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Abstract

A pair of unit clauses is called conflicting if it is of the form (x), (x̄). A
CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting
unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed that for
each UCF CNF formula with m clauses we can simultaneously satisfy at
least ϕ̂m clauses, where ϕ̂ = (

√

5 − 1)/2. We improve the Lieberherr-
Specker bound by showing that for each UCF CNF formula F with m
clauses we can find, in polynomial time, a subformula F ′ with m′ clauses
such that we can simultaneously satisfy at least ϕ̂m + (1 − ϕ̂)m′ + (2 −

3ϕ̂)n′′/2 clauses (in F ), where n′′ is the number of variables in F which
are not in F ′.

We consider two parameterized versions of MAX-SAT, where the pa-
rameter is the number of satisfied clauses above the bounds m/2 and
m(

√

5 − 1)/2. The former bound is tight for general formulas, and the
later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31,
1999) showed that every instance of the first parameterized problem can
be transformed, in polynomial time, into an equivalent one with at most
6k + 3 variables and 10k clauses. We improve this to 4k variables and
(2
√

5 + 4)k clauses. Mahajan and Raman conjectured that the second
parameterized problem is fixed-parameter tractable (FPT). We show that
the problem is indeed FPT by describing a polynomial-time algorithm
that transforms any problem instance into an equivalent one with at most
(7 + 3

√

5)k variables. Our results are obtained using our improvement of
the Lieberherr-Specker bound above.
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1 Introduction

Let F = (V,C) be a CNF formula, with a set V of variables and a multiset
C of non-empty clauses, m = |C| (i.e., m is the number of clauses in C; each
clause is counted as many times as it appears in C), and sat(F ) is the maximum
number of clauses that can be satisfied by a truth assignment. With a random
assignment of truth values to the variables, the probability of a clause being
satisfied is at least 1/2. Thus, sat(F ) ≥ m/2 for any F . This bound is tight
when F consists of pairs of conflicting unit clauses (x) and (x̄). Since each truth
assignment satisfies exactly one clause in each pair of conflicting unit clauses, it
is natural to reduce F to the unit-conflict free (UCF) form by deleting all pairs
of conflicting clauses. If F is UCF, then Lieberherr and Specker [11] proved that
sat(F ) ≥ ϕ̂m, where ϕ̂ = (

√
5 − 1)/2 (golden ratio inverse), and that for any

ǫ > 0 there are UCF CNF formulae F for which sat(F ) < m(ϕ̂+ ǫ). Yannakakis
[19] gave a short probabilistic proof that sat(F ) ≥ ϕ̂m by showing that if the
probability of every variable appearing in a unit clause being assigned true is
ϕ̂ (here we assume that for all such variables x the unit clauses are of the form
(x)) and the probability of every other variable being assigned true is 1/2, then
the expected number of satisfied clauses is ϕ̂m.

A formula F ′ = (V ′, C′) is called a subformula of a CNF formula F = (V,C)
if C′ ⊆ C and V ′ is the set of variables in C′. If F ′ is a subformula of F then
F \ F ′ denotes the subformula obtained from F by deleting all clauses of F ′.
A formula F = (V,C) is called expanding if for each X ⊆ V , the number of
clauses containing at least one variable from X is at least |X | [17]. It is known
(this involves so-called matching autarkies, see Section 2 for details) that for each
CNF formula F = (V,C) a subformula F ′ = (V ′, C′) can be found in polynomial
time such that sat(F ) = sat(F \F ′)+|C′| and the subformula F \F ′ is expanding.
In this paper, the main technical result is that sat(F ) ≥ ϕ̂|C|+(2−3ϕ̂)|V |/2 for
every expanding UCF CNF formula F = (V,C). Combining this inequality with
the previous equality for sat(F ), we conclude that for each UCF CNF formula
F = (V,C) a subformula F ′ = (V ′, C′) can be found in polynomial time such
that

sat(F ) ≥ ϕ̂|C|+ (1 − ϕ̂)|C′|+ (2 − 3ϕ̂)|V \ V ′|/2.
The last inequality improves the Lieberherr-Specker lower bound on sat(F ).

Mahajan and Raman [14] were the first to recognize both practical and
theoretical importance of parameterizing maximization problems above tight
lower bounds. (We give some basic terminology on parameterized algorithms
and complexity in the next section.) They considered Max-SAT parameterized
above the tight lower bound m/2:

SAT-A(m/2)
Instance: A CNF formula F with m clauses.
Parameter: A nonnegative integer k.
Question: Decide whether sat(F ) ≥ m/2 + k.

Mahajan and Raman proved that SAT-A(m/2) is fixed-parameter tractable
by obtaining a problem kernel with at most 6k + 3 variables and 10k clauses.
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We improve on this by obtaining a kernel with at most 4k variables and 8.47k
clauses.

Since ϕ̂m rather than m/2 is an asymptotically tight lower bound for UCF
CNF formulae, Mahajan and Raman [14] also introduced the following param-
eterization of Max-SAT:

SAT-A(ϕ̂m)
Instance: A UCF CNF formula F with m clauses.
Parameter: A nonnegative integer k.
Question: Decide whether sat(F ) ≥ ϕ̂m+ k.

Mahajan and Raman conjectured that SAT-A(ϕ̂m) is fixed-parameter tractable.
To solve the conjecture in the affirmative, we show the existence of an O(k)-
variable kernel for SAT-A(ϕ̂m). This result follows from our improvement of
the Lieberherr-Specker lower bound.

The rest of this paper is organized as follows. In Section 2, we give fur-
ther terminology and notation and some basic results. Section 3 proves the
improvement of the Lieberherr-Specker lower bound on sat(F ) assuming cor-
rectness of the following lemma: if F = (V,C) is a compact CNF formula, then
sat(F ) ≥ ϕ̂|C| + (2 − 3ϕ̂)|V |/2 (we give definition of a compact CNF formula
in the next section). We prove this non-trivial lemma in Section 4. In Section
5 we solve the conjecture of Mahajan and Raman [14] in the affirmative and
improve their result on SAT-A(m/2). We conclude the paper with discussions
and open problems.

2 Additional Terminology, Notation and Basic

Results

We let F = (V,C) denote a CNF formula with a set of variables V and a multiset
of clauses C. It is normally assumed that each clause may appear multiple times
in C. For the sake of convenience, we assume that each clause appears at most
once, but allow each clause to have an integer weight. (Thus, instead of saying
a clause c appears t times, we will say that c has weight t). If at any point a
particular clause c appears more than once in C, we replace all occurrences of
c with a single occurrence of the same total weight. We use w(c) to denote the
weight of a clause c. For any clause c /∈ C we set w(c) = 0. If C′ ⊆ C is a
subset of clauses, then w(C′) denotes the sum of the weights of the clauses in
C′. For a formula F = (V,C) we will often write w(F ) instead of w(C).

For a formula F = (V,C) and a subset U ⊆ V of variables, FU denotes the
subformula of F obtained from F by deleting all clauses without variables in U .

For a CNF formula F = (V,C), a truth assignment is a function α : V →
{true, false}. A truth assignment α satisfies a clause c if there exists x ∈ V
such that x ∈ c and α(x) = true, or x̄ ∈ c and α(x) = false. The weight
of a truth assignment is the sum of the weights of all clauses satisfied by the
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assignment. The maximum weight of a truth assignment for F is denoted by
sat(F ).

A function β : U → {true, false}, where U is a subset of V is called a
partial truth assignment. A partial truth assignment β : U → {true, false} is
an autarky if β satisfies all clauses of FU . Autarkies are of interest, in particular,
due to the following simple fact whose trivial proof is omitted.

Lemma 1. Let β : U → {true, false} be an autarky for a CNF formula F .
Then sat(F ) = w(FU ) + sat(F \ FU ).

A version of Lemma 1 can be traced back to Monien and Speckenmeyer [15].
Recall that a formula F = (V,C) is called expanding if |X | ≤ w(FX ) for

each X ⊆ V . We associate a bipartite graph with a CNF formula F = (V,C)
as follows: the bipartite graph BF of F has partite sets V and C and the edge
vc is in BF if and only if the variable v or its negation v̄ appears in the clause
c. Later we will make use of the following result which is a version of Hall’s
Theorem on matchings in bipartite graphs (cf. [20]).

Lemma 2. The bipartite graph BF has a matching covering V if and only if F
is expanding.

We call a CNF formula F = (V,C) compact if the following conditions hold:

1. All clauses in F have the form (x) or (x̄ ∨ ȳ) for some x, y ∈ V .

2. For every variable x ∈ V , the clause (x) is in C.

A parameterized problem is a subset L ⊆ Σ∗ × N over a finite alphabet Σ.
L is fixed-parameter tractable if the membership of an instance (I, k) in Σ∗ ×N

can be decided in time f(k)|I|O(1) where f is a function of the parameter k
only [4, 5, 16]. Given a parameterized problem L, a kernelization of L is a
polynomial-time algorithm that maps an instance (x, k) to an instance (x′, k′)
(the kernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L, (ii) k′ ≤ h(k),
and (iii) |x′| ≤ g(k) for some functions h and g. It is well-known [4, 5, 16] that
a decidable parameterized problem L is fixed-parameter tractable if and only
if it has a kernel. By replacing Condition (ii) in the definition of a kernel by
k′ ≤ k, we obtain a definition of a proper kernel (sometimes, it is called a strong
kernel); cf. [1, 3].

3 New Lower Bound for sat(F )

We would like to prove a lower bound on sat(F ) that includes the number of
variables as a factor. It is clear that for general CNF formula F such a bound
is impossible. For consider a formula containing a single clause c containing a
large number of variables. We can arbitrarily increase the number of variables
in the formula, and the maximum number of satisfiable clauses will always be
1. We therefore need a reduction rule that cuts out ’excess’ variables. Our
reduction rule is based on the following lemma proved in Fleischner et al. [6]
(Lemma 10) and Szeider [17] (Lemma 9).
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Lemma 3. Let F = (V,C) be a CNF formula. Given a maximum matching
in the bipartite graph BF , in time O(|C|) we can find an autarky β : U →
{true, false} such that |X |+ 1 ≤ w(FX ) for every X ⊆ V \U.

Note that the autarky found in Lemma 3 can be empty, i.e., U = ∅. An au-
tarky found by the algorithm of Lemma 3 is of a special kind, called a matching
autarky; such autarkies were used first by Aharoni and Linial [2]. Results simi-
lar to Lemma 3 have been obtained in the parameterized complexity literature
as well, see, e.g., [13].

Lemmas 1 and 3 immediately imply the following:

Theorem 1. [6, 17] Let F be a CNF formula and let β : U → {true, false}
be an autarky found by the algorithm of Lemma 1. Then sat(F ) = sat(F \FU )+
w(FU ) and F \ FU is an expanding formula.

Our improvement of the Lieberherr-Specker lower bound on sat(F ) for a
UCF CNF formula F will follow immediately from Theorems 1 and 2 (stated
below). It is much harder to prove Theorem 2 than Theorem 1, and our proof of
Theorem 2 is based on the following quite non-trivial lemma that will be proved
in the next section.

Lemma 4. If F = (V,C) is a compact CNF formula, then there exists a truth
assignment with weight at least

ϕ̂w(C) +
|V |(2− 3ϕ̂)

2
,

where ϕ̂ = (
√
5−1)/2, and such an assignment can be found in polynomial time.

The next proof builds on some of the basic ideas in [11].

Theorem 2. If F = (V,C) is an expanding UCF CNF formula, then there
exists a truth assignment with weight at least

ϕ̂w(C) +
|V |(2− 3ϕ̂)

2
,

where ϕ̂ = (
√
5−1)/2 and such an assignment can be found in polynomial time.

Proof. We will describe a polynomial-time transformation from F to a compact
CNF formula F ′, such that |V ′| = |V | and w(C′) = w(C), and any truth
assignment for F ′ can be turned into truth assignment for F of greater or equal
weight. The theorem then follows from Lemma 4.

By Lemma 2, there is a matching in the bipartite graph BF covering V. For
each x ∈ V let cx be the unique clause associated with x in this matching. For
each variable x, if the unit clause (x) or (x̄) appears in C, leave cx as it is for
now. Otherwise, remove all variables except x from cx. We now have that for
every x, exactly one of (x), (x̄) appears in C.

If (x̄) is in C, replace every occurrence of the literal x̄ in the clauses of C
with x, and replace every occurrence of x with x̄. We now have that Condition
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2 in the definition of a compact formula is satisfied. For any clause c which
contains more than one variable and at least one positive literal, remove all
variables except one that occurs as a positive. For any clause which contains
only negative literals, remove all but two variables. We now have that Condition
1 is satisfied. This completes the transformation.

In the transformation, no clauses or variables were completely removed, so
|V ′| = |V | and w(C′) = w(C). Observe that the transformation takes polyno-
mial time, and that any truth assignment for the compact formula F ′ can be
turned into a truth assignment for F of greater or equal weight. Indeed, for
some truth assignment for F ′, flip the assignment to x if and only if we replaced
occurrences of x with x̄ in the transformation. This gives a truth assignment
for F such that every clause will be satisfied if its corresponding clause in F ′ is
satisfied.

Our main result follows immediately from Theorems 1 and 2.

Theorem 3. Every UCF CNF formula F = (V,C) contains a (possibly empty)
subformula F ′ = (V ′, C′) that can be found in polynomial time and such that

sat(F ) ≥ ϕ̂w(C) + (1 − ϕ̂)w(C′) + (2 − 3ϕ̂)|V \ V ′|/2.

4 Proof of Lemma 4

In this section, we use the fact that ϕ̂ = (
√
5 − 1)/2 is the positive root of the

polynomial ϕ̂2+ ϕ̂−1. We call a clause (x̄∨ ȳ) good if for every literal z̄, the set
of clauses containing z̄ is not equal to {(x̄ ∨ z̄), (ȳ ∨ z̄)}. We define wv(x) to be
the total weight of all clauses containing the literal x, and wv(x̄) the total weight
of all clauses containing the literal x̄. (Note that wv(x̄) is different from w(x̄),
which is the weight of the particular clause (x̄).) Let ǫ(x) = wv(x) − ϕ̂wv(x̄).
Let γ = (2− 3ϕ̂)/2 = (1− ϕ̂)2/2 and let ∆(F ) = sat(F )− ϕ̂w(C).

To prove Lemma 4, we will use an algorithm, Algorithm A, described below.
We will show that, for any compact CNF formula F = (V,C), Algorithm A finds
a truth assignment with weight at least ϕ̂w(C) + γ|V |. Step 3 of the algorithm
removes any clauses which are satisfied or falsified by the given assignment of
truth values to the variables. The purpose of Step 4 is to make sure the new
formula is compact.

Algorithm A works as follows. Let F be a compact CNF formula. If F
contains a variable x such that we can assign x true and increase sufficiently
the average number of satisfied clauses, we do just that (see Cases A and B
of the algorithm). Otherwise, to achieve similar effect we have to assign truth
values to two or three variables (see Cases C and D). Step 3 of the algorithm
removes any clauses which are satisfied or falsified by the given assignment of
truth values to the variables. The purpose of Step 4 is to make sure the new
formula is compact.

6



Algorithm A

While |V | > 0, repeat the following steps:

1. For each x ∈ V , calculate wv(x) and wv(x̄).

2. Mark some of the variables as true or false, according to the
following cases:

Case A: There exists x ∈ V with wv(x) ≥ wv(x̄). Pick one such
x and assign it true.

Case B: Case A is false, and there exists x ∈ V with (1−ϕ̂)ǫ(x) ≥
γ. Pick one such x and assign it true.

Case C: Cases A and B are false, and there exists a good clause.
Pick such a good clause (x̄ ∨ ȳ), with (without loss of gener-
ality) ǫ(x) ≥ ǫ(y), and assign y false and x true.

Case D: Cases A, B and C are false. Pick any clause (x̄∨ ȳ) and
pick z such that both clauses (x̄∨z̄) and (ȳ∨z̄) exist. Consider
the six clauses (x), (y), (z), (x̄ ∨ ȳ), (x̄ ∨ z̄), (ȳ ∨ z̄) and all 23

assignments to the variables x, y, z, and pick an assignment
maximizing the total weight of satisfied clauses among the six
clauses.

3. Perform the following simplification: For any variable x assigned
False, remove any clause containing x̄, remove the unit clause (x),
and remove x from V . For any variable x assigned true, remove
the unit clause (x), remove x̄ from any clause containing x̄ and
remove x from V .

4. For each y remaining, if there is a clause of the form (ȳ), do the
following: If the weight of this clause is greater than wv(y), then
replace all clauses containing the variable y (that is, literals y or
ȳ) with one clause (y) of weight wv(ȳ)−wv(y). Otherwise remove
(ȳ) from C and change the weight of (y) to w(y)− w(ȳ).

In order to show that the algorithm finds a truth assignment with weight at

least ϕ̂w(C) + |V |(2−3ϕ̂)
2 , we need the following two lemmas.

Lemma 5. For a formula F , if we assign a variable x true, and run Steps 3
and 4 of the algorithm, the resulting formula F ∗ = (V ∗, C∗) satisfies

∆(F ) ≥ ∆(F ∗) + (1 − ϕ̂)ǫ(x).

Furthermore, we have |V ∗| = |V | − 1, unless there exists y ∈ V ∗ such that (y)
and (x̄∨ ȳ) are the only clauses containing y and they have the same weight. In
this case, y is removed from V ∗.

7



Proof. Observe that at Step 3, the clause (x) (of weight wv(x)) is removed,
clauses of the form (x̄ ∨ ȳ) (total weight wv(x̄)) become (ȳ), and the variable x
is removed from V .

At Step 4, observe that for each y such that (ȳ) is now a clause, w(C) is
decreased by 2wy and sat(F ) is decreased by wy, where wy = min{w(y), w(ȳ)}.
Let q =

∑
y wy , and observe that q ≤ wv(x̄). A variable y will only be removed

at this stage if the clause (x̄ ∨ ȳ) was originally in C. We therefore have

1. sat(F ∗) ≤ sat(F )− wv(x)− q

2. w(C∗) = w(C) − wv(x)− 2q

Using the above, we get

∆(F ) = sat(F )− ϕ̂ · w(C)
≥ (wv(x) + sat(F ∗) + q)− ϕ̂(w(C∗) + 2q + wv(x))
= ∆(F ∗) + (1 − ϕ̂)wv(x) − (2ϕ̂− 1)q
≥ ∆(F ∗) + (1 − ϕ̂)(ǫ(x) + ϕ̂ · wv(x̄))− (2ϕ̂− 1)wv(x̄)
= ∆(F ∗) + (1 − ϕ̂− ϕ̂2)wv(x̄) + (1− ϕ̂)ǫ(x)
= ∆(F ∗) + (1 − ϕ̂)ǫ(x).

Lemma 6. For a formula F , if we assign a variable x False, and run Steps
3 and 4 of the algorithm, the resulting formula F ∗∗ = (V ∗∗, C∗∗) has |V ∗∗| =
|V | − 1 and satisfies ∆(F ) ≥ ∆(F ∗∗)− ϕ̂ǫ(x).

Proof. Observe that at Step 3, every clause containing the variable x is removed,
and no other clauses will be removed at Steps 3 and 4. Since the clause (y)
appears for every other variable y, this implies that |V ∗∗| = |V |−1. We also have
the following: sat(F ∗∗) ≤ sat(F )−wv(x̄) and w(C∗∗) = w(C)−wv(x̄)−wv(x).
Thus,

∆(F ) = sat(F )− ϕ̂w(C)
≥ (wv(x̄) + sat(F ∗∗))− ϕ̂(w(C∗∗) + wv(x̄) + wv(x))
= ∆(F ∗∗) + (1− ϕ̂)wv(x̄)− ϕ̂wv(x)
= ∆(F ∗∗) + (1− ϕ̂)wv(x̄)− ϕ̂(ǫ(x) + ϕ̂ · wv(x̄))
= ∆(F ∗∗) + (1− ϕ̂− ϕ̂2)wv(x̄)− ϕ̂ǫ(x)
= ∆(F ∗∗)− ϕ̂ǫ(x).

Now we are ready to prove Lemma 4.

Proof of Lemma 4: We will show that Algorithm A finds a truth assignment

with weight at least ϕ̂w(C) + |V |(2−3ϕ̂)
2 . Note that the inequality in the lemma

can be reformulated as ∆(F ) ≥ γ|V |.
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Let F and ϕ̂ be defined as in the statement of the lemma. Note that at each
iteration of the algorithm, at least one variable is removed. Therefore, we will
show the lemma by induction on |V |. If |V | = 0 then we are done trivially and
if |V | = 1 then we are done as sat(F ) = w(C) ≥ ϕ̂w(C) + γ (as w(C) ≥ 1). So
assume that |V | ≥ 2.

For the induction step, let F ′ = (V ′, C′) be the formula resulting from F
after running Steps 1-4 of the algorithm, and assume that ∆(F ′) ≥ γ|V ′|. We
show that ∆(F ) ≥ γ|V |, by analyzing each possible case in Step 2 separately.

Case A: wv(x) ≥ wv(x̄) for some x ∈ V . In this case we let x be true,
which by Lemma 5 implies the following:

∆(F ) ≥ ∆(F ′) + (1− ϕ̂)ǫ(x)
= ∆(F ′) + (1− ϕ̂)(wv(x) − ϕ̂wv(x̄))
≥ ∆(F ′) + (1− ϕ̂)(wv(x) − ϕ̂wv(x))
= ∆(F ′) + (1− ϕ̂)2wv(x)
= ∆(F ′) + 2γwv(x).

If y ∈ V \ V ′, then either y = x or (x̄ ∨ ȳ) ∈ C. Therefore |V | − |V ′| ≤
wv(x̄) + 1 ≤ wv(x) + 1. As wv(x) ≥ 1 we note that 2γwv(x) ≥ γ(wv(x) + 1).
This implies the following, by induction, which completes the proof of Case A.

∆(F ) ≥ ∆(F ′) + γ(wv(x) + 1)
≥ γ|V ′|+ γ(wv(x) + 1) ≥ γ|V |.

Case B: Case A is false, and (1− ϕ̂)ǫ(x) ≥ γ for some x ∈ V .
Again we let x be true. Since wv(y) < wv(ȳ) for all y ∈ V , we have

|V | = |V ′|+ 1. Analogously to Case A, using Lemma 5, we get the following:

∆(F ) ≥ ∆(F ′) + (1 − ϕ̂)ǫ(x)
≥ γ|V ′|+ γ = γ|V |.

For Cases C and D, we generate a graph G from the set of clauses. The
vertex set of G is the variables in V (i.e. V (G) = V ) and there is an edge
between x and y if and only if the clause (x̄ ∨ ȳ) exists in C. A good edge in G
is an edge uv ∈ E(G) such that no vertex z ∈ V has N(z) = {u, v} (that is, an
edge is good if and only if the corresponding clause is good).

Case C: Cases A and B are false, and there exists a good clause (x̄ ∨ ȳ).
Without loss of generality assume that ǫ(x) ≥ ǫ(y). We will first let y be False
and then we will let x be true. By letting y be False we get the following by
Lemma 6, where F ∗∗ is defined in Lemma 6: ∆(F ) ≥ ∆(F ∗∗)− ϕ̂ǫ(x).

Note that the clause (x̄∨ ȳ) has been removed so w∗∗
v (x̄) = wv(x̄)−w(x̄∨ ȳ)

and w∗∗
v (x) = wv(x) (where w∗∗

v (.) denote the weights in F ∗∗). Therefore using
Lemma 5 on F ∗∗ instead of F we get the following, where the formula F ∗ in
Lemma 5 is denoted by F ′ below and w0 = w(x̄ ∨ ȳ):

∆(F ∗∗) ≥ ∆(F ′) + (1 − ϕ̂)(wv(x) − ϕ̂(wv(x̄)− w0)).

9



First we show that |V ′| = |V ∗∗| − 1 = |V | − 2. Assume that z ∈ V \ (V ′ ∪
{x, y}) and note that N(z) ⊆ {x, y}. Clearly |N(z)| = 1 as xy is a good edge.
If N(z) = {y} then (z) ∈ C′, so we must have N(z) = {x}. However the only
way z 6∈ V ′ is if wv(z) = wv(z̄), a contradiction as Case A is false. Therefore,
|V ′| = |V | − 2, and the following holds by the induction hypothesis.

∆(F ) ≥ ∆(F ∗∗)− ϕ̂ǫ(x)
≥ ∆(F ′) + (1− ϕ̂)(wv(x)− ϕ̂(wv(x̄)− w0))− ϕ̂ǫ(x)
≥ γ|V ′|+ (1− ϕ̂)(ǫ(x) + ϕ̂w0)− ϕ̂ǫ(x)
= γ|V | − 2γ + (1− ϕ̂)ϕ̂w0 − (2ϕ̂− 1)ǫ(x).

We would be done if we can show that 2γ ≤ (1− ϕ̂)ϕ̂w0 − (2ϕ̂− 1)ǫ(x). As
w0 ≥ 1 and we know that, since Case B does not hold, (1 − ϕ̂)ǫ(x) < γ, we
would be done if we can show that 2γ ≤ (1− ϕ̂)ϕ̂− (2ϕ̂− 1)γ/(1− ϕ̂). This is
equivalent to γ = (1 − ϕ̂)2/2 ≤ ϕ̂(1 − ϕ̂)2, which is true, completing the proof
of Case C.

Case D: Cases A, B and C are false. Then G has no good edge.
Assume xy is some edge in G and z ∈ V such that N(z) = {x, y}. As xz

is not a good edge there exists a v ∈ V , such that N(v) = {x, z}. However
v is adjacent to z and, thus, v ∈ N(z) = {x, y}, which implies that v = y.
This shows that N(y) = {x, z}. Analogously we can show that N(x) = {y, z}.
Therefore, the only clauses in C that contain a variable from {x, y, z} form the
following set: S = {(x), (y), (z), (x̄ ∨ ȳ), (x̄ ∨ z̄), (ȳ ∨ z̄)}.

Let F ′ be the formula obtained by deleting the variables x, y and z and all
clauses containing them. Now consider the three assignments of truth values to
x, y, z such that only one of the three variables is assigned False. Observe that
the total weight of clauses satisfied by these three assignments equals

wv(x̄) + wv(ȳ) + wv(z̄) + 2(w(x) + w(y) + w(z)) = 2W,

where W is the total weight of the clauses in S. Thus, one of the three assign-
ments satisfies the weight of at least 2W/3 among the clauses in S. Observe
also that w(C) − w(C′) ≥ 6, and, thus, the following holds.

∆(F ) ≥ 2(w(C) − w(C′))/3 + sat(F ′)− ϕ̂(w(C′) + w(C) − w(C′))
≥ γ|V ′|+ 2(w(C) − w(C′))/3− ϕ̂(w(C) − w(C′))
= γ|V | − 3γ + (2− 3ϕ̂)(w(C) − w(C′))/3
≥ γ|V | − 3γ + 2(2− 3ϕ̂) > γ|V |.

This completes the proof of the correctness of Algorithm A. It remains to
show that Algorithm A takes polynomial time.

Each iteration of the algorithm takes O(nm) time. The algorithm stops
when V is empty, and at each iteration some variables are removed from V .
Therefore, the algorithm goes through at most n iterations and, in total, it
takes O(n2m) time. This completes the proof of Lemma 4.
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Note that the bound (2− 3ϕ̂)/2 in Lemma 4 cannot be improved due to the
following example. Let l be any positive integer and let F = (V,C) be defined
such that V = {x1, x2, . . . , xl, y1, y2, . . . , yl} and C contain the constraints (x1),
(x2),. . . , (xl), (y1), (y2),. . . , (yl) and (x̄1 ∨ ȳ1), (x̄2 ∨ ȳ2),. . . , (x̄l ∨ ȳl). Let the
weight of every constraint be one and note that for every i we can only satisfy
two of the three constraints (xi), (yi) and (x̄i ∨ ȳi). Therefore sat(F ) = 2l and
the following holds:

ϕ̂w(C) + |V |(2−3ϕ̂)
2 = 3lϕ̂+ 2l(2−3ϕ̂)

2 = l(3ϕ̂+ 2− 3ϕ̂) = 2l = sat(F ).

5 Parameterized Complexity Results

Recall that formulations of parameterized problems SAT-A(m/2) and SAT-
A(ϕ̂m) were given in Section 1.

Theorem 4. The problem SAT-A(ϕ̂m) has a proper kernel with at most ⌊(7+
3
√
5)k⌋ variables.

Proof. Consider an instance (F = (V,C), k) of the problem. By Theorem 1,
there is an autarky β : U → {true, false} which can be found by the polyno-
mial algorithm of Lemma 1 such that sat(F ) = sat(F \FU )+w(FU ) and F \FU

is an expanding formula.
If U = V , then sat(F ) = w(F ), and the kernel is trivial.
Now suppose that U 6= V and denote F \ FU by F ′ = (V ′, C′). We want

to choose an integral parameter k′ such that (F, k) is a yes-instance of the
problem if and only if (F ′, k′) is a yes-instance of the problem. It is enough
for k′ to satisfy sat(F )− ⌊ϕ̂w(F )⌋ − k = sat(F ′)− ⌊ϕ̂w(F ′)⌋ − k′. By Theorem
1, sat(F ′) = sat(F ) − w(F ) + w(F ′). Therefore, we can set k′ = k − w(F ) +
w(F ′) + ⌊ϕ̂w(F )⌋ − ⌊ϕ̂w(F ′)⌋. Since w(F ) − w(F ′) ≥ ⌈ϕ̂(w(F ) − w(F ′))⌉ ≥
⌊ϕ̂w(F )⌋ − ⌊ϕ̂w(F ′)⌋, we have k′ ≤ k.

By Theorem 2, if k′ ≤ |V ′|(2−3ϕ̂)
2 , then F is a yes-instance of the problem.

Otherwise, |V ′| < 2k
2−3ϕ̂ = (7 + 3

√
5)k. Note that F ′ is not necessarily a kernel

as w(F ′) is not necessarily bounded by a function of k. However, if w(F ′) ≥
22k/(2−3ϕ̂) then we can solve the instance (F ′, k′) in time O(w(F ′)2) and, thus,
we may assume that w(F ′) < 22k/(2−3ϕ̂), in which case, F ′ is the required
kernel.

Theorem 5. The problem SAT-A(m/2) has a proper kernel with at most 4k
variables and (2

√
5 + 4)k ≤ 8.473k clauses.

Proof. First, we reduce the instance to a UCF instance F = (V,C). As in
Theorem 4, in polynomial time, we can obtain an expanding formula F ′ =
(V ′, C′). Again, we want to choose a parameter k′ such that (F, k) is a yes-
instance if and only if (F ′, k′) is a yes-instance.
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It is enough for k′ to satisfy sat(F )−⌊w(F )/2⌋−k = sat(F ′)−⌊w(F ′)/2⌋−k′.
By Theorem 1, sat(F ′) = sat(F ) − w(F ) + w(F ′). Therefore, we can set k′ =
k − ⌈w(F )/2⌉+ ⌈w(F ′)/2⌉. As w(F ′) ≤ w(F ), we have k′ ≤ k.

By Theorem 2, there is a truth assignment for F ′ with weight at least

ϕ̂w(F ′) + |V ′|(2−3ϕ̂)
2 . Hence, if k′ ≤ (ϕ̂− 1/2)w(F ′) + |V ′|(2−3ϕ̂)

2 , the instance is
a yes-instance. Otherwise,

k′ − |V ′|(2− 3ϕ̂)

2
> (ϕ̂− 1

2
)w(F ′). (1)

The weaker bound k′ > (ϕ̂ − 1
2 )w(F

′) is enough to give us the claimed
bound on the total weight (i.e., the number) of clauses. To bound the num-
ber of variables, note that since F ′ is expanding, we can satisfy at least |V ′|
clauses. Thus, if w(F ′)/2+k′ ≤ |V ′|, the instance is a yes-instance. Otherwise,
w(F ′)/2 + k′ > |V ′| and

2(ϕ̂− 1

2
)(|V ′| − k′) < (ϕ̂− 1

2
)w(F ′). (2)

Combining Inequalities (1) and (2), we obtain:

2(ϕ̂− 1

2
)(|V ′| − k′) < (ϕ̂ − 1

2
)w(F ′) < k′ − |V ′|(2 − 3ϕ̂)

2
.

This simplifies to |V ′| < 4k′ ≤ 4k, giving the required kernel.

6 Discussion

A CNF formula I is t-satisfiable if any subset of t clauses of I can be satisfied
simultaneously. In particular, a CNF formula is unit-conflict free if and only if
it is 2-satisfiable. Let rt be the largest real such that in any t-satisfiable CNF
formula at least rt-th fraction of its clauses can be satisfied simultaneously.
Note that r1 = 1/2 and r2 = (

√
5 − 1)/2. Lieberherr and Specker [12] and,

later, Yannakakis [19] proved that r3 ≥ 2/3. Käppeli and Scheder [9] proved
that r3 ≤ 2/3 and, thus, r3 = 2/3. Král [10] established the value of r4:
r4 = 3/(5 + [(3

√
69− 11)/2]1/3 − [3

√
69 + 11)/2]1/3) ≈ 0.6992.

For general t, Huang and Lieberherr [8] showed that limt→∞ rt ≤ 3/4 and
Trevisan [18] proved that limt→∞ rt = 3/4 (a different proof of this result is
later given by Král [10]).

In the preliminary version of this paper published in the proceedings of IPEC
2010 we asked to establish parameterized complexity of the following parame-
terized problem: given a 3-satisfiable CNF formula F = (V,C), decide whether
sat(F ) ≥ 2|C|/3 + k, where k is the parameter. This question was recently
solved in [7] by showing that the problem has a kernel with a linear number of
variables. Unlike this paper, [7] uses the Probabilistic Method. Similar question
for any fixed t > 3 remains open.
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