
ar
X

iv
:1

00
3.

29
76

v1
 [

cs
.G

T
]

15
 M

ar
 2

01
0

Non-oblivious Strategy Improvement
John Fearnley

Department of Computer Science, University of Warwick, UK

Abstract

We study strategy improvement algorithms for mean-payoff and parity games. We describe a
structural property of these games, and we show that these structures can affect the behaviour of
strategy improvement. We show how awareness of these structures can be used to accelerate strategy
improvement algorithms. We call our algorithms non-oblivious because they remember properties
of the game that they have discovered in previous iterations. We show that non-oblivious strategy
improvement algorithms perform well on examples that are known to be hard for oblivious strategy
improvement. Hence, we argue that previous strategy improvement algorithms fail because they
ignore the structural properties of the game that they are solving.

1 Introduction

In this paper we study strategy improvement for two player infinite games played on finite graphs. In this
setting the vertices of a graph are divided between two players. A token is placed on one of the vertices,
and in each step the owner of the vertex upon which the token isplaced must move the token along one
of the outgoing edges of that vertex. In this fashion, the twoplayers form an infinite path in the graph.
The payoff of the game is then some property of this path, which depends on the type of game that is
being played. Strategy improvement is a technique that originated from Markov decision processes [7],
and has since been applied many types of games in this setting, including simple stochastic games [3],
discounted-payoff games [12], mean-payoff games [2], and parity games [15, 1]. In this paper we will
focus on the strategy improvement algorithm of Björklund and Vorobyov [2], which is designed to solve
mean-payoff games, but can also be applied to parity games.

Algorithms that solve parity and mean-payoff games have received much interest. One reason for
this is that the model checking problem for the modalµ-calculus is polynomial time equivalent to the
problem of solving a parity game [4, 14], and there is a polynomial time reduction from parity games to
mean-payoff games [12]. Therefore, faster algorithms for these games lead to faster model checkers for
the µ-calculus. Secondly, both of these games lie in NP∩ co-NP, which implies that neither of the two
problems are likely to be complete for either class. Despitethis, no polynomial time algorithms have
been found.

The approach of strategy improvement can be described as follows. The algorithm begins by choos-
ing one of the players to be the strategy improver, and then picks an arbitrary strategy for that player. A
strategy for a player consists of a function that picks one edge for each of that player’s vertices. Strategy
improvement then computes a set of profitable edges for that strategy. If the strategy is switched so that it
chooses some subset of the profitable edges, rather than the edges that are currently chosen, then strategy
improvement guarantees that the resulting strategy is better in some well-defined measure. So, the algo-
rithm picks some subset of the profitable edges to create a new, improved, strategy to be considered in
the next iteration. This process is repeated until a strategy is found that has no profitable edges, and this
strategy is guaranteed optimal for the strategy improver. Since any subset of the profitable edges could be
used to create an improved strategy in each iteration, some method is needed to determine which subset
to choose in each iteration. We call this method a switching policy, and the choice of switching policy
can have a dramatic effect on the running time of the algorithm.

A significant amount of research has been dedicated to findinggood switching policies. In terms
of complexity bounds, the current best switching policies are randomized, and run in an expected

1

http://arxiv.org/abs/1003.2976v1

Non-oblivious Strategy Improvement John Fearnley

O(2
√

nlogn) number of iterations [2]. Another interesting switching policy is the optimal switching policy
given by Schewe [13]. An optimal switching policy always picks the subset of profitable edges that yields
the best possible successor strategy, according to the measure that strategy improvement uses to compare
strategies. It is not difficult to show that such a subset of profitable edges must exist, but computing an
optimal subset of profitable edges seemed to be difficult, since there can be exponentially many subsets
of profitable edges to check. Nevertheless, Schewe’s resultis a polynomial time algorithm that computes
an optimal subset of edges. Therefore, optimal switching policies can now be realistically implemented.
It is important to note that the word “optimal” applies only to the subset of profitable edges that is chosen
to be switched in each iteration. It is not the case that a strategy improvement algorithm equipped with
an optimal switching policy will have an optimal running time.

Perhaps the most widely studied switching policy is the all-switches policy, which simply selects the
entire set of profitable edges in every iteration. Although the best upper bound for this policy isO(2n/n)
iterations [11], it has been found to work extremely well in practice. Indeed, for a period of ten years
there were no known examples upon which the all switches policy took significantly more than a linear
number of iterations. It was for this reason that the all-switches policy was widely held to be a contender
for a proof of polynomial time termination.

However, Friedmann has recently found a family of examples that force a strategy improvement
algorithm equipped with the all-switches policy to take an exponential number of steps [5]. Using the
standard reductions [12, 17], these examples can be generalised to provide exponential lower bounds
for all-switches on mean-payoff and discounted-payoff games. Even more surprisingly, Friedmann’s
example can be generalised to provide an exponential lower bound for strategy improvement algorithms
equipped with an optimal switching policy [6]. This recent revelation appears to imply that there is no
longer any hope for strategy improvement, since an exponential number of iterations can be forced even
if the best possible improvement is made in every step.

Our contributions. Despite ten years of research into strategy improvement algorithms, and the recent
advances in the complexity of some widely studied switchingpolicies, the underlying combinatorial
structure of mean-payoff and parity games remains somewhatmysterious. There is no previous work
which links the structural properties of a parity or mean-payoff game with the behaviour of strategy
improvement on those games. In this paper, we introduce a structural property of these games that we
call a snare. We show how the existence of a snare in a parity ormean-payoff game places a restriction
on the form that a winning strategy can take for these games. Hence, we argue that every algorithm that
computes a winning strategy for these games must, at least implicitly, deal with these structures.

In the case of strategy improvement algorithms, we argue that snares play a fundamental role in the
behaviour of these algorithms. We show that there is a certain type of profitable edge, which we call
a back edge, that is the mechanism that strategy improvementuses to deal with snares. We show how
each profitable back edge encountered by strategy improvement corresponds to some snare that exists in
the game. Hence, we argue that the concept of a snare is a new tool that can be used in the analysis of
strategy improvement algorithms.

We then go on to show that, in addition to being an analytical tool, awareness of snares can be used
to accelerate the process of strategy improvement. We propose that strategy improvement algorithms
should remember the snares that they have seen in previous iterations, and we give a procedure that
uses a previously recorded snare to improve a strategy. Strategy improvement algorithms can choose to
apply this procedure instead of switching a subset of profitable edges. We give one reasonable example
of a strategy improvement algorithm that uses these techniques. We call our algorithms non-oblivious
strategy improvement algorithms because they remember information about their previous iterations,
whereas previous techniques make their decisions based only on the information available in the current

2

Non-oblivious Strategy Improvement John Fearnley

iteration.
In order to demonstrate how non-oblivious techniques can bemore powerful than traditional strategy

improvement, we study Friedmann’s family of examples that cause the all-switches and the optimal
switching policies to take exponential time. We show that incertain situations non-oblivious strategy
improvement makes better progress than even the optimal oblivious switching policy. We go on to show
that this behaviour allows our non-oblivious strategy improvement algorithms to terminate in polynomial
time on Friedmann’s examples. This fact implies that it is ignorance of snares that is a key failing of
oblivious strategy improvement.

2 Preliminaries

A mean-payoff game is defined by a tuple(V,VMax,VMin ,E,w) whereV is a set of vertices andE is a set
of edges, which together form a finite graph. Every vertex must have at least one outgoing edge. The
setsVMax andVMin partitionV into vertices belonging to player Max and vertices belonging to player
Min, respectively. The functionw : V → Z assigns an integer weight to every vertex.

The game begins by placing a token on a starting vertexv0. In each step, the player that owns the
vertex upon which the token is placed must choose one outgoing edge of that vertex and move the token
along it. In this fashion, the two players form an infinite path π = 〈v0,v1,v2, . . . 〉, where(vi ,vi+1) is in E
for everyi in N. Thepayoff of an infinite path is defined to beM (π) = lim infn→∞(1/n)∑n

i=0w(vi). The
objective of Max is to maximize the value ofM (π), and the objective of Min is to minimize it.

A positional strategyfor Max is a function that chooses one outgoing edge for everyvertex belonging
to Max. A strategy is denoted byσ : VMax →V, with the condition that(v,σ(v)) is in E, for every Max
vertexv. Positional strategies for player Min are defined analogously. The sets of positional strategies
for Max and Min are denoted byΠMax andΠMin , respectively. Given two positional strategies,σ andτ
for Max and Min respectively, and a starting vertexv0, there is a unique path〈v0,v1,v2 . . . 〉, wherevi+1 =
σ(vi) if vi is owned by Max andvi+1 = τ(vi) if vi is owned by Min. This path is known as theplay
induced by the two strategiesσ andτ , and will be denoted by Play(v0,σ ,τ).

For allv in V we define:

Value∗(v) = max
σ∈ΠMax

min
τ∈ΠMin

M (Play(v,σ ,τ))

Value∗(v) = min
τ∈ΠMin

max
σ∈ΠMax

M (Play(v,σ ,τ))

These are known as the lower and upper values, respectively.For mean-payoff games we have that the
two quantities are equal, a property called determinacy.

Theorem 1([10]). For every starting vertex v in every mean-payoff game we haveValue∗(v)=Value∗(v).

For this reason, we define Value(v) to be the value of the game starting at the vertexv, which is
equal to both Value∗(v) and Value∗(v). The computational task associated with mean-payoff gamesis to
find Value(v) for every vertexv.

Computing the 0-mean partition is a decision version of thisproblem. This requires us to decide
whether Value(v) > 0, for every vertexv. Björklund and Vorobyov have shown that only a polynomial
number of calls to an algorithm for finding the 0-mean partition are needed to find the value for every
vertex in a mean-payoff game [2].

A Max strategyσ is a winning strategyfor a set of verticesW if M (v,σ ,τ) > 0 for every Min
strategyτ and every vertexv in W. Similarly, a Min strategyτ is a winning strategy forW if M (v,σ ,τ)≤
0 for every Max strategyσ and every vertexv in W. To solve the 0-mean partition problem we are
required to partition the vertices of the graph into the sets(WMax,WMin), where Max has a winning
strategy forWMax and Min has a winning strategy forWMin .

3

Non-oblivious Strategy Improvement John Fearnley

10

v u

Figure 1: A simple snare.

3 Snares

In this section we introduce a structure called that we call a“snare”. The dictionary definition1 of the
word snare is “something that serves to entangle the unwary”. This is a particularly apt metaphor for
these structures since, as we will show, a winning strategy for a player must be careful to avoid being
trapped by the snares that are present in that player’s winning set.

The definitions in this section could be formalized for either player. We choose to focus on player
Max because we will later choose Max to be the strategy improver. For a set of verticesW we define
G ↾W to be the sub-game induced byW, which isG with every vertex not inW removed. A snare for
player Max is defined to be a subgame for which player Max can guarantee a win from every vertex.

Definition 2 (Max Snare). For a game G, a snare is defined to be a tuple(W,χ) where W⊆ V and
χ : W∩VMax →W is a partial strategy for player Max that is winning for every vertex in the subgame
G ↾W.

This should be compared with the concept of a dominion that was introduced by Jurdziński, Paterson,
and Zwick [8]. A dominion is also a subgame in which one of the players can guarantee a win, but with
the additional constraint that the opponent is unable to leave the dominion. By contrast, the opponent
may be capable of leaving a snare. We define an escape edge for Min to be an edge that Min can use to
leave a Max snare.

Definition 3 (Escapes). Let W be a set of vertices. We define the escapes from W asEsc(W) = {(v,u) ∈
E : v∈W∩VMin and u/∈W}

It is in Min’s interests to use at least one escape edge from a snare, since if Min stays in a Max snare
forever, then Max can use the strategyχ to ensure a positive payoff. In fact, we can prove that ifτ is a
winning strategy for Min for some subset of vertices thenτ must use at least one escape from every Max
snare that exists in that subset of vertices.

Theorem 4. Suppose thatτ is a winning strategy for Min on a set of vertices S. If(W,χ) is a Max snare
where W⊂ S, then there is some edge(v,u) in Esc(W) such thatτ(v) = u.

Figure 1 shows an example of a subgame upon which a snare can bedefined. In all of our diagrams,
boxes are used to represent Max vertices and triangles are used to represent Min vertices. The weight
assigned to each vertex is shown on that vertex. If we takeW = {v,u} andχ(v) = u then(W,χ) will be a
Max snare in every game that contains this structure as a subgame. This is because the cycle is positive,
and thereforeχ is a winning for Max on the subgame induced byW. There is one escape from this snare,
which is the edge Min can use to break the cycle atu.

Since the example is so simple, Theorem 4 gives a particularly strong property for this snare: every
winning strategy for Min must use the escape edge atu. If Min uses the edge(u,v) in some strategy, then
Max can respond by using the edge(v,u) to guarantee a positive cycle, and therefore the strategy would
not be winning for Min. This is a strong property because we can essentially ignore the edge(u,v) in
every game into which the example is embedded. This propertydoes not hold for snares that have more
than one escape.

1American Heritage Dictionary of the English Language, Fourth Edition

4

Non-oblivious Strategy Improvement John Fearnley

4 Strategy Improvement

In this section we will summarise Björklund and Vorobyov’sstrategy improvement algorithm for finding
the 0-mean partition of a mean-payoff game [2]. Their algorithm requires that the game is modified by
adding retreat edges from every Max vertex to a special sink vertex.

Definition 5 (Modified Game). A game(V,VMax,VMin,E,w) will be modified to create(V ∪{s},VMax∪
{s},VMin,E′,w′), where E′ = E ∪ {(v,s) : v ∈ VMax}, and w′(v) = w(v) for all vertices v in V , and
w′(s) = 0.

Strategy improvement always works with the modified game, and for the rest of the paper we will
assume that the game has been modified.

Given two strategies, one for each player, the play induced by the two strategies is either a finite path
that ends at the sink or a finite initial path followed by an infinitely repeated cycle. This is used to define
the valuation of a vertex.

Definition 6 (Valuation). Let σ be a positional strategy for Max andτ be a positional strategy for
Min. If Play(v0,σ ,τ) = 〈v0,v1, . . .vk,〈c0,c1, . . .cl 〉ω〉, for some vertex v0, then we defineValσ ,τ(v0) =
−∞ if ∑l

i=0 w(ci) ≤ 0 and ∞ otherwise. Alternatively, ifPlay(v,σ ,τ) = 〈v0,v1, . . .vk,s〉 then we define
Valσ ,τ (v0) = ∑k

i=0w(vi).

Strategy improvement algorithms choose one player to be thestrategy improver, which we choose to
be Max. For a Max strategyσ , we define br(σ) to be thebest responseto σ , which is a Min strategy
with the property Valσ ,br(σ)(v) ≤ Valσ ,τ(v) for every vertexv and every Min strategyτ . Such a strategy
always exists, and Björklund and Vorobyov give a method to compute it in polynomial time [2]. We will
frequently want to refer to the valuation of a vertexv when the Max strategyσ is played against br(σ),
so we define Valσ (v) to be shorthand for Valσ ,br(σ)(v). Occasionally, we will need to refer to valuations
from multiple games. We use Valσ

G(v) to give the valuation of the vertexv whenσ is played against
br(σ) in the gameG. We extend all of our notations in a similar manner, by placing the game in the
subscript.

For a Max strategyσ and an edge(v,u) that is not chosen byσ , we say(v,u) is profitable in σ if
Valσ (σ(v)) < Valσ (u). Switchingan edge(v,u) in σ is denoted byσ [v 7→ u]. This operation creates a
new strategy where, for a vertexw∈VMax we haveσ [v 7→ u](w) = u if w= v, andσ(w) otherwise. LetF
be a set of edges that contains at most one outgoing edge from each vertex. We defineσ [F] to beσ with
every edge inF switched. The concept of profitability is important becauseswitching profitable edges
creates an improved strategy.

Theorem 7 ([2]). Let σ be a strategy and P be the set of edges that are profitable inσ . Let F ⊆ P be
a subset of the profitable edges that contains at most one outgoing edge from each vertex. For every
vertex v we haveValσ (v)≤ Valσ [W](v), and there is a vertex for which the inequality is strict.

The second property that can be shown is that a strategy with no profitable edges is optimal. An
optimal strategy is a Max strategyσ such that Valσ (v) ≥ Valχ(v) for every Max strategyχ and every
vertexv. The 0-mean partition can be derived from an optimal strategy σ : the setWMax contains every
vertexv with Valσ (v) = ∞, andWMin contains every vertexv with Valσ (v)< ∞.

Theorem 8([2]). A strategy with no profitable edges is optimal.

Strategy improvement begins by choosing a strategyσ0 with the property that Valσ0(v) > −∞ for
every vertexv. One way to achieve this is to setσ0(v) = s for every vertexv in VMax. This guarantees the
property unless there is some negative cycle that Min can enforce without passing through a Max vertex.

5

Non-oblivious Strategy Improvement John Fearnley

Clearly, for a vertexv on one of these cycles, Max has no strategyσ with Valσ (v)>−∞. These vertices
can therefore be removed in a preprocessing step and placed inWMin .

For every strategyσi a new strategyσi+1 = σi[F] will be computed, whereF is a subset of the
profitable edges inσi, which contains at most one outgoing edge from each vertex. Theorem 7 implies
that Valσi+1(v) ≥ Valσi (v) for every vertexv, and that there is a vertex for which the inequality is strict.
This implies that a strategy cannot be visited twice by strategy improvement. The fact that there is a
finite number of positional strategies for Max implies that strategy improvement must eventually reach
a strategyσk in which no edges are profitable. Theorem 8 implies thatσk is the optimal strategy, and
strategy improvement terminates.

Strategy improvement requires a rule that determines whichprofitable edges are switched in each
iteration. We will call this aswitching policy. Oblivious switching policies are defined asα : 2E → 2E,
where for every setP⊆ E, we have thatα(P) contains at most one outgoing edge for each vertex.

Some of the most widely studied switching policies are all-switches policies. These policies always
switch every vertex that has a profitable edge, and when a vertex has more than one profitable edge an
additional rule must be given to determine which edge to choose. Traditionally this choice is made by
choosing the successor with the highest valuation. We must also be careful to break ties when there are
two or more successors with the highest valuation. Therefore, for the purposes of defining this switching
policy we will assume that each vertexv is given a unique index in the range{1,2, . . . , |V |}, which we
will denote as Index(v).

All (F) = {(v,u) : There is no edge(v,w) ∈ F with Valσ (u)< Valσ (w)

or with Valσ (u) = Valσ (w) and Index(u) < Index(w)}.

In the introduction we described optimal switching policies, which we can now formally define. A
switching policy is optimal if it selects a subset of profitable edgesF that satisfies Valσ [H](v)≤Valσ [F](v)
for every subset of profitable edgesH and every vertexv. Schewe has given a method to compute such a
set in polynomial time [13]. We will denote an optimal switching policy as Optimal.

5 Strategy Trees

The purpose of this section is to show how a strategy and its best response can be viewed as a tree, and
to classify profitable edges by their position in this tree. We will classify edges as either cross edges or
back edges. We will later show how profitable back edges are closely related to snares.

It is technically convenient for us to make the assumption that every vertex has a finite valuation
under every strategy. The choice of starting strategy ensures that for every strategyσ considered by
strategy improvement, we have Valσ (v) > −∞ for every vertexv. Obviously, there may be strategies
under which some vertices have a valuation of∞. The first part of this section is dedicated to rephrasing
the problem so that our assumption can be made.

We define thepositive cycleproblem to be the problem of finding a strategyσ with Valσ (v) = ∞ for
some vertexv, or to prove that there is no strategy with this property. Thelatter can be done by finding
an optimal strategyσ with Valσ (v) < ∞ for every vertexv. We can prove that a strategy improvement
algorithm for the positive cycle problem can be adapted to find the 0-mean partition.

Proposition 9. Letα be a strategy improvement algorithm that solves the positive cycle problem in O(κ)
time. There is a strategy improvement algorithm which finds the 0-mean partition in O(|V| ·κ) time.

We consider switching policies that solve the positive cycle problem, and so we can assume that every
vertex has a finite valuation under every strategy that our algorithms consider. Our switching policies

6

Non-oblivious Strategy Improvement John Fearnley

0

-1

1

0

2

v

u

a

b

c

d

s 0

10

Figure 2: A strategy tree.

will terminate when a vertex with infinite valuation is found. With this assumption we can define the
strategy tree.

Definition 10 (Strategy Tree). Given a Max strategyσ and a Min strategyτ we define the tree Tσ ,τ =
(V,E′) where E′ = {(v,u) : σ(v) = u or τ(v) = u}.

In other words,Tσ ,τ is a tree rooted at the sink whose edges are those chosen byσ andτ . We define
Tσ to be shorthand forTσ ,br(σ), and Subtreeσ (v) : V → 2V to be the function that gives the vertices in
the subtree rooted at the vertexv in Tσ .

We can now define our classification for profitable edges. Let(v,u) be a profitable edge in the
strategyσ . We call this a profitableback edgeif u is in Subtreeσ (v), otherwise we call it a profitable
cross edge.

Figure 2 gives an example of a strategy tree. In all of our diagrams, dashed lines give a strategyσ for
player Max, and dotted lines show Min’s best response to the strategy of Max. The strategy tree contains
every vertex, and every edge that is either dashed or dotted.The subtree ofv is the set{v,b,c,d,u}. The
edge(v,u) is profitable because Valσ (v) = 0 and Valσ (u) = 1. Sinceu is contained in the subtree ofv,
the edge(v,u) is a profitable back edge.

6 Profitable Back Edges

In this section we will expose the intimate connection between profitable back edges and snares. We will
show how every profitable back edge corresponds to some snarethat exists in the game. We will also
define the concept of snare consistency, and we will show how this concept is linked with the conditions
implied by Theorem 4.

Our first task is to show how each profitable back edge corresponds to some Max snare in the game.
Recall that a Max snare consists of a set of vertices, and a strategy for Max that is winning for the
subgame induced by those vertices. We will begin by defining the set of vertices for the snare that
corresponds to a profitable back edge. For a profitable back edge (v,u) in a strategyσ we define the
critical set, which is the vertices in Subtreeσ (v) that Min can reach when Max playsσ .

7

Non-oblivious Strategy Improvement John Fearnley

Definition 11 (Critical Set). If (v,u) is a profitable back edge in the strategyσ , then we define the critical
set asCriticalσ (v,u) = {w∈Subtreeσ (v) : There is a path〈u,u1, . . .uk =w〉 where for all i with1≤ i ≤ k
we have ui ∈ Subtreeσ (v) and if ui ∈VMax then ui+1 = σ(ui)}.

In the example given in Figure 2, the critical set of the edge(v,u) is {v,b,d,u}. The vertexb is in the
critical set because it is in the subtree ofv, and Min can reach it fromu when Max playsσ . In contrast,
the vertexc is not in the critical set becauseσ(d) = v, and therefore Min cannot reachc from u when
Max playsσ . The vertexa is not in the critical set because it is not in the subtree ofv.

Note that in the example,σ [v 7→ u] is a winning strategy for the subgame induced by critical set. The
definition of the critical set is intended to capture the largest connected subset of vertices contained in
the subtree ofv for which σ [v 7→ u] is guaranteed to be a winning strategy.

Proposition 12. Let (v,u) be a profitable back edge in the strategyσ and let C beCriticalσ (v,u). The
strategyσ [v 7→ u] is winning for every vertex in G↾C.

We can now formally define the snare that is associated with each profitable back edge that is
encountered by strategy improvement. For a profitable back edge (v,u) in a strategyσ we define
Snareσ (v,u) = (Criticalσ (v,u),χ) whereχ(v) = σ [v 7→ u](v) if v∈Criticalσ (v,u), and undefined at other
vertices. Proposition 12 confirms that this meets the definition of a snare.

We will now argue that the conditions given by Theorem 4 must be observed in order for strategy
improvement to terminate. We begin by defining a concept thatwe call snare consistency. We say that a
Max strategy is consistent with a snare if Min’s best response chooses an escape from that snare.

Definition 13 (Snare Consistency). A strategyσ is said to be consistent with the snare(W,χ) if br(σ)
uses some edge inEsc(W).

In the example given in Figure 2 we can see thatσ is not consistent with Snareσ (v,u). This is
because br(σ) does not choose the edge(b,a). However, once the edge(v,u) is switched we can prove
that br(σ [v 7→ u]) must use the edge(b,a). This is because Min has no other way of connecting every
vertex in Subtreeσ (v) to the sink, and if some vertex is not connected to the sink then its valuation will
rise to∞.

Proposition 14. Let (v,u) be a profitable back edge in the strategyσ . There is some edge(x,y) in
Esc(Criticalσ (v,u)) such thatbr(σ [v 7→ u])(x) = y.

We can show that strategy improvement cannot terminate unless the current strategy is consistent
with every snare that exists in the game. This is because every strategy that is not consistent with some
snare must contain a profitable edge.

Proposition 15. Letσ be a strategy that is not consistent with a snare(W,χ). There is a profitable edge
(v,u) in σ such thatχ(v) = u.

These two propositions give us a new tool to study the processof strategy improvement. Instead of
viewing strategy improvement as a process that tries to increase valuations, we can view it as a process
that tries to force consistency with Max snares. Proposition 15 implies that this process can only termi-
nate when the current strategy is consistent with every Max snare in the game. Therefore, the behaviour
of strategy improvement on an example is strongly related with the snares that exist for the strategy
improver in that example.

8

Non-oblivious Strategy Improvement John Fearnley

7 Using Snares To Guide Strategy Improvement

In the previous sections, we have shown the strong link between snares and strategy improvement. In
this section we will show how this insight can be used to guidestrategy improvement. We will give a
procedure that takes a strategy that is inconsistent with some snare, and returns an improved strategy
that is consistent with that snare. Since the procedure is guaranteed to produce an improved strategy,
it can be used during strategy improvement as an alternativeto switching a profitable edge. We call
algorithms that make use of this procedure non-oblivious strategy improvement algorithms, and we give
a reasonable example of such an algorithm.

To define our procedure we will use Proposition 15. Recall that this proposition implies that if a
strategyσ is inconsistent with a snare(W,χ), then there is some profitable edge(v,u) in σ such that
χ(v) = u. Our procedure will actually be a strategy improvement switching policy. This policy will
always choose to switch an edge that is chosen byχ but not by the current strategy. As long as the
current strategy remains inconsistent with(W,χ) such an edge is guaranteed to exist, and the policy
terminates once the current strategy is consistent with thesnare. This procedure is shown as Algorithm 1

Algorithm 1 FixSnare(σ ,(W,χ))
while σ is inconsistent with(W,χ) do

(v,w) := Some edge whereχ(v) = w and(v,w) is profitable inσ .
σ := σ [v 7→ u]

end while
return σ

In each iteration the switching policy switches one vertexv to an edge(v,u) with the property that
χ(v) = u, and it never switches a vertex at which the current strategyagrees withχ . It is therefore not
difficult to see that if the algorithm has not terminated after |W| iterations then the current strategy will
agree withχ on every vertex inW. We can prove that such a strategy must be consistent with(W,χ),
and therefore the switching policy must terminate after at most|W| iterations.

Proposition 16. Letσ be a strategy that is not consistent with a snare(W,χ). Algorithm 1 will arrive at
a strategyσ ′ which is consistent with(W,χ) after at most|W| iterations.

Since FixSnare is implemented as a strategy improvement switching policy that switches only prof-
itable edges, the strategy that is produced must be an improved strategy. Therefore, at any point during
the execution of strategy improvement we can choose not to switch a subset of profitable edges and run
FixSnare instead. Note that the strategy produced by FixSnare may not be reachable from the current
strategy by switching a subset of profitable edges. This is because FixSnare switches a sequence of
profitable edges, some of which may not have been profitable inthe original strategy.

We propose a new class of strategy improvement algorithms that are aware of snares. These al-
gorithms will record a snare for every profitable back edge that they encounter during their execution.
In each iteration these algorithms can either switch a subset of profitable edges or run the procedure
FixSnare on some recorded snare that the current strategy isinconsistent with. We call these algorithms
non-oblivious strategy improvement algorithms, and the general schema that these algorithms follow is
shown in Algorithm 2.

Recall that oblivious strategy improvement algorithms required a switching policy to specify which
profitable edges should be switched in each iteration. Clearly, non-oblivious strategy improvement al-
gorithms require a similar method to decide whether to applythe procedure FixSnare or to pick some
subset of profitable edges to switch. Moreover, they must decide which snare should be used when the
procedure FixSnare is applied. We do not claim to have the definitive non-oblivious switching policy, but

9

Non-oblivious Strategy Improvement John Fearnley

Algorithm 2 NonOblivious(σ)

S:= /0
while σ has a profitable edgedo

S:= S∪{Snareσ (v,u) : (v,u) is a profitable back edge inσ}
σ := Policy(σ ,S)

end while
return σ

in the rest of this section we will present one reasonable method of constructing a non-oblivious version
of an oblivious switching policy. We will later show that ournon-oblivious strategy improvement algo-
rithms behave well on the examples that are known to cause exponential time behaviour for oblivious
strategy improvement.

We intend to take an oblivious switching policyα as the base of our non-oblivious switching policy.
This means that when we do not choose to use the procedure FixSnare, we will switch the subset of
profitable edges that would be chosen byα . Our goal is to only use FixSnare when doing so is guaranteed
to yield a larger increase in valuation than applyingα . Clearly, in order to achieve this we must know how
much the valuations increase whenα is applied and how much the valuations increase when FixSnare is
applied.

Determining the increase in valuation that is produced by applying an oblivious switching policy is
easy. Since every iteration of oblivious strategy improvement takes polynomial time, We can simply
switch the edges and measure the difference between the current strategy and the one that would be
produced. Letσ be a strategy and letP be the set of edges that are profitable inσ . For an oblivious
switching policyα the increase of applyingα is defined to be:

Increase(α ,σ) = ∑
v∈V

(Valσ [α(P)](v)−Valσ (v))

We now give a lower bound on the increase in valuation that an application of FixSnare produces.
Let (W,χ) be a snare and suppose that the current strategyσ is inconsistent with this snare. Our lower
bound is based on the fact that FixSnare will produce a strategy that is consistent with the snare. This
means that Min’s best response is not currently choosing an escape from the snare, but it will be forced
to do so after FixSnare has been applied. It is easy to see thatforcing the best response to use a different
edge will cause an increase in valuation, since otherwise the best response would already be using that
edge. Therefore, we can use the increase in valuation that will be obtained when Min is forced to use
and escape. We define:

SnareIncreaseσ (W,χ) = min{(Valσ (y)+w(x))−Valσ (x) : (x,y) ∈ Esc(W)}
This expression gives the smallest possible increase in valuation that can happen when Min is forced to
use an edge in Esc(W). We can prove that applying FixSnare will cause an increase in valuation of at
least this amount.

Proposition 17. Letσ be a strategy that is not consistent with a snare(W,χ), and letσ ′ be the result of
FixSnare(σ ,(W,χ)). We have:

∑
v∈V

(Valσ
′
(v)−Valσ (v))≥ SnareIncreaseσ (W,χ)

We now have the tools necessary to construct our proposed augmentation scheme, which is shown as
Algorithm 3. The idea is to compare the increase obtained by applying α and the increase obtained by
applying FixSnare with the best snare that has been previously recorded, and then to only apply FixSnare
when it is guaranteed to yield a larger increase in valuation.

10

Non-oblivious Strategy Improvement John Fearnley

Algorithm 3 (Augment(α))(σ ,S)

(W,χ) := argmax(X,µ)∈SSnareIncreaseσ (X,µ)
if Increase(α ,σ)> SnareIncreaseσ (W,χ) then

P := {(v,u) : (v,u) is profitable inσ}
σ := σ [α(P)]

else
σ := FixSnare(σ ,(W,χ))

end if
return σ

0

0

0

1

2100

2

1

0

v

x

y

z

Figure 3: A component of Friedmann’s exponential time example.

8 Comparison With Oblivious Strategy Improvement

In this section we will demonstrate how non-oblivious strategy improvement can behave well in situa-
tions where oblivious strategy improvement has exponential time behaviour. Unfortunately, there is only
one source of examples with such properties in the literature, and that is the family of examples given
by Friedmann. In fact, Friedmann gives two slightly different families of hard examples. The first type
is the family that that forces exponential behaviour for theall-switches policy [5], and the second type
is the family that forces exponential behaviour for both all-switches and optimal switching policies [6].
Although our algorithm performs well on both families, we will focus on the example that was designed
for optimal switching policies because it is the most interesting of the two.

This section is split into two parts. In the first half of this section we will study a component part of
Friedmann’s example upon which the procedure FixSnare can out perform an optimal switching policy.
This implies that there are situations in which our augmentation scheme will choose to use FixSnare.
In the second half, we will show how the good performance on the component part is the key property
that allows our non-oblivious strategy improvement algorithms to terminate quickly on Friedmann’s
examples.

11

Non-oblivious Strategy Improvement John Fearnley

8.1 Optimal Switching Policies

We have claimed that the procedure FixSnare can cause a greater increase in valuation than switching any
subset of profitable edges. We will now give an example upon which this property holds. The example
that we will consider is shown in Figure 3, and it is one of the component parts of Friedmann’s family of
examples that force optimal policies to take an exponentialnumber of steps [6].

The diagram shows a strategy for Max as a set of dashed edges. It also shows Min’s best response
to this strategy as a dotted edge. Even though this example could be embedded in an arbitrary game,
we can reason about the behaviour of strategy improvement byspecifying, for each edge that leaves the
example, the valuation of the successor vertex that the edgeleads to. These valuations are shown as
numbers at the end of each edge that leaves the example.

In order to understand how strategy improvement behaves we must determine the set of edges that are
profitable for our strategy. There are two edges that are profitable: the edge(z,v) is profitable because the
valuation ofv is 2 which is greater than 0, and the edge atx that leaves the example is profitable because
leaving the example gives a valuation of 2 and the valuation of y is 1. The edge(y,z) is not profitable
because the valuation ofz is 0, which is smaller than the valuation of 1 obtained by leaving the example
aty.

For the purposes of demonstration, we will assume that no other edge is profitable in the game into
which the example is embedded. Furthermore, we will assume that no matter what profitable edges are
chosen to be switched, the valuation of every vertex not contained in the example will remain constant.
Therefore, the all-switches policy will switch the edges(z,v) and the edge leading away from the example
at the vertexx. It can easily be verified that this is also the optimal subsetof profitable edges, and so
the all-switches and the optimal policies make the same decisions for this strategy. After switching the
edges chosen by the two policies, the valuation ofx will rise to 2, the valuation ofzwill rise to 3, and the
valuation ofy remain at 1.

By contrast, we will now argue that non-oblivious strategy improvement would raise the valuations
of x, y, andz to 2100+1. Firstly, it is critical to note that the example is a snare.If we setW = {v,x,y,z}
and chooseχ to be the partial strategy for Max that chooses the edges(x,y), (y,z), and(z,v), then(W,χ)
will be a snare in every game into which the example is embedded. This is because there is only one
cycle in the subgame induced byW when Max playsχ , and this cycle has positive weight.

Now, if the non-oblivious strategy improvement algorithm was aware of the snare(W,χ) then the
lower bound given by Proposition 17 would be 2100. This is because closing the cycle forces Min’s
best response to use escape edge to avoid losing the game. Since 2100 is much larger than the increase
obtained by the optimal switching policy, the policies Augment(All) and Augment(Optimal) will choose
to run FixSnare on the snare(W,χ). Once consequence of this is that the policy Optimal is no longer
optimal in the non-oblivious setting.

8.2 Friedmann’s Exponential Time Examples

The example that we gave in the previous subsection may appear to be trivial. After all, if the valuations
outside the example remain constant then both the all-switches and optimal switching policies will close
the cycle in two iterations. A problem arises, however, whenthe valuations can change. Note that when
we applied the oblivious policies to the example, no progress was made towards closing the cycle. We
started with a strategy that chose to close the cycle at only one vertex, and we produced a strategy that
chose to close the cycle at only one vertex. When the assumption that valuations outside the example
are constant is removed, it becomes possible for a well designed game to delay the closing of the cycle
for an arbitrarily large number of iterations simply by repeating the pattern of valuations that is shown in
Figure 3.

12

Non-oblivious Strategy Improvement John Fearnley

2
k+n

2
k+2 2

k+1

0

0

0

1

0

0

0

1

0

0

0

1

. . .

Figure 4: The bits of a binary counter.

Friedmann’s family of examples exploits this property to build a binary counter, which uses the
subgame shown in Figure 3 to represent the bits. The general idea of this approach is shown in Figure 4.
Friedmann’s example usesn instances of the cycle, indexed 1 throughn. These bits are interconnected
in a way that enforces two properties on both the all-switches and the optimal switching policies. Firstly,
the ability to prevent a cycle from closing that we have described is used to ensure that the cycle with
index i can only be closed after every cycle with index smaller thani has been closed. Secondly, when
the cycle with indexi is closed, every cycle with index smaller thani is forced to open. Finally, every
cycle is closed in the optimal strategy for the example. Now,if the initial strategy is chosen so that every
cycle is open, then these three properties are sufficient to force both switching policies to take at least 2n

steps before terminating.
The example works by forcing the oblivious switching policyto make the same mistakes repeatedly.

To see this, consider the cycle with indexn− 1. When the cycle with indexn is closed for the first
time, this cycle is forced open. The oblivious optimal switching policy will then not close it again for
at least another 2n−1 steps. By contrast, the policies Augment(All) and Augment(Optimal) would close
the cycle again after a single iteration. This breaks the exponential time behaviour, and it turns out that
both of our policies terminate in polynomial time on Friedmann’s examples.

Of course, for Friedmann’s examples we can tell simply by inspection that Max always wants to keep
the cycle closed. It is not difficult, however, to imagine an example which replaces the four vertex cycle
with a complicated subgame, for which Max had a winning strategy and Min’s only escape is to play
to the vertex with a large weight. This would still be a snare,but the fact that it is a snare would only
become apparent during the execution of strategy improvement. Nevertheless, as long as the complicated
subgame can be solved in polynomial time by non-oblivious strategy improvement, the whole game will
also be solved in polynomial time. This holds for exactly thesame reason as the polynomial behaviour
on Friedmann’s examples: once the snare representing the subgame has been recorded then consistency
with that snare can easily be enforced in the future.

9 Conclusions and Further Work

In this paper we have uncovered and formalized a strong link between the snares that exist in a game
and the behaviour of strategy improvement on that game. We have shown how awareness of this link can
be used to guide the process of strategy improvement. With our augmentation procedure we gave one

13

Non-oblivious Strategy Improvement John Fearnley

reasonable method of incorporating non-oblivious techniques into traditional strategy improvement, and
we have demonstrated how these techniques give rise to good behaviour on the known exponential time
examples.

It must be stressed that we are not claiming that simply terminating in polynomial time on Fried-
mann’s examples is a major step forward. After all, the randomized switching policies of Björklund
and Vorobyov [2] have the same property. What is important isthat our strategy improvement algo-
rithms are polynomial because they have a better understanding of the underlying structure of strategy
improvement. Friedmann’s examples provide an excellent cautionary tale that shows how ignorance of
this underlying structure can lead to exponential time behaviour.

There are a wide variety of questions that are raised by this work. Firstly, we have the structure of
snares in parity and mean-payoff games. Theorem 4 implies that all algorithms that find winning strate-
gies for parity and mean payoff games must, at least implicitly, consider snares. We therefore propose
that a thorough and complete understanding of how snares arise in a game is a necessary condition for
devising a polynomial time algorithm for these games.

It is not currently clear how the snares in a game affect the difficulty of solving that game. It is
not difficult, for example, to construct a game in which therean exponential number of Max snares: in
a game in which every weight is positive there will be a snare for every connected subset of vertices.
However, games with only positive weights have been shown tobe very easy to solve [9]. Clearly, the
first challenge is to give a clear formulation of how the structure of the snares in a given game affects the
difficulty of solving it.

In our attempts to construct intelligent non-oblivious strategy improvement algorithms we have con-
tinually had problems with examples in which Max and Min snares overlap. By this we mean that the set
of vertices that define the subgames of the snares have a non empty intersection. We therefore think that
studying how complex the overlapping of snares can be in a game may lead to further insight. There are
reasons to believe that these overlappings cannot be totally arbitrary, since they arise from the structure
of the game graph and the weights assigned to the vertices.

We have presented a non-oblivious strategy improvement algorithm that passively records the snares
that are discovered by an oblivious switching policy, and then uses those snares when doing so is guar-
anteed to lead to a larger increase in valuations. While we have shown that this approach can clearly
outperform traditional strategy improvement, it does not appear to immediately lead to a proof of poly-
nomial time termination. It would be interesting to find an exponential time example for the augmented
versions of the all-switches policy or of the optimal policy. This may be significantly more difficult
since it is no longer possible to trick strategy improvementinto making slow progress by forcing it to
repeatedly close a small number of snares.

There is no inherent reason why strategy improvement algorithms should be obsessed with trying
to increase valuations as much as possible in each iteration. Friedmann’s exponential time example for
the optimal policy demonstrates that doing so in no way guarantees that the algorithm will always make
good progress. Our work uncovers an alternate objective that strategy improvement algorithms can use
to measure their progress. Strategy improvement algorithms could actively try to discover the snares
that exist in the game, or they could try and maintain consistency with as many snares as possible, for
example. There is much scope for an intelligent snare based strategy improvement algorithm.

We have had some limited success in designing intelligent snare based strategy improvement algo-
rithms for parity games. We have developed a non-oblivious strategy improvement algorithm which,
when given a list of known snares in the game, either solves the game or finds a snare that is not in
the list of known snares. This gives the rather weak result ofa strategy improvement algorithm whose
running time is polynomial in|V| andk, wherek is the number of Max snares that exist in the game.
This is clearly unsatisfactory since we have already arguedthatk could be exponential in the number of
vertices. However, this is one example of how snares can be applied to obtain new bounds for strategy

14

Non-oblivious Strategy Improvement John Fearnley

improvement. As an aside, the techniques that we used to obtain this algorithm do not generalize to
mean-payoff games. Finding a way to accomplish this task formean-payoff games is an obvious starting
point for designing intelligent snare based algorithms forthis type of game.

Acknowledgements.I am indebted to Marcin Jurdziński for his guidance, support, and encouragement
during the preparation of this paper.

References

[1] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete subexponential algorithm for parity games. In
Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science, volume 2607 of
LNCS, pages 663–674, London, UK, 2003. Springer-Verlag.

[2] H. Björklund and S. Vorobyov. A combinatorial stronglysubexponential strategy improvement algorithm for
mean payoff games.Discrete Applied Mathematics, 155(2):210–229, 2007.

[3] A. Condon. On algorithms for simple stochastic games. InJ.-Y. Cai, editor,Advances in Computational Com-
plexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 51–73. American Mathematical Society, 1993.

[4] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-checking for fragments ofµ-calculus. In C. Cour-
coubetis, editor,Computer Aided Verification, 5th International Conference, CAV’93, volume 697 ofLNCS,
pages 385–396. Springer-Verlag, 1993.

[5] O. Friedman. A super-polynomial lower bound for the parity game strategy improvement algorithm as we
know it. In Logic in Computer Science (LICS). IEEE, 2009.

[6] O. Friedman. A super-polynomial lower bound for the parity game strategy improvement algorithm as we
know it. Preprint, January 2009.

[7] R. Howard.Dynamic Programming and Markov Processes. Technology Press and Wiley, 1960.

[8] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity
games. InProceedings of ACM-SIAM Symposium on Discrete Algorithms,SODA 2006, pages 117–123.
ACM/SIAM, 2006.

[9] L. Khachiyan, V. Gurvich, and J. Zhao. Extending dijkstra’s algorithm to maximize the shortest path by
node-wise limited arc interdiction. InComputer Science – Theory and Applications, volume 3967 ofLNCS,
pages 221–234. Springer, 2006.

[10] T. M. Liggett and S. A. Lippman. Stochastic games with perfect information and time average payoff.SIAM
Review, 11(4):604–607, 1969.

[11] Y. Mansour and S. P. Singh. On the complexity of policy iteration. In K. B. Laskey and H. Prade, editors,
UAI ’99: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 401–408.
Morgan Kaufmann, 1999.

[12] A. Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis, University of California, Berke-
ley, 1995.

[13] S. Schewe. An optimal strategy improvement algorithm for solving parity and payoff games. InComputer
Science Logic, volume 5213 ofLNCS, pages 369–384. Springer, 2008.

[14] C. Stirling. Local model checking games (extended abstract). In I. Lee and S. A. Smolka, editors,CON-
CUR’95: Concurrency Theory, 6th International Conference, volume 962 ofLNCS, pages 1–11. Springer-
Verlag, 1995.

[15] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm for solving parity games (Extended
abstract). In E. A. Emerson and A. P. Sistla, editors,Computer Aided Verification, 12th International Con-
ference, CAV 2000, Proceedings, volume 1855 ofLNCS, pages 202–215, Chicago, IL, USA, 2000. Springer-
Verlag.

[16] W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.
Theoretical Computer Science, 200:135–183, 1998.

15

Non-oblivious Strategy Improvement John Fearnley

[17] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.Theoretical Computer Science,
158(1–2):343–359, 1996.

16

Non-oblivious Strategy Improvement John Fearnley

A Proofs for Section 3

A.1 Proof of Theorem 4

Proof. For the sake of contradiction, suppose thatτ is a winning strategy forS that does not choose an
edge in Esc(W). Sinceχ also does not choose an edge that leavesW, we have that Play(v,χ ,τ) never
leaves the setW, for every vertexv in W. Furthermore, sinceχ is a winning strategy for the subgame
induced byW we haveM (Play(v,χ ,τ)) > 0 for every vertexv in W, which contradicts the fact thatτ is
a winning strategy forS.

B Proofs for Section 5

B.1 Proof of Proposition 9

Proof. The algorithm is shown as Algorithm 4. We use the notationG ↾ U to refer to the sub-game
of G induced by the set of verticesU . Its correctness follows from a result of Zielonka [16] which
was originally shown for parity games, but identical techniques apply in this setting. LetW be a set of
vertices, we define the set of vertices from which Max can force the token intoW in one step as

Pre(W) = {v∈VMax : There is an edge(v,u) with u∈W}
∪{v∈VMin : All edges(v,u) haveu∈W}.

We then define the attractor ofW to be the set of vertices from which Max can force play intoW.

W0 =W

Wi =Wi−1∪Pre(Wi−1)

Attr(W) =W|V |

Zielonka showed that ifW is a subset of Max’s winning set, which is the set of vertices with value greater
than 0, then both winning sets can be found by solving the sub-gameG ↾ Attr(W).

In our setting the algorithmα finds the setW, and it is clear that the loop computes Attr(W). There-
fore, we get that our algorithm finds the 0-mean partition. Moreover, since each recursive call decreases
the size of the game by at least one vertex we get that at most|V| calls toα are made.

Algorithm 4 ZeroMeanPartition(σ ,α ,G)

σ := α(σ)
while There is an edge(v,u) with Valσ (v)< ∞ and Valσ (u) = ∞ do

σ := σ [v 7→ u]
end while
W>0 := {v : Valσ (v) = ∞}
U :=V \W>0

(W′
≤0,W

′
>0) := ZeroMeanPartition(σ ,α ,G ↾U)

return (W′
≤0,W>0∪W′

>0)

17

Non-oblivious Strategy Improvement John Fearnley

C Proofs for Section 6

C.1 Proof of Proposition 12

Proof. SinceC is a critical set it must be the case that every vertex inC must be in the subtree ofv
according toσ , and this implies thatσ [v 7→ u](w) is not the sink for every vertexw in C. Note that only
paths ending at the sink can have finite valuations, and that no such paths can exist whenσ [v 7→ u] is

played inG ↾C. This implies that Valσ [v7→u]
G↾C (w) is either∞ or−∞, and we will argue that the latter is not

possible.
Suppose for the sake of contradiction that there is a vertexw with the property Valσ [v7→u]

G↾C (w) = −∞.
Let τ be brG↾C(σ [v 7→ u]). We defineτ ′ to be a strategyG that followsτ on the vertices inG ↾ C and
makes arbitrary decisions at the other vertices. For every vertexw in VMin we choose some edge(w,x)
and define

τ ′(w) =

{

τ(w) if w∈C,

x otherwise.

Now considerσ [v 7→ u] played againstτ ′ on the gameG. Note that neither of the two strategies choose
an edge that leaves the setC and so PlayG(w,σ [v 7→ u],τ ′) = PlayG↾C(w,σ [v 7→ u],τ ′) for every vertex

w in C. Since valuations can be derived from the play, this impliesthat Valσ [v7→u],τ ′
G (w) = −∞. By the

properties of the best response we have for every vertexw in C.

Valσ [v7→u]
G (w)≤ Valσ [v7→u],τ ′

G (w) =−∞ < ValσG(w)

This contradicts Theorem 7, and so we can conclude that Valσ [v7→u]
G↾C (w) = ∞ for every vertexw in C.

C.2 Proof of Proposition 14

Proof. Consider a strategyτ for player Min for which there is no edge(x,y) in Esc(Criticalσ (v,u)) with
τ(x) = y. We argue that Valσ [v7→u],τ (w) = ∞ for every vertexw in Criticalσ (v,u). Note that neither
σ [v 7→ u] or τ chooses an edge that leaves Criticalσ (v,u), which implies that Play(w,σ [v 7→ u],τ) does
not leave Criticalσ (v,u), for every vertexw in Criticalσ (v,u). By Proposition 12 we have thatσ [v 7→ u]
is a winning strategy forG ↾ Criticalσ (v,u), and therefore Valσ [v7→u],τ (w) = ∞ for every vertexw in
Criticalσ (v,u).

We will now construct a strategy for Min which, when played againstσ [v 7→ u], guarantees a finite
valuation for some vertex in Criticalσ (v,u). Let (x,y) be some edge in Esc(Criticalσ (v,u)). We define
the Min strategyτ , for every vertexw in VMin as

τ(w) =

{

y if w= x,

br(σ)(w) otherwise.

By definition of critical set we have thaty cannot be in the subtree ofv, since otherwise it would also be in
Criticalσ (v,u). This implies that Play(y,σ ,br(σ))=Play(y,σ [v 7→ u],τ), sinceτ = br(σ) on every vertex
that is not in Subtreeσ (v), andσ = σ [v 7→ u] on every vertex that is notv. From this we can conclude that
Valσ [v7→u],τ (y) = Valσ (y)< ∞. By construction ofτ we have that Valσ [v7→u],τ (x) = Valσ [v7→u],τ (y)+w(x),
and so we also have Valσ [v7→u],τ (x) < ∞.

In summary, we have shown that every Min strategyτ that does not use an edge in Esc(Criticalσ (v,u))
has the property Valσ [v7→u],τ (w) = ∞ for every vertexv in Criticalσ (v,u). We have also shown that there
is a Min strategyτ which guarantees Valσ [v7→u],τ (w) < ∞ for some vertexw in Criticalσ (v,u). From the
properties of a best response we can conclude that Min must use some edge in Esc(Criticalσ (v,u)).

18

Non-oblivious Strategy Improvement John Fearnley

C.3 Proof of Proposition 15

Proof. In order to prove the claim we will construct an alternate game. We define the gameG′ =
(V,VMax,VMin ,E′,w) where:

E′ = {(v,u) : σ(v) = u or brG(σ)(v) = u or χ(v) = u}.

In other words, we construct a game where Min is forced to playbrG(σ)(v) and Max’s strategy can be
constructed using a combination of the edges used byσ andχ . Since Min is forced to play brG(σ)(v)
we have that Valσ

G(v) = ValσG′(v) for every vertexv. To decide if an edge is profitable we compare two
valuations, and since the valuation ofσ is the same in bothG andG′ we have that an edge is profitable
for σ in G if and only if it is profitable forσ in G′. Note also that the only wayσ can be modified in
G′ is to choose an edge that is chosen byχ but not byσ . Therefore, to prove our claim it is sufficient to
show thatσ has a profitable edge inG′.

We define the strategy:

χ ′(v) =

{

χ(v) if v∈W,

σ(v) otherwise.

We will argue thatχ ′ is a better strategy thanσ in G′. The definition of a snare implies thatχ is a
winning strategy for the sub-game induced byW, and by assumption we have that br(σ) does not use an

edge in Esc(W). We therefore have that Valχ ′

G′(v) = ∞ for every vertexv in W. On the other hand, since
we are considering the positive cycle problem, we know that ValσG′(v) < ∞ for every vertexv in W. This
implies thatσ is not the optimal strategy inG′. Theorem 7 implies that all non-optimal strategies must
have at least one profitable edge, and the only edges that can be profitable inG′ are those chosen byχ .
Therefore there is some edge chosen byχ that is profitable forσ in G′ and as we have argued this also
means that the edge is profitable forσ in G.

D Proofs for Section 7

D.1 Proof of Proposition 16

Proof. By Proposition 15 we know that as long as the current strategyis not consistent with the snare
(W,χ) there must be an edge(v,u) with χ(v) = u that is profitable inσ . The switching policy will always
choose this edge, and will terminate once the current strategy is consistent with the snare. Therefore in
each iteration the number of vertices upon whichσ andχ differ decreases by 1. It follows that after at
most |W| iterations we will haveσ(v) = χ(v) for every vertexv in W. Sinceχ is a winning strategy
for the sub-game induced byW we have that player Min must choose some edge that leavesW to avoid
losing once this strategy has been reached.

D.2 Proof of Proposition 17

Proof. We will prove this proposition by showing that there exists some vertexw with the property
Valσ

′
(w)−Valσ (w)≥SnareIncrease(W,χ). Since the procedure FixSnare switches only profitable edges

we have by Theorem 7 that Valσ ′
(v)−Valσ (v)≥ 0 for every vertexv. Therefore, this is sufficient to prove

the proposition because∑v∈V(Valσ
′
(v)−Valσ (v))≥ Valσ

′
(w)−Valσ (w).

Proposition 16 implies thatσ ′ is consistent with the snare(W,χ). By the definition of snare consis-
tency, this implies that br(σ ′) must use some edge(w,x) in Esc(W). We therefore have that Valσ ′

(w) =
Valσ

′
(x)+w(w). Since the FixSnare procedure switches only profitable edges, we have by Theorem 7

19

Non-oblivious Strategy Improvement John Fearnley

that Valσ
′
(x) ≥ Valσ (x). The increase atx is therefore

Valσ
′
(w)−Valσ (w) = Valσ

′
(x)+w(w)−Valσ (w)

≥ Valσ (x)+w(w)−Valσ (w)

≥ SnareIncrease(W,χ)

20

	1 Introduction
	2 Preliminaries
	3 Snares
	4 Strategy Improvement
	5 Strategy Trees
	6 Profitable Back Edges
	7 Using Snares To Guide Strategy Improvement
	8 Comparison With Oblivious Strategy Improvement
	8.1 Optimal Switching Policies
	8.2 Friedmann's Exponential Time Examples

	9 Conclusions and Further Work
	A Proofs for Section ??
	A.1 Proof of Theorem ??

	B Proofs for Section ??
	B.1 Proof of Proposition ??

	C Proofs for Section ??
	C.1 Proof of Proposition ??
	C.2 Proof of Proposition ??
	C.3 Proof of Proposition ??

	D Proofs for Section ??
	D.1 Proof of Proposition ??
	D.2 Proof of Proposition ??

