O(3.148k). Our runtime could be improved further if we were to use
the methods of Fernau [8], but such an analysis is extensive and would sidetrack
from the focus of this paper.

We describe the subroutine Spider Vertex-Deletion here. The algorithm
works in the same way as Algorithm 1, taking as input a P4-sparse graph and
returning the optimal number of vertices to remove in order to break all P4s
in the graph. For thin spiders, every pair of feet is the end-pair of a P4, and
removing any |S| − 1 vertices from S will destroy all the P4s in the body and
legs. Removing less than |S| − 1 will leave at least two thin legs and hence a P4,
so |S| − 1 is necessary.

Since a set of 4 vertices induces a P4 in a graph G if and only if they induce a
P4 in G, deleting any |K|−1 vertices from K in a thick spider will destroy all the
P4s in K∪S. In either the thin or thick spider case, the subroutine is then applied
to head R. This concludes the description of Spider Vertex-Deletion. The
correctness of the algorithm is asserted by the following proposition:

Proposition 3. Let G be a spider with head R, body K and feet S. Let M(G)
be the minimum number of vertices required to remove from G in order to turn
G into a cograph. Then M(G) = M(R) +M(S ∪K).

Proof. Deleting vertices from a graph can never create a new P4. We know from
Proposition 1 that no P4 includes vertices from both K and R. Deleting any
vertices from K ∪ S will not destroy P4s in R, and vertex deletions from R will
not destroy any P4s in K ∪ S. Hence M(G) = M(R) +M(S ∪K). 2

Corollary 1. The algorithm Spider Vertex-Deletion described above cor-
rectly solves the cograph vertex deletion problem for spiders in linear time.

For a general graph, we proceed as in the cograph edge-deletion algorithm.
We find P4-sparse obstructions and branch on the possible ways of deleting



vertices to destroy all P4s, repeating until the remaining graph is P4-sparse. The
pseudocode description is given in 4.

Algorithm CographVertexDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: A set S of vertices of G with |S| ≤ k where (V \ S,E) is a

cograph if it exists, otherwise No

Initialize S = ∅;
if G is a cograph then

Return S;
end
if k ≤ 0 then

Return No;
end
Apply a P4-sparse recognition algorithm;
if G is P4-sparse then

S ← S∪ Spider Vertex-Deletion(G);
If |S| ≤ k, return S; Otherwise, return No.

end
else

A forbidden graph H from Figure 1 exists;
foreach minimal vertex-deletion set S′ for H do

Add the vertices S′ to the solution set S;
CographVertexDeletion(G− S′, k − |S′|);

end

end

Algorithm 4: Bounded search tree algorithm finding a cograph vertex-
deletion set

The branching rules for the vertex deletions are given in a table as before:

H =



Subgraph Minimal Vertex Deletion Sets
C5 {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}
P5 {1,5}, {2}, {3}, {4}
P 5 {1}, {3}, {4}, {2,5}

4-pan {2}, {4}, {5}, {1,3}
co-4-pan {3}, {4}, {5}, {1,2}

fork {3}, {4}, {5}, {1,2}
kite {2}, {4}, {5}, {1,3}

The runtime of the algorithm is dominated by the branching steps. The
runtime T (k) for the C5 case depends on 10 branches, while each of the other
cases have equivalent runtime analysis.

1. C5: ten branches, each reducing the parameter by 2 gives T (k) = 10T (k−2)
and so T (k) ≤ 3.163k



2. All others: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

The runtime of this vertex-deletion algorithm is bounded by O(3.303k(m +
n)), matching the runtime of the cograph vertex deletion algorithm generated
by automated branching rule design [11].

Theorem 4. Algorithm 4 solves the vertex-deletion problem for cographs in
O(3.303k(m+ n)) time.

4.2 Improvement using Hitting-Set

The 4-Hitting Set algorithm of [21] involves an analysis which counts when a
branch choice can be made on a 3-set. Without counting these cases, an algorithm
for 4-Hitting Set which only makes choices on 4-sets will have a search tree
size of 4k. By keeping track of when 3-sets are created in the search process and
by branching on 3-sets whenever they are available, the authors of [21] are able
to improve the upper-bound to the size of the search tree to O(3.30k).

We show here that using a similar technique to that in [21] can improve our
search tree size. For an instance (G, k) of cograph vertex-deletion, we will use
an implicit instance of 4-Hitting Set where each set of 4 vertices inducing a
P4 in G corresponds to a 4-set. A cograph deletion set for G will correspond to
the hitting set of the set of 4-sets.

We adapt the notion of dominance from Hitting Set to that of P4s: a vertex
v P4-dominates u if v exists in every P4 that u is in.

Following the Hitting Set method, we observe that if v P4-dominates u,
then any hitting set that contains u could be replaced with a hitting set con-
taining v. Using this observation, we mark u in the graph to signify that it will
not be in our solution. When we encounter P4s involving u, the P4 only needs
to be considered as a 3-set to hit. Marking u in G is equivalent to removing u
in the implicit 4-Hitting Set instance.

Our vertex-deletion algorithm given in the previous subsection applies a P4-
sparse recognition algorithm to find one of the 7 forbidden configurations from
Figure 1. We illustrate how to proceed to the branching step when encountering
a P5: {v1, v2, v3, v4, v5} with v1 and v5 as the endpoints:

If we put v2 in S, remove v2 from the graph G and reduce the parameter k by
1. Any set in the hitting set instance H containing v2 is removed. Otherwise (if
v2 is not in S) we mark v2 in G and remove v2 from H, possibly creating some
3-sets. If v3 is put in S, reduce k by 1 and remove v3 from the graph, as before.
Otherwise (if v3 is also not in S) then mark v3 in the graph and remove v3 from
H. If v4 is in S, reduce k by 1 and remove any set containing v4. Otherwise (if
none of v2, v3, v4 are in S) we add v1 and v5 to S, remove them from G and
reduce the parameter k by 2.

If we first ensure that P4-dominated vertices have been removed from con-
sideration, some vertices in the P5 (or analogous forbidden subgraph) may be
marked. We do not need to build branches on cases asking if a vertex v is in S
if v is already marked. If we encounter a P4 in one of our forbidden subgraphs



consisting of four marked vertices, we can terminate that branch of the search
tree and backtrack.

When encountering any of the P4-sparse forbidden subgraphs: P5, P 5, kite,
fork, 4-pan, co-4-pan, we have in each case 3 vertices whose removal will break
both P4s in the obstruction, or else two vertices which must be removed together.
Call those first 3 vertices the breaking vertices. Our process is summarized in the
following algorithm:

Algorithm CographVertexDeletionHittingSet(G, k)
Input: A Graph G = (V,E) and a positive integer k

1. If any 3-set has been created, branch on that 3-set. Repeat until there
are no more 3-sets;
2. If any vertex is P4-dominated, mark it in G and remove it from the
hitting set. Go to step 1.;

3. Find one of P5, P 5, kite, fork, 4-pan, co-4-pan.;
4. If there is a P4 all of whose vertices are marked, Stop and backtrack.;
5. Branch on the (up to 3) unmarked breaking vertices using the cases as
described above. Go to step 1.;
6. If all three breaking vertices are marked, include the other two vertices
in S and Go to 1.;
7. If no such subgraph can be found, our graph is an extended P4-sparse
graph (See below.) Solve the remainder optimally without search.

Algorithm 5: Using Hitting-Set for Cograph Vertex-Deletion

Let v and v′ be breaking vertices encountered after steps 1 and 2 cannot
be applied any further. If v is not in any other P4 besides the two P4s in the
obstruction graph found in step 3, then v is P4-dominated by v′, but this cannot
happen if steps 1 and 2 are done to exhaustion. So we have that v must be
in another P4 not involving v′. When branching on v, we consider v ∈ S, in
which case v is removed from G, or v /∈ S in which case we remove v from H,
creating at least one 3-set since we established that v must be in another P4 not
containing v′.

Step 3 can be performed with a linear-time algorithm recognizing (P5, P 5,
kite, fork, 4-pan, co-4-pan)-free graphs. These are called extended P4-sparse
graphs by Giakoumakis and Vanherpe [10]. This ensures we do not encounter a
C5 at this stage of the process. They showed:

Theorem 5. [10] If C is a C5 in an extended P4-sparse graph, then C is a
prime module.

Let C be a C5 in our graph after reaching step 7 of our hitting-set process.
Observe that every 4-set of C induces a P4, so no vertex of C is contained
in a nontrivial module or else we will have one of the forbidden subgraphs of
extended P4-sparse graphs which we have already destroyed. Further, C can not
be a module in some P4 or else that P4 extends to one of the forbidden graphs
already destroyed (see Figure 3.) It must be that C is a set of 5 vertices inducing



Fig. 3. An impossible configuration for a C5 in an extended P4-sparse graph

a 5-cycle and not overlapping with any other P4. Since C does not intersect with
any other existing P4s left in G, we are free to choose any two vertices of C to
add to S and delete from G.

After deleting every C5 from the extended P4-sparse graph, we have a con-
ventional P4-sparse graph and we proceed with vertex deletions for spiders using
Spider Vertex-Deletion described in the previous subsection.

Let T (k) be the number of leaves in a search tree of our vertex deletion
problem, and let B(k) be the number of leaves in a search tree for this problem
whose root branched on a 3-set. Step 4 of Algorithm 5, can (at worst) branch on
each of the breaking vertices. If the first vertex is put in S, we reduce k by 1 and
so we have a T (k−1) branch. If we assume the first vertex is not in S and select
the second vertex to be in S, the parameter decreases by 1. Since this first vertex
is not P4-dominated (or else it would have been marked), it must be in another
P4 and so marking the it will create at least one 3-set in H, giving a B(k − 1)
branch. Along the same lines, if we choose the third breaking vertex, we arrive
at another B(k − 1) branch. In the final case of deleting the two non-breaking
vertices, we create a T (k − 2) branch. Together this puts an upper bound on
T (k) of T (k − 1) + 2B(k − 1) + T (k − 2).

Similarly, when branching on a 3-set, B(k) ≤ T (k−1)+2B(k−1). Together,
these two recurrences give a simultaneous system from which one can show
B(k) ≤ 3.115k and T (k) ≤ 1.115B(k) with a straightforward induction proof.

Theorem 6. Algorithm 5 solves the cograph vertex-deletion problem in O(3.115k)
time.

The method of analyzing the search tree size created upon the existence of a
3-set shows that our search tree size is smaller than the O(3.30k) for 4-Hitting
Set found by Niedermeier and Rossmanith [21]. Fernau [8] refines this analysis
process by keeping track of the the number of (d − 1)-sets in d-Hitting Set,
arriving at O(3.148k) for 4-hitting set. Specifically, Fernau’s analysis involves
expressions T i(k) for i = 0, 1, 2, 3 where i is the number of 3-sets in an instance
of 4-hitting set (in our case, B(k) is T 1(k).) We are confident that a similar
refinement in the analysis of our vertex-deletion algorithm would reveal further
gains, but our presented algorithm is already shown to have a smaller search
space.



4.3 Vertex-Deletion for Trivially Perfect Graphs

Given a graph G, our task now is to find the largest induced trivially perfect
subgraph in G. Equivalently, given a value k, we want know whether we can
delete at most k vertices in order to turn the graph P4-free and C4-free.

In the edge-deletion version of this problem from the previous section, we
deleted at least 2 edges from all C4s in the branching process since 2 edges is
necessary, and this was algorithmically appealing as it decreased the parameter
by 2. The vertex-deletion problem does not share this luxury: there are 4 vertices
in a C4 and only a single vertex removal is required to turn it into a (P4, C4)-free
graph. This will result in a more complicated procedure to delete all remaining
C4s in the P4-sparse graph that remains after the search process.

We will proceed directly to finding the P4-sparse obstructions and branching
on them to turn each one into a (P4, C4)-free graph. This yields a worst-case
runtime of O(3.303k), as summarized by the following table for each obstruction
graph H:

H =



Subgraph Minimal Vertex Deletion Sets
C5 {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}
P5 {1,5}, {2}, {3}, {4}
P 5 {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}

4-pan {2}, {4}, {1,3}, {1,5}, {3,5}
co-4-pan {3}, {4}, {5}, {1,2}

fork {3}, {4}, {5}, {1,2}
kite {2}, {4}, {5}, {1,3}

The runtime for each of these cases is summarized below:

1. C5: five branches, each reducing the parameter by 2 gives T (k) = 10T (k−2)
and so T (k) ≤ 3.167k

2. P5: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

3. P 5: T (k) = 10T (k − 2) giving T (k) ≤ 3.167k

4. 4-pan: T (k) = 2T (k − 1) + 3T (k − 2) giving T (k) ≤ 3k

5. co-4-pan: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

6. fork: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

7. kite: T (k) = 3T (k − 1) + T (k − 2) giving T (k) ≤ 3.303k

After all the forbidden configurations of P4-sparse graphs have been de-
stroyed, we are left with a P4-sparse graph from which we must delete vertices
to destroy the remainder of the P4s and C4s. While C4s do not exist in a thin or
thick spider, C4s will exist across co-components. Namely, if A1 and A2 are two
non-clique co-components, then any two nonadjacent vertices x1 and y1 in A1

and any two nonadjacent vertices x2 and y2 in A2 will induce a 4-cycle. Since each
connected component and co-component of a P4-sparse graph must be a spider,
every induced 4-cycle must be the type that crosses non-clique co-components.

In order for this P4-sparse graph to be C4 free, all but one of the co-
components must be a clique. The only P4s that will be left to delete will be



those strictly in the non-clique co-component. To determine the optimal way at
arriving at this point, let us introduce some notation: for a P4-sparse graph G,
let A1, A2, . . . , At be the co-components of G. Let ωi = ω(Ai) be the size of a
maximum clique in Ai, and ηi be the size of a minimum cograph vertex-deletion
set, as found by the algorithm Spider Vertex-Deletion.

We seek to find i such that deleting all co-components Aj , j 6= i into cliques,
plus Spider Vertex-Deletion(Ai) is a minimum. That is, we want to find i
that minimizes

ηi +
∑
j 6=i

|Aj | − ωj .

For a particular G,
∑
|Ai| = n is fixed, as is

∑
ωi. We see that the expression

above is minimized when i is chosen such that |Ai| − ωi − ηi is a maximum.

Our algorithm is as follows:

Algorithm TriviallyPerfectVertexDeletion(G, k)
Input: A Graph G = (V,E) and a positive integer k
Output: Yes if there exists a set S of at most k vertices so that G− S is

trivially perfect, No otherwise.

while G is not P4-sparse do
Let H be a P4-sparse obstruction subgraph;
Branch on the possible ways of deleting the P4s and C4s from H;
Let k1 be the number of vertex deletions made in this stage;

end
G is P4-sparse. Let A1, . . . , At be the co-components of G;
Fix i to be the lowest index maximizing |Ai| − ωi − ηi;
for j 6= i do

Fix a maximum clique of Aj ;
Delete any vertex of Aj which is not in this maximum clique;

end
Let k2 be the number of vertex deletions made in the for-loop;
Let k3 be the number of deletions performed in Spider
Vertex-Deletion(Ai);
if k1 + k2 + k3 ≤ k then

return Yes;
end
return No;

Algorithm 6: Trivially Perfect Vertex-Deletion Algorithm

Since maximum cliques can be found in linear time on P4-sparse graphs, it is
clear that this algorithm runs in polynomial time for any fixed k. The runtime
is dominated by the exponential factor from the search tree, which was shown
to be O(3.303k).

Theorem 7. Algorithm 6 is a fixed-parameter tractable algorithm which solves
the vertex-deletion problem for trivially perfect graphs in O(3.303k).



Of course, a hitting set-style improvement similar to the previous section
could be applied here.

5 Conclusions and Future Work

We presented a general method for solving a variety of graph modification prob-
lems by limiting a search to a superclass of graphs which are close enough to the
target that an optimal polynomial-time subroutine can be used. The algorithms
presented here depend on the fact that deleting edges or vertices to a cograph
or a trivially-perfect graph can be solved in linear time when the input is a
P4-sparse graph. For general input, we gave the first non-trivial algorithm for
the cograph edge-deletion problem (running in O(2.562k)) and trivially-perfect
edge-deletion problem (running in O(2.450k) time.) We gave simple algorithms
to find minimum vertex-deletion sets to cographs and trivially perfect graphs
whose runtime of O(3.303k) matched the existing literature. We also illustrated
how a careful branching strategy and refined analysis technique improved the
runtime to O(3.115k) for the cograph vertex deletion problem, and noted that
these vertex-deletion problems can likely yield to further improvements with a
more detailed analysis.

Our general method of branching toward a superclass of the target class
benefits from few branching rules. This paper concentrated on only 7 graph
configurations of P4-sparse graphs, allowing to explicitly define the small number
branching rules when compared to the automated method of [11].

This paper leaves open many opportunities for future work. Firstly, the
bound of O(2.562k) for cograph edge-deletion is due to the basic branching
rules when encountering the 4-pan subgraph. Any improvement on this branch-
ing step would reduce the bottleneck of the cograph edge-deletion algorithm.
Alternately, one could remove the 4-pan from the list of subgraphs to branch
on provided this is accompanied with an efficient algorithm to optimally solve
cograph edge-deletion on a (C5, P5, P 5, kite, fork, co-4-pan)-free graphs (which
are a restricted version of semi P4-sparse graphs [9]. Such an algorithm would
improve cograph edge-deletion from O(2.562k) to O(2.415k).

The literature on graph classes is extensive [2], and many of these classes
admit polynomial time solutions to many NP-complete problems. We expect that
new and fast fixed-parameter tractable algorithms will soon develop through the
use of superclasses as we have used in this paper. It would be interesting to see
if the linear time algorithms for treewidth and minimum fill-in on permutation
graphs [20] and on distance hereditary graphs [3], or polynomial time algorithms
on weakly chordal graphs [1] could be used to design simple FPT algorithms for
those problems.
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