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Abstract

Kernelization algorithms for the cluster editing problem have been a popular topic in the recent
research in parameterized computation. Thus far most kernelization algorithms for this problem are
based on the concept of critical cliques. In this paper, we present new observations and new techniques
for the study of kernelization algorithms for the cluster editing problem. Our techniques are based
on the study of the relationship between cluster editing and graph edge-cuts. As an application, we
present an O(n2)-time algorithm that constructs a 2k kernel for the weighted version of the cluster
editing problem. Our result meets the best kernel size for the unweighted version for the cluster
editing problem, and significantly improves the previous best kernel of quadratic size for the weighted
version of the problem.

1 Introduction

Errors are ubiquitous in most experiments, and we have to find out the true information buried behind
them, that is, to remove the inconsistences in data of experiment results. In most cases, we want to make
the data consistent with the least amount of modifications, i.e., we assume the errors are not too much.
This is an everyday problem in real life. Indeed, the problem has been studied by researchers in different
areas [3, 25]. A graph theoretical formulation of the problem is called the cluster editing problem that
seeks a collection of edge insertion/deletion operations of minimum cost that transforms a given graph into a
union of disjoint cliques. The cluster editing problem has applications in many areas, including machine
learning [3], world wide web [12], data-minning [4], information retrieval [19], and computational biology [10].
The problem is also closely related to another interesting and important problem in algorithmic research,
clustering aggregation [1], which, given a set of clusterings on the same set of vertices, asks for a single
clustering that agrees as much as possible with the input clusterings.

Let G = (V,E) be an undirected graph, and let V 2 be the set of all unordered pairs of vertices in G (thus,
for two vertices v and w, {v, w} and {w, v} will be regarded as the same pair). Let π : V 2 7→ N ∪ {+∞} be
a weight function, where N is the set of positive integers. The weight of an edge [v, w] in G is defined to be
π(v, w). If vertices v and w are not adjacent, and we add an edge between v and w, then we say that we
insert an edge [v, w] of weight π(v, w).

The weighted cluster editing problem is formally defined as follows:

(Weighted) cluster editing: Given (G, π, k), where G = (V,E) is an undirected graph, π :
V 2 7→ N ∪ {+∞} is a weight function, and k is an integer, is it possible to transform G into a
union of disjoint cliques by edge deletions and/or edge insertions such that the weight sum of the
inserted edges and deleted edges is bounded by k?
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The problem is NP-complete even in its unweighted version [25]. Polynomial-time approximation al-
gorithms for the problem have been studied. The best result is a randomized approximation algorithm of
expected approximation ratio 3 by Ailon, Charikar, and Newman [1], which was later derandomized by van
Zuylen and Williamson [27]. The problem has also been shown to be APX-hard by Charikar, Guruswami,
and Wirth [8].

Recently, some researchers have turned their attention to exact solutions, and to the study of parame-
terized algorithms for the problem. A closely related problem is to study kernelization algorithms for the
problem, which, on an instance (G, π, k) of cluster editing, produces an “equivalent” instance (G′, π, k′)
such that k′ ≤ f(k)1 and that the kernel size (i.e., the number of vertices in the graph G′) is small. For the
unweighted version of the problem (i.e., assuming that for each pair v and w of vertices, π(v, w) = 1), Gramm
et al. [17] presented the first parameterized algorithm running in time O(2.27k + n3) and a kernelization
algorithm that produces a kernel of O(k2) vertices. This result was immediately improved by a successive
sequence of studies on kernelization algorithms that produce kernels of size 24k [15], of size 4k [18] and of
size 2k [9]. The 24k kernel was obtained via crown reduction, while the later two results were both based on
the concept of simple series module (critical clique), which is a restricted version of modular decomposition
[11]. Basically, these algorithms iteratively construct the modular decomposition, find reducible simple series
modules and apply reduction rules on them, until there are no any reducible modules found.

For the weighted version, to our best knowledge, the only non-trivial result on kernelization is the
quadratic kernel developed by Böcker et al. [7].

The main result of this paper is the following theorem:

Theorem 1.1 There is an O(n2)-time kernelization algorithm for the weighted cluster editing problem

that produces a kernel which contains at most 2k vertices.

Compared to all previous results, Theorem 1.1 is better not only in kernel size and running time, but
also more importantly in conceptual simplicity.

A more general version of weighted cluster editing problem is defined with real weights, that is, the
weight function π is replaced by π′ : V 2 7→ R≥1 ∪{+∞} where R≥1 is the set of all real numbers larger than
or equal to 1, and correspondingly k becomes a positive real number. Our result also works for this version,
in the same running time, and with only a small relaxation in the consant of kernel size.

Our contribution. We report the first linear vertex kernel with very small constant, for the weighted
version of the cluster editing problem. Our contribution to this research includes:

1. the cutting lemmas (some of them are not used for our kernelization algorithm) are of potential use
for future work on kernelizations and algorithms;

2. both the idea and the process are very simple with efficient implementations that run in time O(n2).
Indeed, we use only a single reduction rule, which works for both weighted and unweighted versions;

3. the reduction processes to obtain the above results are independent of k, and therefore are more general
and applicable.

2 Cutting Lemmas

In this paper, graphs are always undirected and simple. A graph is a complete graph if each pair of vertices
are connected by an edge. A clique in a graph G is a subgraph G′ of G such that G′ is a complete graph. By
definition, a clique of h vertices contains

(

h

2

)

= h(h− 1)/2 edges. If two vertices v and w are not adjacent,
then we say that the edge [v, w] is missing, and call the pair {v, w} an anti-edge. The total number of
anti-edges in a graph of n vertices is n(n− 1)/2− |E(G)|. The subgraph of the graph G induced by a vertex
subset X is denoted by G[X ].

Let G = (V,E) be a graph, and let S ⊆ V 2. Denote by G△S the graph obtained from G as follows: for
each pair {v, w} in S, if [v, w] is an edge in G, then remove the edge [v, w] in the graph, while if {v, w} is
an anti-edge, then insert the edge [v, w] into the graph. A set S ⊆ V 2 is a solution to a graph G = (V,E) if
the graph G△S is a union of disjoint cliques.

1f(·) is a computable function.
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For an instance (G, π, k) of cluster editing, where G = (V,E), the weight of a set S ⊆ V 2 is defined as
π(S) =

∑

{v,w}∈S π(v, w). Similarly, for a set E′ of edges in G, the weight of E′ is π(E′) =
∑

[v,w]∈E′ π(v, w).

Therefore, the instance (G, π, k) asks if there is a solution to G whose weight is bounded by k.
For a vertex v, denote by N(v) the set of neighbors of v, and let N [v] = N(v) ∪ {v}. For a vertex set

X , N [X ] =
⋃

v∈X N [v], and N(X) = N [X ]\X . For the vertex set X , define X = V \X . For two vertex
subsets X and Y , denote by E(X,Y ) the set of edges that has one end in X and the other end in Y . For a
vertex subset X , the edge set E(X,X) is called the cut of X . The total cost of the cut of X is denoted by
γ(X) = π(E(X,X)). Obviously, γ(X) = γ(X). For an instance (G, π, k) of the cluster editing problem,
denote by ω(G) the weight of an optimal (i.e., minimum weighted) solution to the graph G.

Behind all of the following lemmas is a very simple observation: in the objective graph G△S for any
solution S to the graph G, each induced subgraph is also a union of disjoint cliques. Therefore, a solution S
to the graph G restricted to an induced subgraph G′ of G (i.e., the pairs of S in which both vertices are in
G′) is also a solution to the subgraph G′. This observation leads to the following Cutting Lemma.

Lemma 2.1 Let P = {V1, V2, . . . , Vp} be a vertex partition of a graph G, and let EP be the set of edges

whose two ends belong to two different parts in P. Then
∑p

i=1 ω(G[Vi]) ≤ ω(G) ≤ π(EP ) +
∑p

i=1 ω(G[Vi]).

Proof. Let S be an optimal solution to the graph G. For 1 ≤ i ≤ p, let Si be the subset of S such that
each pair in Si has both its vertices in Vi. As noted above, the set Si is a solution to the graph G[Vi], which
imples ω(G[Vi]) ≤ π(Si). Thus,

p
∑

i=1

ω(G[Vi]) ≤

p
∑

i=1

π(Si) ≤ π(S) = ω(G).

On the other hand, if we remove all edges in EP , and for each i, apply an optimal solution S′
i to the

induced subgraphG[Vi], we will obviously end up with a union of disjoint cliques. Therefore, these operations
make a solution to the graph G whose weight is π(EP ) +

∑p

i=1 π(S
′
i) = π(EP ) +

∑p

i=1 ω(G[Vi]). This gives
immediately ω(G) ≤ π(EP ) +

∑p

i=1 ω(G[Vi]).

Lemma 2.1 directly implies the following corollaries. First, if there is no edge between two different parts
in the vertex partition P , then Lemma 2.1 gives

Corollary 2.2 Let G be a graph with connected components G1, . . . , Gp, then ω(G) =
∑p

i=1 ω(Gi), and
every optimal solution to the graph G is a union of optimal solutions to the subgraphs G1, . . ., Gp.

When p = 2, i.e., the vertex partition is P = {X,X}, the edge set EP becomes the cut E(X,X), and
π(E(X,X)) = γ(X). Lemma 2.1 gives

Corollary 2.3 Let X ⊆ V be a vertex set, then ω(G[X ]) + ω(G[X]) ≤ ω(G) ≤ ω(G[X ]) + ω(G[X ]) + γ(X).

Corollary 2.4 Let G be a graph, and let S∗ be an optimal solution to G. For any subset X of vertices in

G, if we let S∗(X,X) be the subset of pairs in which one vertex is in X and the other vertex is in X, then

π(S∗(X,X)) ≤ γ(X).

Proof. The optimal solution S∗ can be divided into three disjoint parts: the subset S∗(X) of pairs in
which both vertices are in X , the subset S∗(X) of pairs in which both vertices are in X, and the subset
S∗(X,X) of pairs in which one vertex is in X and the other vertex is in X. By Corollary 2.3,

ω(G) = π(S∗(X)) + π(S∗(X)) + π(S∗(X,X)) ≤ ω(G[X ]) + ω(G[X ]) + γ(X).

Since π(S∗(X)) ≥ ω(G[X ]) and π(S∗(X)) ≥ ω(G[X ]), we get immediately π(S∗(X,X)) ≤ γ(X).

Corollary 2.4 can be informally described as “cut preferred” principle, which is fundamental for this
problem. Similarly we have the following lemmas.

3



Lemma 2.5 Let X be a subset of vertices in a graph G, and let S∗ be any optimal solution to G. Let

S∗(V,X) be the set of pairs in S∗ in which at least one vertex is in X. Then ω(G) ≥ ω(G[X ])+π(S∗(V,X)).

Proof. The optimal solution S∗ is divided into two disjoint parts: the subset S∗(X) of pairs in which
both vertices are in X , and the subset S∗(V,X) of pairs in which at least one vertex is in X. The set S∗(X)
is a solution to the induced subgraph G[X ]. Therefore, π(S∗(X)) ≥ ω(G[X ]). This gives

ω(G) = π(S∗) = π(S∗(X)) + π(S∗(V,X) ≥ ω(G[X ]) + π(S∗(V,X)),

which proves the lemma.

Lemma 2.6 Let X be a subset of vertices in a graph G, and let BX be the set of vertices in X that are

adjacent to vertices in X. Then for any optimal solution S∗ to G, if we let S∗(BX) be the set of pairs in S∗

in which both vertices are in BX , then ω(G) + π(S∗(BX)) ≥ ω(G[X ]) + ω(G[X ∪BX ]).

Proof. Again, the optimal solution S∗ can be divided into three disjoint parts: the subset S∗(X) of pairs
in which both vertices are in X , the subset S∗(X) of pairs in which both vertices are in X , and the subset
S∗(X,X) of pairs in which one vertex is in X and the other vertex is in X. We also denote by S∗(BX , X)
the subset of pairs in S∗ in which one vertex is in BX and the other vertex is in X . Since S∗(X) is a solution
to the induced subgraph G[X ], we have

ω(G) + π(S∗(BX)) = π(S∗(X)) + π(S∗(X)) + π(S∗(X,X)) + π(S∗(BX))

≥ ω(G[X ]) + π(S∗(X)) + π(S∗(X,X)) + π(S∗(BX))

≥ ω(G[X ]) + π(S∗(X)) + π(S∗(BX , X)) + π(S∗(BX)).

The last inequality is because BX ⊆ X , so S∗(BX , X) ⊆ S∗(X,X). Since S′ = S∗(X)∪S∗(BX , X)∪S∗(BX)
is the subset of pairs in S∗ in which both vertices are in the induced subgraph G[X ∪ BX ], S′ is a solution
to the induced subgraph G[X ∪BX ]. This gives

π(S′) = π(S∗(X)) + π(S∗(BX , X)) + π(S∗(BX)) ≥ ω(G[X ∪BX ]),

which implies the lemma immediately.

The above results that reveal the relations between the structures of the cluster editing problem and
graph edge cuts not only form the basis for our kernelization results presented in the current paper, but also
are of their own importance and interests.

3 The kernelization algorithm

Obviously, the number of different vertices included in a solution S of k vertex pairs to a graph G is upper
bounded by 2k. Thus, if we can also bound the number of vertices that are not included in S, we get a
kernel. For such a vertex v, the clique containing v in G△S must be G[N [v]]. Inspired by this, our approach
is to check the closed neighborhood N [v] for each vertex v.

The observation is that if an induced subgraph (e.g. the closed neighborhood of a vertex) is very “dense
inherently”, while is also “loosely connected to outside”, (i.e. there are very few edges in the cut of this
subgraph), it might be cut off and solved separately. By the cutting lemmas, the size of a solution obtained as
such should not be too far away from that of an optimal solution. Actually, we will figure out the conditions
under which they are equal.

The subgraph we are considering is N [v] for some vertex v. For the connection of N [v] to outside, a good
measurement is γ(N [v]). Thus, here we only need to define the density. A simple fact is that the fewer edges
missing, the denser the subgraph is. Therefore, to measure the density of N [v], we define the deficiency δ(v)
of N [v] as the total weight of anti-edges in G[N [v]], which is formally given by δ(v) = π({{x, y} | x, y ∈
N(v), [x, y] 6∈ E}).
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Suppose that N [v] forms a single clique with no other vertices in the resulting graph G△S. Then anti-
edges of total weight δ(v) have to be added to makeN [v] a clique, and edges of total weight γ(N [v]) have to be
deleted to make N [v] disjoint. Based on this we define the stable cost of a vertex v as ρ(v) = 2δ(v)+γ(N [v]),
and we say N [v] is reducible if ρ(v) < |N [v]|.

Lemma 3.1 For any vertex v such that N [v] is reducible, there is an optimal solution S∗ to G such that

the vertex set N [v] is entirely contained in a single clique in the graph G△S∗.

Proof. Let S be an optimal solution to the graph G, and pick any vertex v such that N [v] is reducible,
i.e., ρ(v) < |N [v]|. Suppose that N [v] is not entirely contained in a single clique in G△S, i.e., N [v] = X ∪Y ,
where X 6= ∅ and Y 6= ∅, such that Y is entirely contained in a clique C1 in G△S while X ∩ C1 = ∅ (note
that we do not assume that X is in a single clique in G△S).

Inserting all missing edges between vertices in N [v] will transform the induced subgraph G[N [v]] into a
clique. Therefore, ω(G[N [v]]) ≤ δ(v). Combining this with Corollary 2.3, we get

ω(G) ≤ ω(G[N [v]]) + ω(G[N [v]]) + γ(N [v])

≤ δ(v) + ω(G[N [v]]) + γ(N [v]) (1)

= ω(G[N [v]]) + ρ(v)− δ(v).

Let S(V,N [v]) be the set of pairs in the solution S in which at least one vertex is in N [v], and let
S(X,Y ) be the set of pairs in S in which one vertex is in X and the other vertex is in Y . Also, let P (X,Y )
be the set of all pairs (x, y) such that x ∈ X and y ∈ Y . Obviously, π(S(V,N [v])) ≥ π(S(X,Y )) because
X ⊆ V and Y ⊆ N [v]. Moreover, since the solution S places the sets X and Y in different cliques, S must
delete all edges between X and Y . Therefore S(X,Y ) is exactly the set of edges in G in which one end
is in X and the other end is in Y . Also, by the definition of δ(v) and because both X and Y are subsets
of N [v], the sum of the weights of all anti-edges between X and Y is bounded by δ(v). Thus, we have
π(S(X,Y )) + δ(v) ≥ π(P (X,Y )). Now by Lemma 2.5,

ω(G) ≥ ω(G[N [v]]) + π(S(V,N [v]))

≥ ω(G[N [v]]) + π(S(X,Y )) (2)

≥ ω(G[N [v]]) + π(P (X,Y ))− δ(v).

Combining (1) and (2), and noting that the weight of each vertex pair is at least 1, we get

|X ||Y | ≤ π(P (X,Y )) ≤ ρ(v) < |N [v]| = |X |+ |Y |. (3)

This can hold true only when |X | = 1 or |Y | = 1. In both cases, we have |X | · |Y | = |X |+ |Y |−1. Combining
this with (3), and noting that all the quantities are integers, we must have

π(P (X,Y )) = ρ(v),

which, when combined with (1) and (2), gives

ω(G) = ω(G[N [v]]) + ρ(v)− δ(v) = ω(G[N [v]]) + γ(N [v]) + δ(v). (4)

Note that γ(N [v])+δ(v) is the minimum cost to insert edges into and delete edges from the graph G to make
N [v] a disjoint clique. Therefore, Equality (4) shows that if we first apply edge insert/delete operations of
minimum weight to make N [v] a disjoint clique, then apply an optimal solution to the induced subgraph
G[N [v]], then we have an optimal solution S∗ to the graph G. This completes the proof of the lemma because
the optimal solution S∗ has the vertex set N [v] entirely contained in a single clique in the graph G△S∗.

Based on Lemma 3.1, we have the following reduction rule:

Step 1 For a vertex v such that N [v] is reducible, insert edges between anti-edges in G[N [v]] to make G[N [v]]
a clique, and decrease k accordingly.
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After Step 1, the induced subgraph G[N [v]] becomes a clique with δ(v) = 0 and ρ(v) = γ(N [v]). Now
we use the following rule to remove the vertices in N(N [v]) that are loosely connected to N [v] (recall that
N(N [v]) is the set of vertices that are not in N [v] but adjacent to some vertices in N(v), and that for two
vertex subsets X and Y , E(X,Y ) denotes the set of edges that has one end in X and the other end in Y ).

Step 2 Let v be a vertex such that N [v] is reducible on which Step 1 has been applied. For each vertex x in

N(N [v]), if π(E(x,N(v))) ≤ |N [v]|/2, then delete all edges in E(x,N(v)) and decrease k accordingly.

We say that a reduction step R is safe if after edge operations of cost cR by the step, we obtain a new
graph G′ such that the original graph G has a solution of weight bounded by k if and only if the new graph
G′ has a solution of weight bounded by k − cR.

Lemma 3.2 Step 2 is safe.

Proof. By Lemma 3.1, there is an optimal solution S to the graph G such that N [v] is entirely contained
in a single clique C in the graph G△S. We first prove, by contradiction, that the clique C containing N [v]
in the graph G△S has at most one vertex in N [v]. Suppose that there are r vertices u1, . . . , ur in N [v] that
are in C, where r ≥ 2. For 1 ≤ i ≤ r, denote by ci the total weight of all edges between ui and N [v], and
by c′i the total weight of all pairs (both edges and anti-edges) between ui and N [v]. Note that c′i ≥ |N [v]|
and

∑r

i=1 ci ≤ γ(N [v]). Then in the optimal solution S to G, the total weight of the edges inserted between

N [v] and N [v] is at least

r
∑

i=1

(c′i − ci) ≥
r

∑

i=1

(|N [v]| − ci) = r|N [v]| −
r

∑

i=1

ci

≥ r|N [v]| − γ(N [v]) ≥ 2|N [v]| − γ(N [v])

> 2|N [v]| − |N [v]| = |N [v]| > γ(N [v]),

where we have used the fact |N [v]| > γ(N [v]) (this is because by the conditions of the step, ρ(v) = 2δ(v) +
γ(N [v]) < |N [v]|). But this contradicts Corollary 2.4.

Therefore, there is at most one vertex x in N(N [v]) that is in the clique C containing N [v] in the graph
G△S. Such a vertex x must satisfy the condition π(E(x,N(v))) > |N [v]|/2: otherwise deleting all edges in
E(x,N(v)) would result in a solution that is at least as good as the one that inserts all missing edges between
x and N [v] and makes N [v] ∪ {x} a clique. Thus, for a vertex x in N(N [v]) with π(E(x,N(v))) ≤ |N [v]|/2,
we can always assume that x is not in the clique containing N [v] in the graph G△S. In consequence, deleting
all edges in E(x,N(v)) for such a vertex x is safe.

The structure of N [v] changes after the above steps. The result can be in two possible cases: (1) no
vertex in N(N [v]) survives, and N [v] becomes an isolated clique – then by Corollary 2.2, we can simply
delete the clique; and (2) there is one vertex x remaining in N(N [v]) (note that there cannot be more than
one vertices surviving – otherwise it would contradict the assumption γ(N [v]) ≤ ρ(v) < |N [v]|). In case (2),
the vertex set N [v] can be divided into two parts X = N [v] ∩ N(x) and Y = N [v]\X . From the proofs
of the above lemmas, we are left with only two options: either disconnecting X from x with edge cost cX ,
or connecting Y and x with edge cost cY . Obviously cX > cY . Since both options can be regarded as
connection or disconnection between the vertex set N [v] and the vertex x, we can further reduce the graph
using the following reduction step:

Step 3 Let v be a vertex such that N [v] is reducible on which Steps 1 and 2 have been applied. If there still

exists a vertex x in N(N [v]), then merge N [v] into a single vertex v′, connect v′ to x with weight cX − cY ,
set weight of each anti-edge between v′ and other vertex to +∞, and decrease k by cY .

The correctness of this step immediately follows from above argument.
Note that the conditions for all the above steps are only checked once. If they are satisfied, we apply all

three steps one by one, or else we do nothing at all. So they are actually the parts of a single reduction rule
presented as follows:
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The Rule. Let v be a vertex satisfying 2δ(v) + γ(N [v]) < |N [v]|, then:
1. add edges to make G[N [v]] a clique and decrease k accordingly;

2. for each vertex x inN(N [v]) with π(E(x,N [v])) ≤ |N [v]|/2, remove all edges in E(x,N [v]) and decrease
k accordingly;

3. if a vertex x in N(N [v]) survives, merge N [v] into a single vertex (as described above) and decrease k
accordingly.

Now the following lemma implies Theorem 1.1 directly.

Lemma 3.3 If an instance of the weighted cluster editing problem reduced by our reduction rule has

more than 2k vertices, it has no solution of weight ≤ k.

Proof. We divide the cost of inserting/deleting a pair {u, v} into two halves and assign them to u and v
equally. Thereafter we count the costs on all vertices.

For any two vertices with distance 2, at most one of them is not shown in a solution S: otherwise they
would have to belong to the same clique in G△S because of their common neighbors but the edge between
them is missing. Thus, if we let {v1, v2, . . . , vr} be the vertices not shown in S, then each two of their closed
neighbors {N [v1], N [v2], . . . , N [vr]} are either the same (when they are in the same simple series module) or
mutually disjoint. The cost in each N [vi] is δ(vi)+γ(N [vi])/2 = ρ(vi)/2, which is at least |N [vi]|/2, because
by our reduction rule, in the reduced instance we have ρ(v) ≥ |N [v]| for each vertex v. Each of the vertices
not in any of N [vi] is contained in at least one pair of S and therefore bears cost at least 1/2. Summing
them up, we get a lower bound for the total cost at least |V |/2. Thus, if the solution S has a weight bounded
by k, then k ≥ |V |/2, i.e., the graph has at most 2k vertices.

4 On unweighted and real-weighted versions

We now show how to adapt the algorithm in the previous section to support unweighted and real-weighted
versions. Only slight modifications are required. Therefore, the proof of the correctness of them is omitted
for the lack of space.

Unweighted version. The kernelization algorithm presented does not work for unweighted version. The
trouble arises in Step 3, where merging N [v] is not a valid operation in an unweighted graph. Fortunately,
this can be easily circumvented, by replacing Step 3 by the following new rule:

Step 3 (U) Let v be a vertex such that N [v] is reducible on which Steps 1 and 2 have been applied. If there

still exists a vertex x in N(N [v]), then replace N [v] by a complete subgraph K|X|−|Y |, and connect x to all

vertices of this subgraph.

The correctness of this new rule is similar to the arguments in last section, and it is easy to check the
first two rules apply for the unweighted version. Moreover, the proof of Lemma 3.3 can be easily adapted
with the new rule.

Real-weighted version. There are even more troubles when weights are allowed to be real numbers,
instead of only positive integers. The first problem is that, without the integrality, (3) cannot imply (4). This
is fixable by changing the definition of reducible closed neighborhood from ρ(v) < |N(v)| to ρ(v) ≤ |N(v)|−1
(they are equivalent for integers), then (3) becomes

|X ||Y | ≤ π(P (X,Y )) ≤ ρ(v) ≤ |N [v]| − 1 = |X |+ |Y | − 1. (5)

Formulated on reducible closed neighborhood, Steps 1 and 2 remain the same.
The second problem is Step 3, in which we need to maintain the validity of weights. Recall that we

demand all weights be at least 1 for weight functions. This, although trivially holds for integral weight
functions, will be problematic for real weight functions. More specifically, in Step 3, the edge [x, v′] could
be assigned a weight cX − cY < 1 when cX and cY differ by less than 1. This can be fixed with an extension
of Step 3:
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Step 3 (R) Let v be a vertex such that N [v] is reducible and that on which Steps 1 and 2 have been applied.

If there still exists a vertex x in N(N [v]), then

• if cX − cY ≥ 1, merge N [v] into a single vertex v′, connect v′ to x with weight cX − cY , set weight of
each anti-edge between v′ and other vertex to +∞, and decrease k by cY ;

• if cX − cY < 1, merge N [v] into two vertices v′ and v′′, connect v′ to x with weight 2, and v′ to v′′ with
weight 2− (cX − cY ), set weight of each anti-edge between v′, v′′ to other vertex to +∞, and decrease

k by cX − 2.

The new case is just to maintain the validity of the weight, and does not make a real difference from the
original case. However, there does exist one subtlety we need to point out, that is, the second case might
increase k slightly, and this happens when cX − 2 ≤ 0, then we are actually increase k by 2 − cX . We do
not worry about this trouble due to both theoretical and practical reasons. Theoretically, the definition
of kernelization does not forbid increasing k, and we refer readers who feel uncomfortable with this to the
monographs [13, 16, 24]. Practically, 1) it will not really enlarge or complicate the graph, and therefore any
reasonable algorithms will work as the same; 2) this case will not happen too much, otherwise the graph
should be very similar to a star, and easy to solve; 3) even using the original value of k, our kernel size is
bounded by 3k.

The proof of Lemma 3.3 goes almost the same, with only the constant slightly enlarged. Due to the
relaxation of the condition of reducible closed neighborhood from ρ(v) < |N(v)| to ρ(v) ≤ |N(v)| − 1, the
number of vertices in the kernel for real-weighted version is bounded by 2.5k.

5 Discussion

One very interesting observation is that for the unweighted version, by the definition of simple series modules,
all of the following are exactly the same:

N [u] = N [M ], δ(u) = δ(M), and γ(N [u]) = γ(N [M ]),

where M is the simple series module containing vertex u, and δ(M) is a natural generalization of definition
δ(v). Thus it does not matter we use the module or any vertex in it, that is, every vertex is a full representative
for the simple series module it lies in. Although there has been a long list of linear algorithms for finding
modular decomposition for an undirected graph (see a comprehensive survey by de Montgolfier [23]), it
is very time-comsuming because the big constant hidden behind the big-O [26], and considering that the
modular decopmosition needs to be re-constructed after each iteration, this will be helpful. It is somehow
surprising that the previous kernelization algorithms can be significantly simplified by avoiding modular
decomposition. Being more suprising, this enables our approach to apply for the weighted version, because
one major weakness of modular decomposition is its inability in handling weights.

One similar problem on inconsistant information is the feedback vertex set on tournament (fast)
problem, which asks the reverse of minimum number of arcs to make a tournament transtive. Given the
striking resemblances between cluster editing and fast, and a series of “one-stone-two-birds” approxi-
mation algorithms [1, 27] which only take advantage of the commonalities between them, we are strongly
attempted to compare the results of these two problems from the parameterized aspect.

For the kernelization, our result already matches the best kernel, (2 + ǫ)k for weighted fast of Bessy et
al. [5], which is obtained based on a complicated PTAS [21].

For the algorithms, Alon et al. [2] managed to generalize the famous color coding approach to give a
subexponential FPT algorithm for fast. This is the first subexponential FPT algorithm out of bidimen-
sionality theory, which was a systematic way to obtain subexponential algorithms, and has been intensively
studied. This is an exciting work, and opens a new direction for further work. Indeed, immediately after the
appearance of [2], for unweighted version, Feige reported an improved algorithm [14] that is far simpler and
uses pure combinatorial approach. Recently, Karpinski and Schudy reached the same result for weighted ver-
sion [20]. Based on their striking resemblances, we conjecture that there is also a subexponential algorithm
for the cluster editing problem.

8



References

[1] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM
55(5), Article 23, 1-27 (2008)

[2] Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: ICALP, LNCS vol. 5555, pp. 49-58. Springer (2009)

[3] Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1), 89-113 (2004)

[4] Berkhin, P.: A survey of clustering data mining techniques. In: Grouping Multidimensional Data, Springer
Berlin Heidelberg, pp. 25-71 (2006)

[5] Bessy, S., Fomin, F. V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc
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[22] Möhring, R. H., Radermacher, F. J.: Substitution decomposition for discrete structures and connections with
combinatorial optimization. Ann. Discrete Math., 19(95), 257-355, North-Holland mathematics studies, (1984)
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