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Abstract. We consider the computational complexity of a problem modeling bribery
in the context of voting systems. In the scenario of Swap Bribery, each voter as-
signs a certain price for swapping the positions of two consecutive candidates in his
preference ranking. The question is whether it is possible, without exceeding a given
budget, to bribe the voters in a way that the preferred candidate wins in the election.
We initiate a parameterized and multivariate complexity analysis of Swap Bribery,
focusing on the case of k-approval. We investigate how different cost functions affect
the computational complexity of the problem. We identify a special case of k-approval
for which the problem can be solved in polynomial time, whereas we prove NP-
hardness for a slightly more general scenario. We obtain fixed-parameter tractability
as well as W[1]-hardness results for certain natural parameters.

1 Introduction

In the context of voting systems, the question of how to manipulate the votes in some way
in order to make a preferred candidate win the election is a very interesting question. One
possibility is bribery, which can be described as spending money on changing the voters’
preferences over the candidates in such a way that a preferred candidate wins, while re-
specting a given budget. There are various situations that fit into this scenario: The act of
bribing the voters in order to make them change their preferences, or paying money in order
to get into the position of being able to change the submitted votes, but also the setting of
systematically spending money in an election campaign in order to convince the voters to
change their opinion on the ranking of candidates.

The study of bribery in the context of voting systems was initiated by Faliszewski,
Hemaspaandra, and Hemaspaandra in 2006 [15]. Since then, various models have been an-
alyzed. In the original version, each voter may have a different but fixed price which is
independent of the changes made to the bribed vote. The scenario of nonuniform bribery
introduced by Faliszewski [14] and the case of microbribery studied by Faliszewski, Hemas-
paandra, Hemaspaandra, and Rothe in [17] allow for prices that depend on the amount of
change the voter is asked for by the briber.

In addition, the Swap Bribery problem as introduced by Elkind, Faliszewski, and
Slinko [13] takes into consideration the ranking aspect of the votes: In this model, each
voter may assign different prices for swapping two consecutive candidates in his prefer-
ence ordering. This approach is natural, since it captures the notion of small changes and
comprises the preferences of the voters. Elkind et al. [13] prove complexity results for this
problem for several election systems such as Borda, Copeland, Maximin, and approval vot-
ing. In particular, they provide a detailed case study for k-approval. In this voting system,
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Result Reference

k = 1 or k = m− 1 P [13]
k = 2 NP-complete [3, 13]
k ≥ 3 constant, NP-complete [13]

costs in {0, 1, 2}
k ≥ 2 constant, NP-complete [3], Prop. 2

costs in {0, 1} and β = 0
k ≥ 2 constant, NP-complete, W[1]-hard (β) Thm. 3

costs in {1, 1 + ε}, ε > 0
k constant, m or n constant P [13]
k part of the input, n = 1 NP-complete [13]
2 ≤ k ≤ m− 2 part of the input, NP-complete [4], Prop. 2

costs in {0, 1} and β = 0, n constant
k part of the input, n = 1 W[1]-hard (k) Thm. 7
k part of the input, all costs = 1 P Thm. 1
k part of the input FPT (m) Thm. 5
k part of the input FPT (n) Thm. 6
k part of the input FPT (β, n) by kernelization Thm. 8

Table 1. Overview of known and new results for Swap Bribery for k-approval. The results obtained
in this paper are printed in bold. Here, m and n denote the number of candidates and votes,
respectively, and β is the budget. For the parameterized complexity results, the parameters are
indicated in parentheses.

every voter can specify a group of k preferred candidates which are assigned one point each,
whereas the remaining candidates obtain no points. The candidates which obtain the high-
est sum of points over all votes are the winners of the election. Two prominent special cases
of k-approval are plurality, (where k = 1, i.e., every voter can vote for exactly one candidate)
and veto (where k = m− 1 for m candidates, i.e., every voter assigns one point to all but
one disliked candidate). Table 1 shows a summary of research considering Swap Bribery

for k-approval, including both previously known and newly achieved results.

This paper contributes to the further investigation of the case study of k-approval that
was initiated in [13], this time from a parameterized point of view. The main goal of this
approach is to find fixed-parameter tractable (FPT) algorithms confining the combinatorial
explosion which is inherent in NP-hard problems to certain problem-specific parameters,
or to prove that their existence is implausible. This line of research has been pioneered by
Downey and Fellows [11], see also [19, 25] for two more recent monographs, and naturally
expands into the field of multivariate algorithmics, where the influence of “combined” pa-
rameters is studied, see the recent survey by Niedermeier [26]. These approaches seem to
be appealing in the context of voting systems, where NP-hardness is a desired property for
various problems, like Manipulation (where certain voters, the manipulators, know the
preferences of the remaining voters and try to adjust their own preferences in such a way
that a preferred candidate wins), Lobbying (here, a lobby affects certain voters on their
decision for several issues in an election), Control (where the chair of the election tries
to make a certain candidate win (or lose) by deleting or adding either candidates or votes),
or, as in our case, Swap Bribery. However, NP-hardness does not necessarily constitute a
guarantee against such dishonest behavior. As Conitzer et al. [9] point out for the Manipu-

lation problem, an NP-hardness result in these settings would lose relevance if an efficient
fixed-parameter algorithm with respect to an appropriate parameter was found. Parameter-
ized complexity can hence provide a more robust notion of hardness. The investigation of
problems from voting theory under this aspect has started, see for example [2, 4, 5, 8, 24].
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We examine how the computational complexity of Swap Bribery for k-approval de-
pends on certain restrictions on the cost function. We show NP-hardness as well as fixed-
parameter intractability of Swap Bribery for a very restricted version of the problem with
a fixed value of k if the parameter is the budget, whereas we identify a natural special case
which can be solved in polynomial time. By contrast, we obtain fixed-parameter tractability
with respect to the parameter ‘number of candidates’ for k-approval and a large class of
other voting systems. We also investigate the parameter ‘number of votes’, and consider the
situation where k is part of the input, for which Swap Bribery is known to be NP-complete
already for only one vote. We strengthen this result by proving W[1]-hardness with respect
to the parameter k, whereas we obtain fixed-parameter tractability with respect to n for
the case where k is a constant by using the technique of color-coding. We also provide a
polynomial kernel where we consider certain combined parameters.

The paper is organized as follows. After introducing notation in Section 2, we investigate
the complexity of Swap Bribery depending on the cost function in Section 3, where we
show the connection to the Possible Winner problem, identify a polynomial-time solvable
case of k-approval and a hardness result. In Section 4, we consider the parameter ‘number of
candidates’ and obtain an FPT result for Swap Bribery for a large class of voting systems.
Section 5 investigates the influence of the parameter ‘number of votes’, providing both W[1]-
hardness and fixed-parameter tractability results and considering combinations of different
parameters. We conclude with a discussion of open problems and further directions that
might be interesting for future investigations.

2 Preliminaries

Elections. An E-election is a pair E = (C, V ), where C = {c1, . . . , cm} denotes the set of
candidates, V = {v1, . . . , vn} is the set of votes or voters, and E is the election system which
is a function mapping (C, V ) to a set W ⊆ C called the winners of the election. We will
express our results for the winner case where several winners are possible, but our results
can be adapted to the unique winner case where W consists of a single candidate only.

In our context, each vote is a strict linear order over the set C, and we denote by rank(c, v)
the position of candidate c ∈ C in a vote v ∈ V . By contrast, the concept of partial votes,
mentioned only occasionally in this paper, can be used to describe partial orders over the
candidates.

For an overview of different election systems, we refer to [7]. We will mainly focus
on election systems that are characterized by a given scoring rule, expressed as a vec-
tor (s1, s2, . . . , sm). Given such a scoring rule, the score of a candidate c in a vote v,
denoted by score(c, v), is srank(c,v). The score of a candidate c in a set of votes V is
score(c, V ) =

∑
v∈V score(c, v), and the winners of the election are the candidates that

receive the highest score in the given votes.
The election system we are particularly interested in is k-approval, which is defined by

the scoring vector (1, . . . , 1, 0, . . . , 0), starting with k ones. In the case of k = 1, this is the
plurality rule, whereas (m − 1)-approval is also known as veto. Given a vote v, we will say
that a candidate c with 1 ≤ rank(c, v) ≤ k takes a one-position in v, whereas a candidate c′

with k + 1 ≤ rank(c′, v) ≤ m takes a zero-position in v.

Swap Bribery, Possible Winner, Manipulation. Given V and C, a swap in some
vote v ∈ V is a triple (v, c1, c2) where {c1, c2} ⊆ C, c1 6= c2. Given a vote v, we say that a
swap γ = (v, c1, c2) is admissible in v, if rank(c1, v) = rank(c2, v) − 1. Applying this swap
means exchanging the positions of c1 and c2 in the vote v, we denote by vγ the vote obtained
this way. Given a vote v, a set Γ of swaps is admissible in v, if the swaps in Γ can be applied
in v in a sequential manner, one after the other, in some order. Note that the obtained vote,
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denoted by vΓ , is independent from the order in which the swaps of Γ are applied. We also
extend this notation for applying swaps in several votes, in the straightforward way.

In a Swap Bribery instance, we are given V , C, and E forming an election, a preferred
candidate p ∈ C, a cost function c : C×C×V → Nmapping for every vote each possible swap
to a non-negative integer, and a budget β ∈ N. The task is to determine a set of admissible
swaps Γ whose total cost is at most β, such that p is a winner in the E-election (C, V Γ ).
Such a set of swaps is called a solution of the Swap Bribery instance. The underlying
decision problem is the following.

Swap Bribery

Given: An E-election E = (C, V ), a preferred candidate p ∈ C, a cost function c
mapping each possible swap to a non-negative integer, and a budget β ∈ N.
Question: Is there a set of swaps Γ whose total cost is at most β such that p is a
winner in the E-election (C, V Γ )?

We will also show the connection between Swap Bribery and the Possible Winner

problem. In this setting, we have an election where some of the votes may be partial orders
over C instead of complete linear ones. The question is whether it is possible to extend the
partial votes to complete linear orders in such a way that a preferred candidate wins the
election. For a more formal definition, we refer to the article by Konczak and Lang [22] who
introduced this problem. The corresponding decision problem is defined as follows.

Possible Winner

Given: A set of candidates C, a set of partial votes V ′ = (v′1, . . . , v
′
n) over C, an

election system E , and a preferred candidate p ∈ C.
Question: Is there an extension V = (v1, . . . , vn) of V

′ such that each vi extends v
′
i

to a complete linear order, and p is a winner in the E-election (C, V )?

A special case of Possible Winner is Manipulation (see e.g. [9, 21, 13]). Here, the
given set of partial orders consists of two subsets; one subset contains complete preference
orders and the other one completely unspecified votes.

Parameterized complexity, Multivariate complexity.
Parameterized complexity is a two-dimensional framework for studying the computa-

tional complexity of problems [11, 19, 25]. One dimension is the size of the input I (as in
classical complexity theory) and the other dimension is the parameter k (usually a positive
integer). A problem is called fixed-parameter tractable (FPT) with respect to a parameter k
if it can be solved in f(k) · |I|O(1) time, where f is an arbitrary computable function [11,
19, 25]. Multivariate complexity is the natural sequel of the parameterized approach when
expanding to multidimensional parameter spaces, see [26]. For example, if we consider a
parameterization where the parameter is a pair k = (k1, k2), then we refer to this as a
combined parameterization, or we simply say that both k1 and k2 are parameters. In such a
case, the desired FPT algorithm should run in time f(k1, k2) · |I|O(1) for some f .

The first level of (presumable) parameterized intractability is captured by the complexity
class W[1]. A parameterized reduction reduces a problem instance (I, k) in f(k) · |I|O(1) time
(for some computable function f) to an instance (I ′, k′) such that (I, k) is a yes-instance
if and only if (I ′, k′) is a yes-instance, and k′ only depends on k but not on |I|. To prove
W[1]-hardness of a given parameterized problem Q, one needs to present a parameterized
reduction from some already known W[1]-hard problem to Q.

We will use the following W[1]-hard problems [10, 18] for the hardness reductions in this
work:

Clique

Given: An undirected graph G = (V,E) and k ∈ N.
Question: Is there a complete subgraph (clique) of G of size k?
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Fig. 1. The network for a small instance with k = 2, having 5 candidates and 2 voters. The votes
of the illustrated instance are v : c1 ≻ c2 ≻ p ≻ c4 ≻ c3 and u : c1 ≻ c2 ≻ c3 ≻ p ≻ c4. Each
unlabeled edge has capacity 1; otherwise labels correspond to capacities. Bold edges correspond to
bribing voters in order to move a point from one candidate to another candidate. The costs of such
edges depend on the given votes, e.g. w(av,c1a

′
v,p) = 1 and w(au,c2a

′
u,c4

) = 3. All other edges have
cost 0.

Multicolored Clique

Given: An undirected graph G = (V1 ∪ V2 ∪ · · · ∪ Vk, E) with Vi ∩ Vj = ∅ for
1 ≤ i < j ≤ k where the vertices of Vi induce an independent set for 1 ≤ i ≤ k.
Question: Is there a complete subgraph (clique) of G of size k?

We will also make use of a kernelization algorithm in this work, which is a standard
technique for obtaining fixed-parameter results, see [6, 20, 25]. The idea is to transform the
input instance (I, k) in a polynomial-time preprocessing step via data reduction rules into
a “reduced” instance (I ′, k′) such that two conditions hold: First, (I, k) is a yes-instance if
and only if (I ′, k′) is a yes-instance, and second, the size of the reduced instance depends
on the parameter only, i.e. |I ′| + |k′| ≤ g(p) for some arbitrary computable function g.
The reduced instance (I ′, k′) is then referred to as the problem kernel. If in addition g is a
polynomial function, we say that the problem admits a polynomial kernel. The existence of
a problem kernel is equivalent to fixed-parameter tractability of the corresponding problem
with respect to the particular parameter [25].

3 Complexity depending on the cost function

In this section, we focus our attention on Swap Bribery for k-approval. We start with the
case where all costs are equal to 1, for which we obtain polynomial-time solvability. Below
we provide an algorithm which for every possible s checks if there is a solution in which the
preferred candidate wins with score s. This can be carried out by solving a minimum cost
maximum flow problem.

Theorem 1. Swap Bribery for k-approval is polynomial-time solvable, if all costs are 1.

Proof. Let V be the set of votes and C be the set of candidates. The score of any candidate is
an integer between 0 and |V |. Our algorithm finds out for each possible s∗ with 1 ≤ s∗ ≤ |V |
whether there is a solution in which the preferred candidate p wins with score s∗.

Given a value s∗, we answer the above question by solving a corresponding minimum
cost maximum flow problem. We will define a network N = (G, s, t, g, w) on a directed
graph G = (D,E) with a source vertex s and a target vertex t, where g denotes the capacity
function and w the cost function defined on E. See Figure 1 for an illustration of the network.
First, we introduce the vertex sets
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A = {av,c | v ∈ V, c ∈ C, rank(c, v) ≤ k},
A′ = {a′v,c | v ∈ V, c ∈ C}, and
B = {bc | c ∈ C},

and we set D = {s, t, x} ∪A ∪ A′ ∪B. We define the arcs E as the union of the sets

ES = {sa | a ∈ A},
EA = {av,ca

′
v,c | rank(c, v) ≤ k},

EA′ = {av,ca′v,c′ | rank(c, v) ≤ k, rank(c′, v) > k},
EB = {a′v,cbc | v ∈ V, c ∈ C},
EX = {bcx | c ∈ C, c 6= p},

plus the arcs bpt and xt. We set the cost function w to be 0 on each arc except for the arcs
of EA′ , and we set w(av,ca

′
v,c′) = rank(c′, v) − rank(c, v). We let the capacity g be 1 on

the arcs of ES ∪ EA ∪ EA′ ∪ EB , we set it to be s∗ on the arcs of EX ∪ {bpt}, and we set
g(xt) = |V |k − s∗.

The soundness of the algorithm and hence the theorem itself follows from the following
observation: there is a flow of value |V |k on N having total cost at most β if and only if
there exists a set Γ of swaps with total cost at most β such that score(p, V Γ ) = s∗ and
score(c, V Γ ) ≤ s∗ for any c ∈ C, c 6= p.

First, suppose that such a flow f exists. Since all capacities and costs are integrals, we
know that f is integral as well. For each vote v ∈ V , we define a set of swaps on v as
follows. We define two sets X→(v) and X←(v) in a way that if f(av,ca

′
v,c′) = 1 holds for

some c and c′ with c 6= c′, then we put c into X→(v) and we put c′ into X←(v). Clearly,
|X→(v)| = |X←(v)|, by the given capacities. Observe that moving the candidates in X→(v)
to the positions k+1, k+2, . . . , k+h and also the candidates in X←(v) to the positions k, k−
1, . . . , k−h+1 for h = |X→(v)| has total cost

∑
c′∈X←(v) rank(c

′, v)−
∑

c∈X→(v) rank(c, v).

Thus, by letting Γ (v) contain these swaps for some v, we know that the cost of the bribery
Γ = {Γ (v) | v ∈ V } is exactly the cost of the flow f which is not more than β. Observe
that as a result of these swaps, each candidate c other than p will receive at most s∗ scores
in V Γ because of the capacity g(bcx) ≤ s∗. On the other hand, by g(xt) = |V |k − s∗ we
get f(bpt) = s∗, which yields that p will receive exactly s∗ scores in V Γ . Thus, Γ has the
properties claimed.

For the converse direction, let Γ be a set of swaps with total cost at most β such that
score(p, V Γ ) = s∗ and score(c, V Γ ) ≤ s∗ for any c ∈ C, c 6= p. For some v ∈ V , let X→(v)
denote those candidates c for which score(c, v) > score(c, vΓ ), and let X←(v) denote those
candidates c′ for which score(c′, v) < score(c′, vΓ ). It is easy to see that the swaps applied
in v by Γ have total cost at least

∑
c∈X←(v) rank(c

′, v)−
∑

c∈X→(v) rank(c, v). Therefore, a
flow can be easily constructed having cost at most β in the following way: for each v and c
where score(c, v) = score(c, vΓ ) = 1 we let f(av,ca

′
v,c) = 1, and for each v and c where c

is the i-th candidate in X→(v) we set f(av,ca
′
v,c′) = 1 for the i-th candidate C′ of X←(v)

according to some fixed ordering. It is not hard to verify that this indeed determines a flow
for N , with value |V |k and cost at most β. ⊓⊔

Note that Theorem 1 implies a polynomial-time approximation algorithm for Swap

Bribery for k-approval with approximation ratio δ, if all costs lie within the range [1, δ] for
some δ ≥ 1.

Proposition 2 shows the connection between Swap Bribery and Possible Winner.
This result is an easy consequence of a reduction given by Elkind et al. [13].

Proposition 2. The special case of Swap Bribery where the costs are in {0, δ} for
some δ > 0 and the budget is zero is equivalent to the Possible Winner problem.
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candidate set cardinality

A = {ai,j | i, j ∈ [k]} |A| = k2

B = {bjv | j ∈ [k], v ∈ V } |B| = k|V |
C = {cjv | j ∈ [k], v ∈ V } |C| = k|V |

C̃ = {c̃jv | j ∈ [k], v ∈ V } |C̃| = k|V |
F = {f j

v | j ∈ [k], v ∈ V } |F | = k|V |
H = {hj

v | j ∈ [k], v ∈ V } |V | = k|V |

H̃ = {hj
v | j ∈ [k], v ∈

⋃
i<j

Vi} |H̃ | =
∑k

j=1
(k − j)|Vj | < k|V |

M = {mi,j | 1 ≤ i ≤ j ≤ k} |M | =
(
k

2

)
+ k

M̃ = {m̃i,j | 1 ≤ i < j ≤ k} |M̃ | =
(
k

2

)

D = {d1, d2, . . . } |D| ≤ |W | = O(k3|V |2)
G = {g1, g2, . . . , gβ+2} |G| = β + 2 = k3 + 10k2

T = {t1, t2, . . . } |T | = O(k2|V |)

Table 2. The candidate sets constructed in the proof of Theorem 3.

Proof. It has already been proved by Elkind et al. [13] that Possible Winner reduces to
Swap Bribery if the possible costs include 0 and 1, and the budget is zero. Clearly, the
result also holds if we assume that the costs include 0 and δ for some δ > 0.

For the other direction, it is easy to see that a Swap Bribery instance with costs in
{0, δ}, δ > 0 and budget zero is equivalent to the Possible Winner instance with the
same candidates where each vote v is replaced by the transitive closure of the relation ≻v

for which a ≻v b holds if and only if a precedes b in the vote v and the cost of swapping a
with b in v is non-zero. ⊓⊔

As a corollary, Swap Bribery with costs in {0, δ}, δ > 0 and budget zero is NP-
complete for almost all election systems based on scoring vectors [3], and also for the voting
rules Copeland [27] and Maximin [27]. For many voting systems such as k-approval, Borda,
and Bucklin, it is NP-complete even for a fixed number of votes [4]. A further consequence
of Proposition 2, contrasting the polynomial-time approximation algorithm implied by The-
orem 1, is the fact that approximating Swap Bribery with an arbitrary factor in a setting
where zero costs are allowed is NP-hard for all voting rules where the Possible Winner

problem is NP-hard. This has been observed by Elkind and Faliszewski [12] as well.
We now turn our attention to the simplest case among those where the cost function is

not a constant, i.e. where only two different positive costs are possible. Theorem 3 shows
that the corresponding problem is hard already for 2-approval.

Theorem 3. Suppose that ε > 0.
(1) Swap Bribery for 2-approval with costs in {1, 1 + ε} is NP-complete.
(2) Swap Bribery for 2-approval with costs in {1, 1+ ε} is W[1]-hard, if the parameter is
the budget β, or equivalently, the maximum number of swaps allowed.

Proof. We present a reduction from the Multicolored Clique problem. Let G = (V,E)
with the k-partition V = V1∪V2∪· · ·∪Vk be the given instance of Multicolored Clique.
Here and later, we write [k] for {1, 2, . . . , k}. For each i ∈ [k], x ∈ Vi, and j ∈ [k] \ {i} we
let Ej

x = {xy | y ∈ Vj , xy ∈ E}. We construct an instance IG of Swap Bribery as follows.

The set C of candidates will be the union of the sets A,B,C, C̃, F,H, H̃,M, M̃,D,G, T ,
and {p, r}, Table 2 shows the exact definition of these sets. Our preferred candidate is p. The
sets D, G, and T will contain dummies, guards, and transporters, respectively. Our budget
will be β = k3 + 10k2. Regarding the indices i and j, we suppose i, j ∈ [k] if not stated
otherwise.
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The set of votes will be W = WG ∪ WI ∪ WS ∪ WC . Votes in WG will define guards
(explained later), votes in WI will set the initial scores, votes in WS will represent the
selection of k vertices, and finally, votes in WC will be responsible for checking that the
selected vertices are pairwise neighboring. We construct W such that the following will hold
for some (even) integer K, determined later:

score(r,W ) = 0,
score(a,W ) = K + 1 for each a ∈ A,
score(q,W ) = K for each q ∈ C \ (A ∪D ∪ {r}),
score(d,W ) ≤ 1 for each d ∈ D.

We define the cost function c such that each swap has cost 1 or 1 + ε. We will define
each cost to be 1 if not explicitly stated otherwise. Since each cost is at least 1, none of
the candidates ranked after the position β + 2 in a vote v can receive non-zero points in v
without violating the budget. Thus, we can represent votes by listing only their first β + 2
positions. A candidate does not appear in some vote, if he is not contained in these positions.

Dummies, guards, truncation, and transporters. First, let us clarify the concept
of dummy candidates: we will ensure that no dummy can receive more than one point in
total, by letting each d ∈ D appear in exactly one vote. Since we will use at most one dummy
in each vote, this can be ensured easily by using at most |W | dummies in total. We will use
the sign ∗ to denote dummies in votes.

Now, we define β + 2 guards using the votes WG. We let WG contain votes of the
form wG(h) for each h ∈ [β + 2], each such vote having multiplicity K/2 in WG. We
let wG(h) = (gh, gh+1, gh+2, . . . , gβ+2, g1, g2, . . . gh−1)

3 Note that score(g,WG) = K for
each g ∈ G, and the total score obtained by the guards in WG cannot decrease. As we will
make sure that p cannot receive more than K points without exceeding the budget, this
yields that in any possible solution, each guard must have score exactly K.

Using guards, we can truncate votes at any position h > 2 by putting arbitrarily chosen
guards at the positions h, h+ 1, . . . , β + 2. This way we ensure that only candidates on the
first h− 1 positions can receive a point in this vote. We will denote truncation at position h
by using a sign † at that position.

Sometimes we will need votes which ensure that some candidate q1 can “transfer” one
point to some candidate q2 using a cost of c from the budget (c ∈ N

+, q1, q2 ∈ C \ (D ∪
D ∪G)). In such cases, we construct c votes by using exactly c− 1 transporter candidates,
say t1, t2, . . . , tc−1, none of which appears in any other vote in W \ WI . The constructed
votes are as follows: for each h ∈ [c− 2] we add a vote (∗, th, th+1, †), and we also add the
votes (∗, q1, t1, †) and (∗, tc−1, q2, †). We let the cost of any swap here be 1, and we denote the
obtained set of votes by q1  

c q2. (Note that q1  
1 q2 only consists of the vote (∗, q1, q2, †).)

Observe that the votes q1  
c q2 ensure that q1 can transfer one point to q2 at cost c.

Later, we will make sure score(t,W ) = K for each transporter t ∈ T . Thus, no transporter
can increase its score in a solution, and q1 only loses a point in these votes if q2 gets one.

Setting initial scores. Using dummies and guards, we define WI to adjust the initial
scores of the relevant candidates as follows. We put the following votes into WI :

(p, ∗, †) with multiplicity K,
(ai,j , ∗, †) with multiplicity K+1−|Vj | for each i, j ∈ [k],
(hi

x, ∗, †) with multiplicity K − |Ei
x| for each i ∈ [k], x ∈

⋃
i<j Vj ,

(h̃i
x, ∗, †) with multiplicity K − |Ei

x| for each i ∈ [k], x ∈
⋃

i>j Vj ,

(mi,j , ∗, †) with multiplicity K − 2 for each i < j,
(q, ∗, †) with multiplicity K − 1 for each remaining q /∈ D ∪G ∪ {r}.

The preferred candidate p will not appear in any other vote, implying score(p,W ) = K.

3 For convenience, here we use the vector-style representation of the linear orders given by the
voters.
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a1,j a2,j aj,j aj+1,j aj+2,j ak,j

b1x b2x bjx bj+2
xbj+1

x bkx
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x cjx cj+1

x ck−1
x ckxc̃1x c̃2x c̃jx c̃j+1

x c̃j+2
x c̃kx

f1
x f j−1

x f j
x f j+1

x fk−1
x fk

x

h1
x hj−1

x hj
x hj+1

x hk−1
x hk

xh̃j+1
x h̃k−1

x h̃k
x

m̃1,j m̃j−1,jm1,j mj−1,j mj,j mj+1,j mk−1,j mk,j

r

1

2

3

4

Fig. 2. Part of the instance IG in the proof of Theorem 3, assuming x ∈ Vj in the figure. An arc
goes from q1 to q2 if q1 can transfer a point to q2 using one or several swaps.

Selecting vertices. The set WS consists of the following votes:

ai,j  1 bix for each i, j ∈ [k] and x ∈ Vj ,
b1x  

2 c̃1x for each x ∈ V ,
wS(i, x) = (bix, c

i−1
x , c̃ix, f

i−1
x , †) for each 2 ≤ i ≤ k, x ∈ V ,

ckx  
2 fk

x for each x ∈ V ,
c̃ix  

1 cix for each i ∈ [k], x ∈ V , and
f i
x  

2(k−i)+1 hi
x for each i ∈ [k], x ∈ V .

Swapping candidate bix with ci−1x , and swapping candidate c̃ix with f i−1
x in wS(i, x) for

some 2 ≤ i ≤ k, x ∈ V will have cost 1 + ε.

Checking incidency. The set WC will contain the votes

hi
x  

1 h̃i
x for each i ∈ [k], x ∈

⋃
i>j Vj ,

wC(i, j, y, x) = (hi
x, h̃

j
y, m̃

i,j ,mi,j , †) for each i < j, x ∈ Vj , y ∈ Vi, xy ∈ E,
m̃i,j

 
1 mi,j for each i < j,

hi
x  

3 mi,i for each i ∈ [k], x ∈ Vi, and
mi,j

 
1 r with multiplicity 2 for each i < j,

mi,i
 

1 r for each i ∈ [k].

Again, swapping candidate hi
x with h̃j

y, and also candidate m̃i,j with mi,j in a vote of
the form wC(i, j, y, x) will have cost 1 + ε.

It remains to define K properly. To this end, we let K ≥ 2 be the minimum even integer
not smaller than the integers in the set {|Ej

x| | j ∈ [k], x /∈ Vj} ∪ {|Vi| | i ∈ [k]} ∪ {k2}.
This finishes the construction. It is straightforward to verify that the initial scores of the
candidates are as claimed above. The constructed instance is illustrated in Figure 2.

Construction time. Note |WG| = (β + 2)K/2, |WI | = O(Kk2 +Kk|V |) = O(Kk|V |),
|WS | = O(k2|V |), and |WC | = O(k|V |+|E|). Hence, the number of votes is polynomial in the
size of the input graph G. This also implies that the number of candidates is polynomial as
well, and the whole construction takes polynomial time. Note also that β is only a function
of k, hence this yields a parameterized reduction as well.

If for some vote v, exactly one candidate q1 gains a point and exactly one candidate q2
loses a point as a result of the swaps in Γ , then we say that q2 sends one point to q1, or
equivalently, q1 receives one point from q2 in v according to Γ . Also, if Γ consists of swaps
that transform a vote (a, b, c, d, †) into a vote (c, d, a, b, †), then we say that a sends one
point to c, and b sends one point to d. A point is transferred from q1 to q2 in Γ , if it is sent
from q1 to q2 possibly through some other candidates.
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Our aim is to show the following: G has a k-clique if and only if the constructed in-
stance IG is a yes-instance of Swap Bribery. This will prove both (1) and (2).

Direction =⇒. Suppose that G has a clique consisting of the vertices x1, x2, . . . , xk

with xi ∈ Vi. We are going to define a set Γ of swaps transforming W into WΓ with total
cost β such that p wins in WΓ according to 2-approval.

First, we define the swaps applied by Γ in WS :

– Swap ai,j with bixj
for each i and j in ai,j  1 bixj

. Cost: k2.

– Transfer one point from b1xj
to c̃1xj

for each j ∈ [k] in b1xj
 

2 c̃1xj
. Cost: 2k.

– Apply four swaps in each vote wS(i, xj) = (bixj
, ci−1xj

, c̃ixj
, f i−1

xj
, †) transforming it to

(c̃ixj
, f i−1

xj
, bixj

, ci−1xj
, †), sending one point from bixj

to c̃ixj
and simultaneously, also one

point from ci−1xj
to f i−1

xj
. Cost: 4k(k − 1).

– Swap c̃ixj
with cixj

for each i, j ∈ [k] in c̃ixj
 

1 cixj
. Cost: k2.

– Transfer one point from ckxj
to fk

xj
for each j ∈ [k] in ckxj

 
2 fk

xj
. Cost: 2k.

– Transfer one point from f i
xj

to hi
xj

for each i, j ∈ [k] in f i
xj
 

2(k−i)+1 hi
xj
. Cost: k3.

The above swaps transfer one point from ai,j to hi
xj

via the candidates bixj
, c̃ixj

, cixj
, and f i

xj

for each i and j. These swaps of Γ , applied in the votes WS , have total cost k3 + 6k2.
Now, we define the swaps applied by Γ in the votes WC .

– Swap hi
xj

with h̃i
xj

for each j < i in hi
xj
 

1 h̃i
xj
. Cost: k(k − 1)/2.

– Apply four swaps in each vote wC(i, j, xi, xj) = (hi
xj
, h̃j

xi
, m̃i,j ,mi,j , †) transforming it

to (m̃i,j ,mi,j , hi
xj
, h̃j

xi
, †), sending one point from hi

xj
to m̃i,j and, simultaneously, also

one point from h̃j
xi

to mi,j . Note that wC(i, j, xi, xj) is indeed defined for each i and j,
since xi and xj are neighboring. Cost: 2k(k − 1).

– Swap m̃i,j with mi,j for each i < j in m̃i,j
 

1 mi,j . Cost: k(k − 1)/2.
– Transfer one point from hi

xi
to mi,i for each i ∈ [k] in hi

xi
 

3 mi,i. Cost: 3k.
– Swap mi,j with r in both of the votes mi,j

 
1 r for each i < j. Cost: k(k − 1).

– Swap mi,i with r for each i ∈ [k] in mi,i
 

1 r. Cost: k.

Candidate r receives k2 points after all these swaps in Γ . Easy computations show that
the above swaps have cost 4k2, so the total cost of Γ is β = k3 + 10k2. Clearly,

score(p,WΓ ) = K,
score(r,WΓ ) = k2 ≤ K,
score(a,WΓ ) = K for each a ∈ A, and
score(q,WΓ ) = score(q,W ) ≤ K for all the remaining candidates q.

This means that p is a winner in WΓ according to 2-approval. Hence, Γ is indeed a
solution for IG , proving the first direction of the reduction.

Direction ⇐=. Suppose that IG is solvable, and there is a set Γ of swaps transformingW
into WΓ with total cost at most β such that p wins in WΓ according to 2-approval. We also
assume w.l.o.g. that Γ is a solution having minimum cost.

As argued above, score(p,WΓ ) ≤ K and score(g,WΓ ) ≥ K for each g ∈ G follow
directly from the construction. Thus, only score(p,WΓ ) = score(g,WΓ ) = K for each g ∈ G
is possible. Hence, for any i, j ∈ [k], by score(ai,j ,W ) = K + 1 we get that ai,j must lose
at least one point during the swaps in Γ . As no dummy can have more points in WΓ than
in W (by their positions), and each candidate in C \ (A∪D∪{r}) has K points in W , the k2

points lost by the candidates in A can only be transferred by Γ to the candidate r.
By the optimality of Γ , this means that ai,j sends a point to bix in Γ for some unique x ∈

Vj ; we define σ(i, j) = x in this case. First, we show σ(1, j) = σ(2, j) = · · · = σ(k, j) for
each j ∈ [k], and then we prove that the vertices σ(1, 1), . . . , σ(k, k) form a k-clique in G.
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Let B∗ be the set of candidates in B that receive a point from some candidate in A
according to Γ ; |B∗| = k2 follows from the minimality of Γ . Observing the votes in WS∪WC ,
we can see that some bix ∈ B∗ can only transfer one point to r by transferring it to hi′

x via f i′

x

for some i′ using swaps in the votes WS , and then transferring the point from hi′

x to r using
swaps in the votes WC . Basically, there are three ways to transfer a point from bix to hi′

x :

(A) bix sends one point to f i−1
x in wS(i, x) at a cost of 3 + 2ε, and then f i−1

x transfers one
point to hi−1

x . This can be carried out applying exactly 3+2(k− i+1)+1 = 6+2(k− i)
swaps, having total costs 6 + 2(k − i) + 2ε.

(B) bix sends one point to c̃ix in wS(i, x), c̃ix sends one point to cix, cix sends one point
to f i

x, and then the point gets transferred to hi
x. Again, the number of used swaps is

exactly 5 + 2(k − i) + 1 = 6 + 2(k − i), and the total cost is at least 6 + 2(k − i).
(C) bix sends one point to c̃ix in wS(i, x), and then the point is transferred to a candidate f i′

x

for some i′ > i via the candidates cix, c̃
i+1
x , ci+1

x , . . . , ci
′

x . Again, the number of used swaps
is exactly 5 + 2(k − i) + 1 = 6 + 2(k − i), and the total cost is at least 6 + 2(k − i).

Summing up these costs for each bix ∈ B∗, and taking into account the cost of sending the k2

points from the candidates of A to B∗, we get that the swaps of Γ applied in the votes WS

must have total cost at least k2+ k
(∑k

j=1 6 + 2(k − i)
)
= k3+6k2. Equality can only hold

if each bix ∈ B∗ transfers one point to hi′

x for some i′ ≥ i, i.e. either case B or C happens.
Let H∗ be the set of those k2 candidates in H that receive a point transferred from

a candidate in B∗, and let us consider now the swaps of Γ applied in the votes WC that
transfer one point from a candidate hi

x ∈ H∗ to r. Let j be the index such that x ∈ Vj .
First, note that hi

x must transfer one point to mi,j (if i ≤ j) or to mj,i (if i > j). Moreover,
independently of whether i < j, i = j, or i > j holds, this can only be done using exactly 3
swaps, thanks to the role of the candidates in H̃ and in M̃ . To see this, note that only the
below possibilities are possible:

– If i < j, then hi
x sends one point in wC(i, j, y, x) for some y ∈ Vi either to m̃i,j via two

swaps, or to mi,j via three swaps. In the former case, m̃i,j must further transfer the
point to mi,j , which is the third swap needed.

– If i > j, then hi
x first sends one point to h̃i

x, and then h̃i
x sends this point either to m̃j,i

via one swap, or to mj,i via two swaps applied in the vote wC(j, i, x, y) for some y ∈ Vi.
In the former case, m̃j,i transfers the point to mj,i via an additional swap. Note that in
any of these cases, Γ applies 3 swaps (maybe having cost 3 + ε or 3 + 2ε).

– If i = j, then hi
x sends one point to mi,i through 3 swaps.

Thus, transferring a point from hi
x to r needs 4 swaps in total, and hence the number

of swaps applied by Γ in the votes WC is at least 4k2. Now, by β = k3 + 10k2 we know
that equality must hold everywhere in the previous reasonings. Therefore, as argued above,
each bix must transfer a point to hi′

x for some i′ ≥ i, i.e., only cases B and C might happen
from the above listed possibilities. Now, we are going to argue that only case B can occur.

Let us consider the multiset IB containing k2 pairs of indices, obtained by putting (i, j)
into IB for each bix ∈ B∗ with x ∈ Vj . It is easy to see that IB = {(i, j) | 1 ≤ i, j ≤
k}. Similarly, we also define the multiset IH containing k2 pairs of indices, obtained by
putting (i, j) into IH for each hi

x ∈ H∗ with x ∈ Vj . By the previous paragraph, IH can be
obtained from IB by taking some pair (i, j) from IB and replacing them with corresponding
pairs (i′, j) where i′ > i. Let the measure of a multiset of pairs I be µ(I) =

∑
(i,j)∈I i + j.

Then, µ(IH) ≥ µ(IB) = k2(k + 1).
By the above arguments, if for some i < j the pair (i, j) is contained with multiplicity m1

in IH , and (j, i) is contained with multiplicity m2 in IH , then the candidate mi,j has to send
m1 +m2 points to r. Similarly, if (i, i) is contained in IH with multiplicity m, then mi,i has
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to send m points to r. Thus, µ(IH) equals the value obtained by summing up i+ j for each
mi,j and for each point transferred from mi,j to r. However, each mi,j (where i < j) can
only send two points to r, and each mi,i can only send one point to r, implying µ(IH) ≤∑

i∈[k](i + i) + 2
∑

1≤i<j≤k(i + j) = k2(k + 1) = µ(IB). Hence, the measures of IB and IH
must be equal, from which IH = IB follows. Thus, only case B can happen.

Therefore, Γ must send one point from bix to c̃ix at a cost of 2, and apply three more
swaps of cost 3 to transfer one point from c̃ix to f i

x. But in the case i ≥ 2, this can only be
done avoiding any swap of cost 1 + ε in the vote wS(i, x), if f

i−1
x simultaneously receives

one point from ci−1x in wS(i, x) as well, which implies bi−1x ∈ B∗. Applying this argument
iteratively, this shows that bix ∈ B∗ implies {bhx | h < i} ⊆ B∗. Hence, B∗ is the union of k
sets of the form {h1

x, h
2
x, . . . , h

k
x}, implying σ(1, j) = σ(2, j) = · · · = σ(k, j) for each j ∈ [k].

Finally, consider the swaps that transfer one point from hi
x ∈ H∗ tomi,j inWC where x ∈

Vj and i < j. We know that if x ∈ Vj , then this must be done by applying some swaps in the
vote wC(i, j, y, x) for some y ∈ Vi such that xy ∈ E. But because of our budget, each such
swap must have cost 1 and not 1+ ε, which can only happen if Γ transforms wC(i, j, y, x) =

(hi
x, h̃

j
y, m̃

i,j ,mi,j , †) into (m̃i,j ,mi,j , hi
x, h̃

j
y, †). But this implies that hj

y must also be in B∗,
implying y = σ(j, i). Therefore we obtain that σ(i, j) and σ(j, i) must be vertices connected
by an edge in G. This proves the existence of a k-clique in G, proving the theorem. ⊓⊔

Looking into the proof of Theorem 3, we can see that the results hold even in the following
restricted case:

– the costs are uniform in the sense that swapping two given candidates has the same
price in any vote, and

– the maximum number of swaps allowed in a vote is four.

By applying minor modifications to the given reduction, Theorem 3 can be generalized
to hold for the following modified versions as well.

– If we want p to be the unique winner: we only have to set score(p,W ) = K + 1.
– If we use k-approval for any fixed k with k ≥ 3 instead of 2-approval: it suffices to insert

k − 2 dummies into the first k − 2 positions of each vote.4

We can summarize these generalizations of Theorem 3 in the following theorem, which
follows directly from the discussion above.

Theorem 4 (Generalization of Theorem 3). For any constant k ≥ 2, Swap Bribery

for k-approval is W[1]-hard when parameterized by the value of the budget, assuming that
the minimum cost of a swap is 1; this holds even if the following restrictions apply:

– there are only two different positive costs possible for a swap, i.e. each swap has a cost
in {1, 1 + ǫ} for some ǫ > 0,

– the cost of swapping two given candidates is the same in each vote, and
– the maximum number of swaps allowed in a vote is 4.

4 Parameterizing with the number of candidates

In this section, we will consider the parameter ‘number of candidates’. For this case, the
following definition is helpful.

Let Sm = {π1, π2, . . . , πm!} be the set of permutations of size m. We say that an election
system is described by linear inequalities, if for a given set C = {c1, c2, . . . , cm} of candidates

4 Note that the number of candidates in the constructed instance will depend on the value of k,
so in particular, the result does not hold for voting rules such as veto or (m− 2)-approval.
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it can be characterized by f(m) sets A1, A2, . . . Af(m) (for some computable function f) of
linear inequalities over m! variables x1, x2, . . . , xm! in the following sense: if ni denotes the
number of those votes in a given election E that order C according to πi, then the first can-
didate c1 is a winner of the election if and only if for at least one index i, the setting xj = nj

for each j satisfies all inequalities in Ai. Let us remark that Faliszewski et al. independently
defined a very similar notion in the context of multimode control problems [16].

It is easy to see that many election systems can be described by linear inequalities: any
system based on scoring rules, Copelandα (0 ≤ α ≤ 1), Maximin, Bucklin, Ranked pairs.
For example, k-approval is described by the following set A1 of linear inequalities:

A1 :
∑

i:rank(c1,πi)≤k

xi ≥
∑

i:rank(cj ,πi)≤k

xi for each 2 ≤ j ≤ m,

where rank(cj , πi) denotes the position of candidate cj in the linear order corresponding to
the permutation πi.

To see an example where we need more than one set of linear inequalities, consider the
Bucklin rule. The Bucklin winning round in an election is the smallest number b such that
there exists a candidate that is ranked in the first b positions in at least

⌊
n
2

⌋
+ 1 votes

(where n is the number of votes in the election). According to Bucklin, the winners of an
election with Bucklin winning round b are those candidates that have maximal b-approval
score, i.e. that are ranked in the first b positions by the maximum number of votes. Note
that the b-approval score of each winner must be at least

⌊
n
2

⌋
+1. This voting system can be

described by the following sets of linear inequalities A1, A2, . . . , Am where Ab corresponds
to the case where the Bucklin winning round is exactly b.

Ab :
∑

i:rank(cj ,πi)≤b−1

xi ≤
⌊n
2

⌋
for each 1 ≤ j ≤ m,

∑

i:rank(c1,πi)≤b

xi ≥
⌊n
2

⌋
+ 1,

∑

i:rank(c1,πi)≤b

xi ≥
∑

i:rank(cj ,πi)≤b

xi for each 2 ≤ j ≤ m.

In the above description, the linear inequalities in the first line mean that the Bucklin
winning round is at least b. The second line implies that c1 has b-approval score at least
⌊n
2 ⌋+ 1, and the third set of inequalities requires that no candidate has greater b-approval

score than c1. Clearly, c1 is a winner according to Bucklin if and only if each linear inequality
of Ab is satisfied by setting xj = nj (1 ≤ j ≤ m) for at least one set Ab among the sets
A1, A2, . . . , Am.

Theorem 5. Swap Bribery is FPT if the parameter is the number of candidates, for any
election system described by linear inequalities.

Proof. Let C = {c1, c2, . . . , cm} be the set of candidates, where c1 is the preferred one, and
let A1, A2, . . . Af(m) be the sets of linear inequalities over variables x1, . . . , xm! describing
the given election system E . For some πi ∈ Sm, let vi denote the vote that ranks C according
to πi. We describe the set V of votes by writing ni for the multiplicity of the vote vi in V .

Our algorithm solves f(m) integer linear programs with variables T = {ti,j | i 6= j,
1 ≤ i, j ≤ m!}. We will use ti,j to denote the number of votes vi that we transform into
votes vj ; we will require ti,j ≥ 0 for each i 6= j. Let V T denote the set of votes obtained by
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transforming the votes in V according to the variables ti,j for each i 6= j. Such a transforma-
tion from V is feasible if

∑
j 6=i ti,j ≤ ni holds for each i ∈ [m!] (inequality A). By [13], we

can compute the price ci,j of transforming the vote vi into vj in O(m3) time. Transforming
V into V T can be done with total cost at most β, if

∑
i,j∈[m!] ti,jci,j ≤ β (inequality B).

We can express the multiplicity x′i of the vote vi in V T as x′i = ni+
∑

j 6=i tj,i−
∑

i6=j ti,j .
For some i ∈ [f(m)], let A′i denote the set of linear inequalities over the variables in T
that are obtained from the linear inequalities in Ai by substituting xi with the above given
expression for x′i. Using the description of E with the given linear inequalities, we know that
the preferred candidate c1 wins in the E-election (C, V T ) for some values of the variables
ti,j if and only if these values satisfy the inequalities of A′i for at least one i ∈ [f(m)]. Thus,
our algorithm solves Swap Bribery by finding a non-negative assignment for the variables
in T that satisfies both the inequalities A, B, and all inequalities in A′i for some i.

Solving such a system of linear inequalities can be done in linear FPT time, if the
parameter is the number of variables [23]. By |T | = (m!− 1)m! the theorem follows. ⊓⊔

Similarly, we can also show fixed-parameter tractability for other problems if the pa-
rameter is the number of candidates, e.g. for Possible Winner (this was already obtained
by Betzler et al. for several voting systems, [4]), Manipulation (both for weighted and
unweighted voters), several variants of Control (this result was obtained for Llull and
Copeland voting by Faliszewski et al., [17]), or Lobbying [8] (here, the parameter would be
the number of issues in the election). Since our topic is Swap Bribery, we omit the details.

5 Parameterizing with the number of votes

In this section, we consider the case where the number of votes is a parameter. First, note
that if k is unbounded and is part of the input, then Swap Bribery is NP-complete even
for a single vote [13, Theorem 4.5]. Hence, we consider parameterizations of Swap Bribery

where not only the number n of votes, but also either k or the budget β is regarded as a
parameter.

We first recall that there is a simple brute force algorithm given in [13] for Swap Bribery

that runs inmO(kn) time. Looking at this running time, one can wonder whether it is possible
to get k or n out of the exponent of m. Theorem 6, which makes use of the technique of
color-coding [1], answers this question in the affirmative for the case of n, by providing
an algorithm for Swap Bribery for k-approval which is fixed-parameter tractable with
parameter n, supposing that k is some fixed constant. Note that this result is best possible
in the sense that the problem without parameterization remains NP-hard even if k = 2.

By contrast, we will see in Theorem 7 that we cannot expect a similar result for the case
where n is constant but k is a parameter.

Theorem 6. Swap Bribery for k-approval can be solved with a randomized algorithm
in 22(logn+log k)nkO(mk+1) expected time. The derandomized version of the algorithm has
running time 2O((logn+log k)nk)O(mk+1 logm).

Proof. We are going to apply the idea of color-coding [1] widely used to design parameterized
algorithms. Let I be the given instance of Swap Bribery with V = {v1, . . . , vn} and
C = {p, c1, . . . , cm−1} denoting the set of votes and the set of candidates, respectively,
where p is our preferred candidate.

To begin, let us introduce some definitions that capture the structure of a solution. Let
us call any k-size subset of the set [nk] = {1, . . . , nk} a vote pattern, and let us call an n-
tuple of vote patterns an election pattern. We say that an election pattern P = (P1, . . . , Pn)
is successful, if the element 1 appears at least as many times in P as any other element, i.e.
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if |{i | 1 ∈ Pi}| ≥ |{i | c ∈ Pi}| for any c ∈ [nk]. Intuitively, we can think of an election
pattern as the encoding of the family of those candidate sets that are moved into the first k
positions of some vote by a solution; hence, we use the nk integers in correspondence to the
relevant candidates obtaining at least one point in the bribed election. To explain the exact
connection between election patterns and briberies, we need some additional concepts.

For a set Γ of swaps for I, let Crel(Γ ) denote the set of candidates whose score in V Γ

is at least 1. Clearly, |Crel(Γ )| ≤ kn always holds, and if Γ is a solution for I, then we
also have p ∈ Crel(Γ ). We say that Γ is compatible with an election pattern (P1, . . . , Pn), if
there is an injective function σ mapping the elements of Crel(Γ ) to different integers in [nk]
with σ(p) = 1 such that for each vote vi ∈ V , the set of integers assigned by σ to the first k
candidates in the vote vΓi is exactly the set Pi. We say that the mapping σ is a witness for
this compatibility.

The importance of these definitions relies on the following two observations. On the one
hand, if Γ is a solution, then any election pattern compatible with Γ is successful. On the
other hand, if a bribery is compatible with a successful election pattern and its cost does
not exceed the given budget, then it yields a solution for I. Therefore, our algorithm does
the following: it enumerates every possible successful election pattern, and for each such
pattern it looks for the cheapest bribery compatible with it. Note that there are at most(
nk
k

)n
< (nk)nk possible election patterns to check.

Given a successful election pattern P = (P1, . . . , Pn), let A =
⋃

i∈[n] Pi\{1}. We describe
an algorithm A that, assuming that there exists a solution compatible with P , finds a
solution in (nk)nkO(mk+1) randomized time. So let us suppose from now on that I admits
a solution Γ that is compatible with P , and let σ be a witness for this. (Note that we
do not know σ.) Our algorithm applies color-coding as follows: it colors each candidate in
C \ {p} with the colors of A randomly using a uniform and independent distribution. Let
α(c) denote the color of a candidate c; we set α(p) = 1. We say that the coloring α is nice
if α(c) = σ(c) for each c ∈ Crel(Γ ). Clearly, a random coloring α is nice with probability at
least |A|−|A| ≥ (nk − 1)−(nk−1).

Assuming that we have a nice coloring α, we can find a solution for I as follows. For
each vi ∈ V , we take every possible subset C′ ⊆ C of size k whose colors correspond to the
vote pattern Pi, i.e. such that

⋃
c∈C′ α(c) = Pi holds. For each such C′, we compute the

minimum cost of a bribery that moves the candidates of C′ to the first k positions in vi.
This can be done in O(mk) time for some C′, by simply swapping each candidate c′ ∈ C′

with exactly those candidates in C \C′ that precede c′ in the vote vi. Now, for each vi ∈ V
we take the cheapest one among all these briberies over all possible sets C′ colored by the
colors of Pi; let Bi be the resulting bribery for vi. We claim that the union of the swaps
in B1, . . . , Bn is a bribery B that yields a solution. Observe that B can be computed in
n
(
m
k

)
O(mk) time.

To prove our claim, first note that by our assumptions that Γ is a solution compatible
with P and α is nice, we get that the bribery B cannot have cost greater than the cost
of Γ , as the algorithm must have considered the restriction of Γ on vi when choosing Bi

for some i. Thus, B does not exceed the budget. It remains to show that p is a winner in
V B. First, observe that if B is compatible with P , then this follows from the fact that P is
a successful election pattern. Unfortunately, it might happen that B is not compatible with
P ; the reason for this is that different candidates in Crel(B) might have the same color.
However, this will not cause any problems, since the score of any candidate c ∈ Crel(B)
in V B is upper bounded by the number of occurrences of the element α(c) in the election
pattern P . Since P is successful, this latter cannot be greater than the score of p in V B. In
other words, p is a winner in V B because for each c ∈ C \ {p} we have

score(c, V B) ≤ |{i : α(c) ∈ Pi}| ≤ |{i : 1 ∈ Pi}| = score(p, V B).
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c(ci, cj) = 1 for each i, j ∈ [N ] where vivj ∈ E
c(ci, cj) = 0 for each i, j ∈ [N ] where vivj /∈ E
c(d1, ci) = N − |{j < i | vjvi ∈ E}| for each i ∈ [N ]
c(ci, p) = N2 for each i ∈ [N ]
c(d1, q) = 0 for any q ∈ C \ Cv

c(dj , q) = 0 for any 2 ≤ j ≤ k + 1 and q ∈ C

Table 3. The values of the cost function c in the proof of Theorem 7.

With this method, if the coloring is nice, then algorithm A finds a solution. By the
above arguments, the randomized version of algorithm A finds a solution in (nk)nkO(mk+1)
expected time, provided that there exists a solution compatible with P . Therefore, checking
every possible successful election pattern takes (nk)2nkO(mk+1) = 22(logn+log k)nkO(mk+1)
randomized time.

To derandomize the algorithm, we can apply standard techniques using nk-perfect hash
functions [1] instead of randomly coloring the candidates of C \ {p}. This yields a determin-
istic algorithm with 2O((logn+log k)nk)O(mk+1 logm) running time. ⊓⊔

Next, we complement Theorem 6 by proving that there is no hope for getting k out of
the exponent of m in any algorithm solving Swap Bribery for k-approval, as this problem
remains W[1]-hard with parameter k even in the case n = 1, i.e. if there is only one vote in
the instance.

Theorem 7. Swap Bribery for k-approval with only one vote is W[1]-hard when param-
eterized by k.

Proof. We provide a parameterized reduction from the W[1]-hard Clique problem, pa-
rameterized by the size of the desired clique. Let G = (V,E) be the input graph given with
V = {v1, . . . , vN}, and let k be the parameter given. We are going to construct an instance I
of Swap Bribery for (k + 1)-approval consisting of an election with a single vote

w : d1 ≻ · · · ≻ dk+1 ≻ c1 ≻ · · · ≻ cN ≻ p,

a cost function c, and a budget β = (N−k)N2+kN−
(
k
2

)
. We let C = {d1, . . . , dk+1, c1, . . . , cN , p}

denote the set of candidates, and we let Cv = {c1, . . . , cN}. Our preferred candidate is p.

The values of the cost function, shown also in Table 3, are as follows. (For simplicity, the
cost of swapping two candidates x1 and x2 in the vote w is denoted by c(x1, x2) instead of
c(x1, x2, w), as there is only one voter.) We define the cost of swapping ci with cj for some
i, j ∈ [N ] to be 1 if vivj is an edge in G, and 0 otherwise. We set the cost of swapping d1
with ci ∈ Cv to be N − |{j < i | vjvi ∈ E}|. Furthermore, we let the cost of swapping p
with any candidate ci ∈ Cv to be N2. All remaining swaps have zero cost. The construction
takes time polynomial in |V |+ k.

We claim that the constructed instance I is equivalent with the input of Clique in the
sense that I has a solution if and only if G has a clique of size k.

First, note that β < (N − k + 1)N2, which implies that any solution Γ can swap p
with at most N − k candidates from Cv. Therefore, p can only obtain a point in wΓ if
rank(p, wΓ ) = k + 1 and there exist k candidates ci1 , . . . , cik that precede p. The cost of a
minimum bribery achieving this is

(N − k)N2 + kN −
∑

1≤h<j≤k

c(cih , cij ).
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∗ · · ·

Fig. 3. Illustration of the truncation of the votes by the algorithm of Theorem 8. The grey and
white areas show the one-positions and the zero-positions in the depicted vote, respectively. The
symbol ∗ stands for a dummy candidate.

The first term in this sum is the cost of swapping p with the candidates C \ {ci1 , . . . , cik , p},
and the remaining terms correspond to swapping the candidates ci1 , . . . , cik with every other
candidate before them. Note that by the definition of the cost function, swapping cij with
every candidate preceding it in w has cost N , but we do not swap cij with the candidates
ci1 , . . . , cij−1

. Thus, it is clear that the cost of such a bribery is at most β if and only if
c(cih , cij ) = 1 for every 1 ≤ h < j ≤ k. This holds if and only if the set {vi1 , . . . , vik} is a
clique in G, showing that a solution exists if and only if there is a clique of size k in G. This
implies the correctness of the reduction. ⊓⊔

Finally, we present a kernelization algorithm for the Swap Bribery problem for k-
approval, where we consider both the budget β and the number n of votes as parameters.

Theorem 8. If the minimum cost is 1, then Swap Bribery for k-approval (where k is
part of the input) with combined parameter (n, β) admits a kernel with O(n2β) votes and
O(n2β2) candidates. Here, n is the number of votes and β is the budget.

Proof. Let V , C, p ∈ C, and β denote the set of votes, the set of candidates, the preferred
candidate, and the budget given, respectively; we write |V | = n. The idea of the kernelization
algorithm is that not all candidates are interesting for the problem: only candidates that
can be moved within the budget β from a zero-position to a one-position or vice versa are
relevant.

Let Γ be a set of swaps with total cost at most β. Clearly, as the minimum possible
cost of a swap is 1, we know that there are only 2β candidates c in a vote v ∈ V for which
score(c, v) 6= score(c, vΓ ) is possible, namely, such a c has to fulfill k − β + 1 ≤ rank(c, v) ≤
k + β. Thus, there are at most 2βn candidates for which score(c, V ) 6= score(c, V Γ ) is

possible; let us denote the set of these candidates by C̃. Let c∗ be a candidate in C \ C̃

whose score is the maximum among the candidates in C \ C̃.

Note that a candidate c ∈ C \ (C̃ ∪ {c∗, p}) has no effect on the answer to the problem
instance. Indeed, if score(p, V Γ ) ≥ score(c∗, V Γ ), then the score of c is not relevant, and
conversely, if score(p, V Γ ) < score(c∗, V Γ ) then p loses anyway. Therefore, we can disregard

each candidate in C \ C̃ except for c∗ and p.
The kernelization algorithm constructs an equivalent instance K as follows. In K, neither

the budget, nor the preferred candidate will be changed. However, we will change the value
of k to be β+1, so the kernel instance K will contain a (β+1)-approval election5. We define
the set VK of votes and the set CK of candidates in K as follows.

First, the algorithm “truncates” each vote v, by deleting all its positions (together with
the candidates in these positions) except for the 2β positions between k − β + 1 and k + β.

5 We use β + 1 instead of β to avoid complications with the case β = 0.
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Then again, we shall make use of dummy candidates (see the proof of Theorem 3); we
will ensure score(d, V Γ ) ≤ 1 for each such dummy d. Swapping a dummy with any other
candidate will have cost 1 in K. Now, for each obtained truncated vote, the algorithm inserts
a dummy candidate in the first position, so that the obtained votes have length 2β + 1. In
this step, the algorithm also determines the set C̃ and the candidate c∗. This can be done in
linear time. We denote the votes6 obtained in this step by Vr. We do not change the costs
of swapping candidates of C̃ ∪ {c∗, p} in some vote v ∈ Vr. For an illustration of this step,
see Figure 3.

Next, to ensure that K is equivalent to the original instance, the algorithm constructs
a set Vd of votes such that score(c, Vr ∪ Vd) = score(c, V ) holds for each candidate c in

C̃ ∪ {p, c∗}. This can be done by constructing score(c, V ) − score(c, Vr) newly added votes
where c is on the first position, and all the next 2β positions are taken by dummies. This
way we ensure score(c, Vd) = score(c, V Γ

d ) for any set Γ of swaps with total cost at most β.

If D is the set of dummy candidates created so far, then let CK = C̃ ∪ {p, c∗} ∪D. To
finish the construction of the votes, it suffices to add for each vote v ∈ Vr∪Vd the candidates
not yet contained in v, by appending them at the end (starting from the (2β+1)-th position)
in an arbitrary order. The obtained votes will be the votes VK of the kernel.

The presented construction needs polynomial time. Using the above mentioned argu-
ments, it is straightforward to verify that the constructed kernel instance is indeed equivalent
to the original one. Thus, it remains to bound the size of K.

Clearly, |C̃ ∪{p, c∗}| ≤ 2nβ+2. The number of dummies introduced in the first phase is
exactly |Vr| = n. As the score of any candidate in V is at most n, the number of votes created
in the second phase is at most (2nβ+2)n, which implies that the number of dummies created
in this phase is at most (2nβ+2)n·2β. This shows |CK | ≤ n+(2nβ+2)(2nβ+1) = O(n2β2),
and also |VK | ≤ (2nβ + 3)n = O(n2β). ⊓⊔

We remark that if each cost is at least 1, then a kernel with (k + β)n candidates and n
votes is easy to obtain, by simply deleting every candidate from the instance whose rank is
greater than k + β in all of the votes. This simple method might be favorable to the above
result in cases where k is small.

6 Conclusion

We have taken the first step towards parameterized and multivariate investigations of Swap
Bribery under certain voting systems, focusing on k-approval. We discussed how the com-
plexity of this problem depends on the cost function. In response to an initiation of Elkind
et al. [13] to identify natural cases of Swap Bribery that are computationally tractable,
we showed that the case where all swaps have equal costs is polynomial-time solvable. By
contrast, as soon as we have two different costs, the problem becomes NP-complete for
k-approval for any fixed k ≥ 2, and even W[1]-hard if the parameter is the budget β.

We provided a rather general result showing that Swap Bribery is FPT for a very
large class of voting systems if the parameter is the number of candidates. This revaluates
previous NP-hardness results: Swap Bribery could be computed efficiently if the number of
candidates is small, which is a common setting e.g. in presidential elections. The technique
used can be applied to different problems from voting theory, leading to fixed-parameter
tractability with respect to the number of candidates in various settings.

We also shed some light on the complexity of Swap Bribery for k-approval when
considering combined parameters. We hope that our results will help to understanding the

6 In fact, these cropped votes are not real votes yet in the sense that they do not contain each
candidate.
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intricate issues of the interplay between the parameters ’number of votes’, the budget, or
the value of k. On one hand, we strengthened the known NP-completeness result for a single
vote by showing W[1]-hardness with respect to k in the case when k is part of the input.
On the other hand, we proposed an FPT algorithm for the case where the parameter is the
number of votes, but k is a fixed constant. In addition, we presented a polynomial kernel
for the problem where the parameters are the number of votes and the budget.

There are plenty of possibilities to carry on our initiations. First, there are more pa-
rameterizations to be studied in the spirit of Niedermeier [26]. Examining the possibilities
for kernelizations with respect to different parameters, as for instance was done by Betzler
in [2], is an interesting approach.

Second, our FPT result for the case where the parameter is the number of votes relies
on an integer linear program formulation, and uses a result by Lenstra. Since this approach
does not provide running times that are suitable in practice, it would be interesting to give
combinatorial algorithms that compute an optimal swap bribery. This might be particularly
relevant for a scenario described by Elkind et al. [13], where bribery is not necessarily
considered as an undesirable thing, like in the case of campaigning.

Also, we have focused our attention to k-approval, but the same questions could be
studied for other voting systems, or for the special case of Shift Bribery which was shown
to be NP-complete for several voting systems [13], or other variants of the bribery problem
as mentioned in the introduction. For instance, we have only looked at constructive swap
bribery, but the case of destructive swap bribery (when our aim is to achieve that a disliked
candidate does not win) is worth further investigation as well.

Acknowledgments. We thank Rolf Niedermeier for an inspiring initial discussion.
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