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Abstract

We study strategy improvement algorithms for mean-payod parity games. We describe a
structural property of these games, and we show that thesetstes can affect the behaviour of
strategy improvement. We show how awareness of thesestesatan be used to accelerate strategy
improvement algorithms. We call our algorithms non-oldivs because they remember properties
of the game that they have discovered in previous iteratidvs show that non-oblivious strategy
improvement algorithms perform well on examples that amknto be hard for oblivious strategy
improvement. Hence, we argue that previous strategy inggnent algorithms fail because they
ignore the structural properties of the game that they dxéngp

1 Introduction

In this paper we study strategy improvement for two playéniie games played on finite graphs. In this
setting the vertices of a graph are divided between two ptayetoken is placed on one of the vertices,
and in each step the owner of the vertex upon which the tokpltaé®d must move the token along one
of the outgoing edges of that vertex. In this fashion, the players form an infinite path in the graph.
The payoff of the game is then some property of this path, lwhepends on the type of game that is
being played. Strategy improvement is a technique thatraigd from Markov decision processes [7],
and has since been applied many types of games in this séttaigding simple stochastic gamés [3],
discounted-payoff games [12], mean-payoff gameés [2], ardypgames[[15,]1]. In this paper we will
focus on the strategy improvement algorithm of Bjorklumd &orobyov [2], which is designed to solve
mean-payoff games, but can also be applied to parity games.

Algorithms that solve parity and mean-payoff games haveived much interest. One reason for
this is that the model checking problem for the modatalculus is polynomial time equivalent to the
problem of solving a parity gamel[4,/14], and there is a pamiab time reduction from parity games to
mean-payoff games [12]. Therefore, faster algorithmstesé games lead to faster model checkers for
the u-calculus. Secondly, both of these games lie inMNEo-NP, which implies that neither of the two
problems are likely to be complete for either class. Dedpii® no polynomial time algorithms have
been found.

The approach of strategy improvement can be describedlas/$IThe algorithm begins by choos-
ing one of the players to be the strategy improver, and theks@n arbitrary strategy for that player. A
strategy for a player consists of a function that picks orgeddr each of that player’s vertices. Strategy
improvement then computes a set of profitable edges fortitzdegy. If the strategy is switched so that it
chooses some subset of the profitable edges, rather thadgése that are currently chosen, then strategy
improvement guarantees that the resulting strategy istietsome well-defined measure. So, the algo-
rithm picks some subset of the profitable edges to create aimgpsoved, strategy to be considered in
the next iteration. This process is repeated until a styatefpund that has no profitable edges, and this
strategy is guaranteed optimal for the strategy improviecesany subset of the profitable edges could be
used to create an improved strategy in each iteration, soetleatt is needed to determine which subset
to choose in each iteration. We call this method a switchiokicyy and the choice of switching policy
can have a dramatic effect on the running time of the algorith

A significant amount of research has been dedicated to finglmgl switching policies. In terms
of complexity bounds, the current best switching policiee emndomized, and run in an expected
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O(ZW) number of iterations |2]. Another interesting switchindippis the optimal switching policy
given by Schewe [13]. An optimal switching policy alwaysksi¢he subset of profitable edges that yields
the best possible successor strategy, according to theunedhst strategy improvement uses to compare
strategies. It is not difficult to show that such a subset ofif@ble edges must exist, but computing an
optimal subset of profitable edges seemed to be difficultesihere can be exponentially many subsets
of profitable edges to check. Nevertheless, Schewe’s riesufiolynomial time algorithm that computes
an optimal subset of edges. Therefore, optimal switchirigips can now be realistically implemented.
It is important to note that the word “optimal” applies ontythe subset of profitable edges that is chosen
to be switched in each iteration. It is not the case that aegfyamprovement algorithm equipped with
an optimal switching policy will have an optimal running tm

Perhaps the most widely studied switching policy is thesalitches policy, which simply selects the
entire set of profitable edges in every iteration. Althougitiest upper bound for this policy@2"/n)
iterations [11], it has been found to work extremely well magtice. Indeed, for a period of ten years
there were no known examples upon which the all switchegyptdiok significantly more than a linear
number of iterations. It was for this reason that the alltshés policy was widely held to be a contender
for a proof of polynomial time termination.

However, Friedmann has recently found a family of exampes force a strategy improvement
algorithm equipped with the all-switches policy to take apanential number of steps![5]. Using the
standard reductions [12, 117], these examples can be gmseerdb provide exponential lower bounds
for all-switches on mean-payoff and discounted-payoff gemEven more surprisingly, Friedmann’s
example can be generalised to provide an exponential loagndfor strategy improvement algorithms
equipped with an optimal switching policy![6]. This receatelation appears to imply that there is no
longer any hope for strategy improvement, since an exp@lentmber of iterations can be forced even
if the best possible improvement is made in every step.

Our contributions.  Despite ten years of research into strategy improvemeatigigns, and the recent
advances in the complexity of some widely studied switchpogjcies, the underlying combinatorial
structure of mean-payoff and parity games remains somemliaterious. There is no previous work
which links the structural properties of a parity or meaggigame with the behaviour of strategy
improvement on those games. In this paper, we introduceuatstal property of these games that we
call a snare. We show how the existence of a snare in a parityean-payoff game places a restriction
on the form that a winning strategy can take for these gamescé] we argue that every algorithm that
computes a winning strategy for these games must, at lepéititly, deal with these structures.

In the case of strategy improvement algorithms, we arguestieres play a fundamental role in the
behaviour of these algorithms. We show that there is a cety@ie of profitable edge, which we call
a back edge, that is the mechanism that strategy improvensestto deal with snares. We show how
each profitable back edge encountered by strategy improwssogresponds to some share that exists in
the game. Hence, we argue that the concept of a share is a aethdbcan be used in the analysis of
strategy improvement algorithms.

We then go on to show that, in addition to being an analytioal, tawareness of snares can be used
to accelerate the process of strategy improvement. We peoff@t strategy improvement algorithms
should remember the snares that they have seen in preverasidhs, and we give a procedure that
uses a previously recorded snare to improve a strategye§yranprovement algorithms can choose to
apply this procedure instead of switching a subset of pliétadges. We give one reasonable example
of a strategy improvement algorithm that uses these teabrigWe call our algorithms non-oblivious
strategy improvement algorithms because they remembemaaftion about their previous iterations,
whereas previous techniques make their decisions basgdwoihe information available in the current
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iteration.

In order to demonstrate how non-oblivious techniques candie powerful than traditional strategy
improvement, we study Friedmann’s family of examples traise the all-switches and the optimal
switching policies to take exponential time. We show thaténtain situations non-oblivious strategy
improvement makes better progress than even the optim&lasd switching policy. We go on to show
that this behaviour allows our non-oblivious strategy ioy@ment algorithms to terminate in polynomial
time on Friedmann’s examples. This fact implies that it isoigince of snares that is a key failing of
oblivious strategy improvement.

2 Preliminaries

A mean-payoff game is defined by a tuglé Vivax, Vmin, E, W) whereV is a set of vertices anfl is a set

of edges, which together form a finite graph. Every vertextrhase at least one outgoing edge. The
setsVivax andVWin partitionV into vertices belonging to player Max and vertices belogdim player
Min, respectively. The functiow : V — Z assigns an integer weight to every vertex.

The game begins by placing a token on a starting vargeXn each step, the player that owns the
vertex upon which the token is placed must choose one owgamige of that vertex and move the token
along it. In this fashion, the two players form an infinitetpat= (vo,v1,V,...), where(v;,vi+1) isin E
for everyi in N. Thepayoff of an infinite path is defined to beZ (1) = liminf,_(1/n) T owW(v). The
objective of Max is to maximize the value of (1), and the objective of Min is to minimize it.

A positional strategyor Max is a function that chooses one outgoing edge for evertex belonging
to Max. A strategy is denoted hy : Viyax — V, with the condition thatv, o(v)) is in E, for every Max
vertexv. Positional strategies for player Min are defined analolyoukhe sets of positional strategies
for Max and Min are denoted Hylyax andMyin, respectively. Given two positional strategiesandt
for Max and Min respectively, and a starting vertgxthere is a unique pat{vo,vi,V>...), wherevi 1 =
o(v;) if v is owned by Max and;; = 17(v;) if v; is owned by Min. This path is known as tiptay
induced by the two strategiesandt, and will be denoted by Playy, 0, 1).

For allvinV we define:

Value,(v) = max min .Z(Play(v,0,1))

g€Mpax TEMMmin

Value' (v) = Tgnﬂihrﬂj Urenn%x A (Play(v,0,1))

These are known as the lower and upper values, respectivelymean-payoff games we have that the
two quantities are equal, a property called determinacy.

Theorem 1([10]). For every starting vertex v in every mean-payoff game we Wakee, (v) = Valug'(v).

For this reason, we define Vali@ to be the value of the game starting at the vestewhich is
equal to both Valugv) and Valué(v). The computational task associated with mean-payoff gasrtes
find Valugv) for every vertex.

Computing the 0-mean partition is a decision version of r@blem. This requires us to decide
whether Valuév) > 0, for every vertew. Bjorklund and Vorobyov have shown that only a polynomial
number of calls to an algorithm for finding the 0-mean pantitare needed to find the value for every
vertex in a mean-payoff gamel [2].

A Max strategyo is awinning strategyfor a set of verticeV if .#(v,0,1) > 0 for every Min
strategyr and every vertex in W. Similarly, a Min strategy is a winning strategy foWV if .# (v,0,1) <
0 for every Max strategy and every vertex in W. To solve the 0-mean partition problem we are
required to partition the vertices of the graph into the @gax, Wuin), where Max has a winning
strategy foMiyax and Min has a winning strategy f@¥vin .
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Figure 1: A simple snare.
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3 Shares

In this section we introduce a structure called that we célinare”. The dictionary definitidhof the
word snare is “something that serves to entangle the unwalifs is a particularly apt metaphor for
these structures since, as we will show, a winning strategya fplayer must be careful to avoid being
trapped by the snares that are present in that player's mgrset.

The definitions in this section could be formalized for eitpiyer. We choose to focus on player
Max because we will later choose Max to be the strategy ingrolFor a set of verticed/ we define
G [ W to be the sub-game induced Wy, which isG with every vertex not i'WW removed. A snare for
player Max is defined to be a subgame for which player Max camaguee a win from every vertex.

Definition 2 (Max Snare) For a game G, a snare is defined to be a tuplé x) where WC V and
X - WNVuax — W is a partial strategy for player Max that is winning for eyerertex in the subgame
GIW.

This should be compared with the concept of a dominion thatimteoduced by Jurdzihski, Paterson,
and Zwick [8]. A dominion is also a subgame in which one of tteyers can guarantee a win, but with
the additional constraint that the opponent is unable teeléhe dominion. By contrast, the opponent
may be capable of leaving a snare. We define an escape edgénfto bk an edge that Min can use to
leave a Max share.

Definition 3 (Escapes)Let W be a set of vertices. We define the escapes fromBgs ) = {(v,u) €
E : ve WNVuin and u¢ W}

It is in Min’s interests to use at least one escape edge frama@ssince if Min stays in a Max snare
forever, then Max can use the strategyo ensure a positive payoff. In fact, we can prove thatig a
winning strategy for Min for some subset of vertices thhanust use at least one escape from every Max
snare that exists in that subset of vertices.

Theorem 4. Suppose that is a winning strategy for Min on a set of vertices S\, x) is a Max snare
where WC S, then there is some edgeu) in EsqW) such thatr (v) = u.

Figurel1 shows an example of a subgame upon which a snare chgfibed. In all of our diagrams,
boxes are used to represent Max vertices and triangles adetosepresent Min vertices. The weight
assigned to each vertex is shown on that vertex. If weVdke {v,u} andx(v) = uthen(W, x) will be a
Max snare in every game that contains this structure as aasubgThis is because the cycle is positive,
and thereforg( is a winning for Max on the subgame inducedWy There is one escape from this snare,
which is the edge Min can use to break the cycla.at

Since the example is so simple, Theolem 4 gives a partigutnbng property for this snare: every
winning strategy for Min must use the escape edge HtMin uses the edgéu, V) in some strategy, then
Max can respond by using the edgeu) to guarantee a positive cycle, and therefore the strategydwo
not be winning for Min. This is a strong property because we essentially ignore the edde,v) in
every game into which the example is embedded. This propesyg not hold for snares that have more
than one escape.

1American Heritage Dictionary of the English Language, Eoidition
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4 Strategy Improvement

In this section we will summarise Bjorklund and Vorobyostsategy improvement algorithm for finding
the 0-mean partition of a mean-payoff garne [2]. Their athaomi requires that the game is modified by
adding retreat edges from every Max vertex to a special sniex.

Definition 5 (Modified Game) A game(V,Vvax, Vmin, E, W) will be modified to creatéV U {s}, Viax U
{s},Vmin,E’, W), where E = EU{(v,s) : V€ Vwax}, and wW(v) = w(v) for all vertices v in V, and
w(s) =0.

Strategy improvement always works with the modified gamed, fanthe rest of the paper we will
assume that the game has been modified.

Given two strategies, one for each player, the play indugettidotwo strategies is either a finite path
that ends at the sink or a finite initial path followed by anniiély repeated cycle. This is used to define
the valuation of a vertex.

Definition 6 (Valuation) Let o be a positional strategy for Max and be a positional strategy for
Min. If Play(vop, 0, T) = (Vo,V1,... Vk, (Co,C1,...C)%), for some vertexys then we defin&al® " (vp) =
—o if T1_ow(c) <0 andw otherwise. Alternatively, iPlay(Vv,a,T) = (Vo,Vi,...,S) then we define
Val? (vo) = T oW(v).

Strategy improvement algorithms choose one player to bsttagegy improver, which we choose to
be Max. For a Max strategy, we define bfo) to be thebest responsé o, which is a Min strategy
with the property Val*"(9) (v) < Val?"T(v) for every vertexv and every Min strategy. Such a strategy
always exists, and Bjorklund and Vorobyov give a methodoimpute it in polynomial time_[2]. We will
frequently want to refer to the valuation of a vertewhen the Max strategy is played against o),
so we define VA(v) to be shorthand for VAIP'(9)(v). Occasionally, we will need to refer to valuations
from multiple games. We use \&lv) to give the valuation of the vertexwhen o is played against
br(o) in the gameG. We extend all of our notations in a similar manner, by plgdine game in the
subscript.

For a Max strategy and an edgév,u) that is not chosen by, we say(v,u) is profitablein o if
Val’(o(v)) < Val®(u). Switchingan edge(v,u) in o is denoted byo v+ u]. This operation creates a
new strategy where, for a vertexe Viax we haveo|v— uj(w) = uif w=v, ando(w) otherwise. LeF
be a set of edges that contains at most one outgoing edge &cimvertex. We defing[F| to beo with
every edge i switched. The concept of profitability is important becasgétching profitable edges
creates an improved strategy.

Theorem 7([2]). Let o be a strategy and P be the set of edges that are profitabte ihet F C P be
a subset of the profitable edges that contains at most oneimgtgedge from each vertex. For every
vertex v we hav¥al’ (v) < Val’Wl(v), and there is a vertex for which the inequality is strict.

The second property that can be shown is that a strategy withrafitable edges is optimal. An
optimal strategy is a Max strategy such that Vl (v) > ValX(v) for every Max strategy and every
vertexv. The 0-mean partition can be derived from an optimal styategthe seMiyax contains every
vertexv with Val? (v) = o, andWyin contains every vertex with Val? (v) < .

Theorem 8([2]). A strategy with no profitable edges is optimal.

Strategy improvement begins by choosing a strategyvith the property that V&P (v) > —o for
every vertex. One way to achieve this is to seg(v) = sfor every vertex in Viyax. This guarantees the
property unless there is some negative cycle that Min casremfithout passing through a Max vertex.
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Clearly, for a vertex on one of these cycles, Max has no strategyith Val® (v) > —c. These vertices
can therefore be removed in a preprocessing step and pladéghi.

For every strategys; a new strategyo; ;1 = o;[F] will be computed, wheré is a subset of the
profitable edges iw;j, which contains at most one outgoing edge from each verterofeniV implies
that VaP+1(v) > Val“(v) for every vertexv, and that there is a vertex for which the inequality is strict
This implies that a strategy cannot be visited twice by sgatimprovement. The fact that there is a
finite number of positional strategies for Max implies thimategy improvement must eventually reach
a strategyoy in which no edges are profitable. Theorem 8 implies thais the optimal strategy, and
strategy improvement terminates.

Strategy improvement requires a rule that determines wpiofitable edges are switched in each
iteration. We will call this aswitching policy Oblivious switching policies are defined as 28 — 2F,
where for every s C E, we have thatr(P) contains at most one outgoing edge for each vertex.

Some of the most widely studied switching policies are afkshes policies. These policies always
switch every vertex that has a profitable edge, and when exvbets more than one profitable edge an
additional rule must be given to determine which edge to shodraditionally this choice is made by
choosing the successor with the highest valuation. We nisstoee careful to break ties when there are
two or more successors with the highest valuation. Thegefor the purposes of defining this switching
policy we will assume that each vertexs given a unique index in the rand@, 2, ...,|V|}, which we
will denote as Indefv).

All(F) = {(v,u) : There is no edgév,w) € F with Val°(u) < Val®(w)
or with Val®(u) = Val? (w) and Indexu) < Index(w)}.

In the introduction we described optimal switching polgigvhich we can now formally define. A
switching policy is optimal if it selects a subset of profitabdged™ that satisfies VA" (v) < Val?Fl(v)
for every subset of profitable edgesand every vertex. Schewe has given a method to compute such a
set in polynomial time[[13]. We will denote an optimal swiiagp policy as Optimal.

5 Strategy Trees

The purpose of this section is to show how a strategy and gisrbsponse can be viewed as a tree, and
to classify profitable edges by their position in this treee Wil classify edges as either cross edges or
back edges. We will later show how profitable back edges asely related to shares.

It is technically convenient for us to make the assumptiat tvery vertex has a finite valuation
under every strategy. The choice of starting strategy esstirat for every strategy considered by
strategy improvement, we have Vl) > —o for every vertexv. Obviously, there may be strategies
under which some vertices have a valuatioroofT he first part of this section is dedicated to rephrasing
the problem so that our assumption can be made.

We define thepositive cyclgroblem to be the problem of finding a strategyvith Val? (v) = o for
some vertex, or to prove that there is no strategy with this property. Hter can be done by finding
an optimal strategy with Val®(v) < « for every vertexv. We can prove that a strategy improvement
algorithm for the positive cycle problem can be adapted wtfie 0-mean partition.

Proposition 9. Leta be a strategy improvement algorithm that solves the pesityele problem in Qx)
time. There is a strategy improvement algorithm which fihésOtmean partition in QV |- k) time.

We consider switching policies that solve the positive eyaroblem, and so we can assume that every
vertex has a finite valuation under every strategy that agorahms consider. Our switching policies
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Figure 2: A strategy tree.

will terminate when a vertex with infinite valuation is fountlVith this assumption we can define the
strategy tree.

Definition 10 (Strategy Tree) Given a Max strategy and a Min strategyr we define the tree 7' =
(V,E") where E = {(v,u) : g(v)=uor1(v)=u}.

In other words;T 2" is a tree rooted at the sink whose edges are those chosembgt. We define
T to be shorthand fof 7P"9), and Subtre®(v) : V — 2V to be the function that gives the vertices in
the subtree rooted at the vertein T°.

We can now define our classification for profitable edges. (kat) be a profitable edge in the
strategyo. We call this a profitabldack edgef u is in Subtreé(v), otherwise we call it a profitable
cross edge

Figurel2 gives an example of a strategy tree. In all of ourrdiag, dashed lines give a strategyor
player Max, and dotted lines show Min'’s best response tottiagegy of Max. The strategy tree contains
every vertex, and every edge that is either dashed or ddtteelsubtree of is the sef{v,b,c,d,u}. The
edge(v,u) is profitable because Valv) = 0 and Vaf (u) = 1. Sinceu is contained in the subtree of
the edg€v,u) is a profitable back edge.

6 Profitable Back Edges

In this section we will expose the intimate connection bemvprofitable back edges and snares. We will
show how every profitable back edge corresponds to some 8rarexists in the game. We will also
define the concept of snare consistency, and we will show hi@rconcept is linked with the conditions
implied by Theorenh 4.

Ouir first task is to show how each profitable back edge correfspto some Max snare in the game.
Recall that a Max share consists of a set of vertices, andagegir for Max that is winning for the
subgame induced by those vertices. We will begin by definirgset of vertices for the snare that
corresponds to a profitable back edge. For a profitable bagk (@) in a strategyo we define the
critical set, which is the vertices in Subtfée) that Min can reach when Max plays
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Definition 11 (Critical Set) If (v,u) is a profitable back edge in the strategythen we define the critical
set asCritical? (v,u) = {w € Subtre&(v) : There is a patHu, uy, ... ux = w) where for all i with1 <i <k
we have pe Subtred(v) and if 4 € Viyax then y,.1 = o(u;)}.

In the example given in Figufe 2, the critical set of the efige) is {v,b,d,u}. The vertexbis in the
critical set because it is in the subtreevpfind Min can reach it froma when Max playso. In contrast,
the vertexc is not in the critical set becausg(d) = v, and therefore Min cannot reactfrom u when
Max playso. The vertexais not in the critical set because it is not in the subtree of

Note that in the exampleg[v+— u] is a winning strategy for the subgame induced by critical Ekré
definition of the critical set is intended to capture the émtgconnected subset of vertices contained in
the subtree of for which o|v — u] is guaranteed to be a winning strategy.

Proposition 12. Let (v,u) be a profitable back edge in the strategyand let C beCritical® (v,u). The
strategyo|v — u] is winning for every vertex in GC.

We can now formally define the snare that is associated with @aofitable back edge that is
encountered by strategy improvement. For a profitable bage év,u) in a strategyc we define
Snaré (v,u) = (Critical? (v, u), x) wherex (v) = o[v— u](v) if v € Critical’ (v,u), and undefined at other
vertices. Proposition_12 confirms that this meets the difimif a snare.

We will now argue that the conditions given by Theoreim 4 mesbbserved in order for strategy
improvement to terminate. We begin by defining a conceptwieatall snare consistency. We say that a
Max strategy is consistent with a snare if Min’s best respai®oses an escape from that snare.

Definition 13 (Snare Consistency)A strategyo is said to be consistent with the sndW, x) if br(o)
uses some edge EsqW).

In the example given in Figullg 2 we can see thais not consistent with Snafév,u). This is
because o) does not choose the ed@e a). However, once the edge,u) is switched we can prove
that b(o|v+— u]) must use the edgg,a). This is because Min has no other way of connecting every
vertex in Subtre®(v) to the sink, and if some vertex is not connected to the sink ttsevaluation will
rise toco.

Proposition 14. Let (v,u) be a profitable back edge in the strategy There is some edgg,y) in
EsdCritical? (v,u)) such thator(g[v— u])(x) =Y.

We can show that strategy improvement cannot terminatessirtfee current strategy is consistent
with every snare that exists in the game. This is becauseg strategy that is not consistent with some
snare must contain a profitable edge.

Proposition 15. Let o be a strategy that is not consistent with a sn@é x). There is a profitable edge
(v,u) in o such thatx (v) = u.

These two propositions give us a new tool to study the prosessategy improvement. Instead of
viewing strategy improvement as a process that tries t@ase valuations, we can view it as a process
that tries to force consistency with Max snares. Propasiii® implies that this process can only termi-
nate when the current strategy is consistent with every Maxesin the game. Therefore, the behaviour
of strategy improvement on an example is strongly relatett tie snares that exist for the strategy
improver in that example.
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7 Using Snares To Guide Strategy Improvement

In the previous sections, we have shown the strong link bexivemares and strategy improvement. In
this section we will show how this insight can be used to gitategy improvement. We will give a
procedure that takes a strategy that is inconsistent wittesenare, and returns an improved strategy
that is consistent with that snare. Since the procedure asagiteed to produce an improved strategy,
it can be used during strategy improvement as an alternadigwvitching a profitable edge. We call
algorithms that make use of this procedure non-obliviotetesy improvement algorithms, and we give
a reasonable example of such an algorithm.

To define our procedure we will use Propositiod 15. Recall this proposition implies that if a
strategyo is inconsistent with a snar@V, x), then there is some profitable edgeu) in o such that
X(v) = u. Our procedure will actually be a strategy improvement awitg policy. This policy will
always choose to switch an edge that is chosery iyt not by the current strategy. As long as the
current strategy remains inconsistent Withl, x) such an edge is guaranteed to exist, and the policy
terminates once the current strategy is consistent witkribee. This procedure is shown as Algorithim 1

Algorithm 1 FixSnaréo, (W, x))
while o is inconsistent witHW, x) do
(v,w) := Some edge wherg(v) = w and(v,w) is profitable ino.
0:=0[V— U
end while
return o

In each iteration the switching policy switches one verédr an edggyv,u) with the property that
X (V) = u, and it never switches a vertex at which the current stradegges withy. It is therefore not
difficult to see that if the algorithm has not terminated af¢¥| iterations then the current strategy will
agree withx on every vertex i'W. We can prove that such a strategy must be consistent(Witly),
and therefore the switching policy must terminate after astjW| iterations.

Proposition 16. Let o be a strategy that is not consistent with a sn@hé x ). Algorithm[1 will arrive at
a strategyo’ which is consistent witfiV, x) after at mostW| iterations.

Since FixSnare is implemented as a strategy improvememtrang policy that switches only prof-
itable edges, the strategy that is produced must be an iragretvategy. Therefore, at any point during
the execution of strategy improvement we can choose not itolsa& subset of profitable edges and run
FixSnare instead. Note that the strategy produced by FineSmay not be reachable from the current
strategy by switching a subset of profitable edges. This talme FixSnare switches a sequence of
profitable edges, some of which may not have been profitaliteioriginal strategy.

We propose a new class of strategy improvement algorithraisate aware of snares. These al-
gorithms will record a snare for every profitable back edge they encounter during their execution.
In each iteration these algorithms can either switch a $ulifsprofitable edges or run the procedure
FixSnare on some recorded snare that the current stratéggoissistent with. We call these algorithms
non-oblivious strategy improvement algorithms, and theegal schema that these algorithms follow is
shown in Algorithn{2.

Recall that oblivious strategy improvement algorithmsuresd a switching policy to specify which
profitable edges should be switched in each iteration. Hleaon-oblivious strategy improvement al-
gorithms require a similar method to decide whether to aipdyprocedure FixSnare or to pick some
subset of profitable edges to switch. Moreover, they mustideghich snare should be used when the
procedure FixSnare is applied. We do not claim to have thaitleé non-oblivious switching policy, but

9
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Algorithm 2 NonOblivioug o)
S:=0
while ¢ has a profitable edgdo
S:=SuU{Snaré(v,u) : (vu) is a profitable back edge im}
o = Policy(o,S)
end while
return o

in the rest of this section we will present one reasonabldatebf constructing a non-oblivious version
of an oblivious switching policy. We will later show that omon-oblivious strategy improvement algo-
rithms behave well on the examples that are known to causenexial time behaviour for oblivious
strategy improvement.

We intend to take an oblivious switching poliayas the base of our non-oblivious switching policy.
This means that when we do not choose to use the proceduredeSwve will switch the subset of
profitable edges that would be chosendchyOur goal is to only use FixSnare when doing so is guaranteed
to yield a larger increase in valuation than applyingClearly, in order to achieve this we must know how
much the valuations increase wherns applied and how much the valuations increase when FixSaar
applied.

Determining the increase in valuation that is produced Iphydipg an oblivious switching policy is
easy. Since every iteration of oblivious strategy improgatriakes polynomial time, We can simply
switch the edges and measure the difference between thentwwtrategy and the one that would be
produced. Leto be a strategy and |€? be the set of edges that are profitablesin For an oblivious
switching policya the increase of applying is defined to be:

Increaséa, o) = ;(Val"[“(P)] (V) — Val? (v))

We now give a lower bound on the increase in valuation thatpgfiGation of FixSnare produces.
Let (W, x) be a snare and suppose that the current stradeigyinconsistent with this snare. Our lower
bound is based on the fact that FixSnare will produce a glyat®at is consistent with the snare. This
means that Min’s best response is not currently choosingeape from the snare, but it will be forced
to do so after FixSnare has been applied. It is easy to setothatg the best response to use a different
edge will cause an increase in valuation, since otherwisdést response would already be using that
edge. Therefore, we can use the increase in valuation ttidbavobtained when Min is forced to use
and escape. We define:

SnarelncreasgW, x) = min{(Val? (y) +w(x)) — Val?(x) : (x,y) € EsqW)}

This expression gives the smallest possible increase uatrah that can happen when Min is forced to
use an edge in E8¢/). We can prove that applying FixSnare will cause an increas@luation of at
least this amount.

Proposition 17. Let o be a strategy that is not consistent with a sn@é x), and leto’ be the result of
FixSnarg¢oa, (W, x)). We have:

E(Vala' (v) —Val?(v)) > Snarelncreas&Ww, x)
ve

We now have the tools necessary to construct our proposedeagtion scheme, which is shown as
Algorithm[3. The idea is to compare the increase obtainedppyyang a and the increase obtained by
applying FixSnare with the best snare that has been prdyicesorded, and then to only apply FixSnare
when it is guaranteed to yield a larger increase in valuation

10
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Algorithm 3 (Augmenta))(o,S)

(W, X) = argmaxy ) esSnarelncreasX, u1)

if Increaséa, o) > SnarelncreasgW, x) then
P:={(vu) : (vu) is profitable incg}
o :=ola(P)]

else
o :=FixSnaréo, (W, X))

end if

return o

2100

Figure 3: A component of Friedmann’s exponential time examp

8 Comparison With Oblivious Strategy Improvement

In this section we will demonstrate how non-oblivious siggt improvement can behave well in situa-
tions where oblivious strategy improvement has exponitiri@ behaviour. Unfortunately, there is only

one source of examples with such properties in the litegatand that is the family of examples given
by Friedmann. In fact, Friedmann gives two slightly differéamilies of hard examples. The first type
is the family that that forces exponential behaviour for éfleswitches policy([5], and the second type
is the family that forces exponential behaviour for bothsalitches and optimal switching policies [6].

Although our algorithm performs well on both families, wdlMacus on the example that was designed
for optimal switching policies because it is the most insérey of the two.

This section is split into two parts. In the first half of thecion we will study a component part of
Friedmann’s example upon which the procedure FixSnare sapasform an optimal switching policy.
This implies that there are situations in which our augnteriascheme will choose to use FixSnare.
In the second half, we will show how the good performance encttmponent part is the key property
that allows our non-oblivious strategy improvement algons to terminate quickly on Friedmann’s
examples.

11
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8.1 Optimal Switching Policies

We have claimed that the procedure FixSnare can cause amgreatase in valuation than switching any
subset of profitable edges. We will now give an example upoichihis property holds. The example
that we will consider is shown in Figuké 3, and it is one of thenponent parts of Friedmann’s family of
examples that force optimal policies to take an exponentiatber of steps [6].

The diagram shows a strategy for Max as a set of dashed edgdso shows Min's best response
to this strategy as a dotted edge. Even though this exampld be embedded in an arbitrary game,
we can reason about the behaviour of strategy improvemespdxifying, for each edge that leaves the
example, the valuation of the successor vertex that the kdgks to. These valuations are shown as
numbers at the end of each edge that leaves the example.

In order to understand how strategy improvement behavesuwgédptermine the set of edges that are
profitable for our strategy. There are two edges that aretabddi. the edgéz,v) is profitable because the
valuation ofv is 2 which is greater than 0, and the edge titat leaves the example is profitable because
leaving the example gives a valuation of 2 and the valuatfopis 1. The edgdy,z) is not profitable
because the valuation afs 0, which is smaller than the valuation of 1 obtained by ilegithe example
aty.

For the purposes of demonstration, we will assume that ner @tige is profitable in the game into
which the example is embedded. Furthermore, we will asstiatenib matter what profitable edges are
chosen to be switched, the valuation of every vertex notaioet! in the example will remain constant.
Therefore, the all-switches policy will switch the edges) and the edge leading away from the example
at the vertexx. It can easily be verified that this is also the optimal sulo$gdrofitable edges, and so
the all-switches and the optimal policies make the samesies for this strategy. After switching the
edges chosen by the two policies, the valuatior wfll rise to 2, the valuation ot will rise to 3, and the
valuation ofy remain at 1.

By contrast, we will now argue that non-oblivious strategyprovement would raise the valuations
of x, y, andzto 21°°4 1. Firstly, it is critical to note that the example is a sndfeve setW = {v,x,y,z}
and choosg to be the partial strategy for Max that chooses the e@ges, (y,z), and(zv), then(W, )
will be a snare in every game into which the example is embekddéiis is because there is only one
cycle in the subgame induced W when Max playsy, and this cycle has positive weight.

Now, if the non-oblivious strategy improvement algorithrasraware of the snar®V, x) then the
lower bound given by Propositidn 117 would b&2 This is because closing the cycle forces Min’s
best response to use escape edge to avoid losing the gance. Zthis much larger than the increase
obtained by the optimal switching policy, the policies AugmifAll ) and AugmentOptimal) will choose
to run FixSnare on the snaf@/, x). Once consequence of this is that the policy Optimal is ngéon
optimal in the non-oblivious setting.

8.2 Friedmann’s Exponential Time Examples

The example that we gave in the previous subsection may apipba trivial. After all, if the valuations
outside the example remain constant then both the all-kestand optimal switching policies will close
the cycle in two iterations. A problem arises, however, wtienvaluations can change. Note that when
we applied the oblivious policies to the example, no progreas made towards closing the cycle. We
started with a strategy that chose to close the cycle at amywvertex, and we produced a strategy that
chose to close the cycle at only one vertex. When the assomittat valuations outside the example
are constant is removed, it becomes possible for a well dedigame to delay the closing of the cycle
for an arbitrarily large number of iterations simply by rapeg the pattern of valuations that is shown in
Figure[3.
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Figure 4: The bits of a binary counter.

Friedmann’'s family of examples exploits this property taldwa binary counter, which uses the
subgame shown in Figuré 3 to represent the bits. The gewealof this approach is shown in Figlte 4.
Friedmann’s example usesinstances of the cycle, indexed 1 throughThese bits are interconnected
in a way that enforces two properties on both the all-swidad the optimal switching policies. Firstly,
the ability to prevent a cycle from closing that we have désct is used to ensure that the cycle with
indexi can only be closed after every cycle with index smaller thhas been closed. Secondly, when
the cycle with index is closed, every cycle with index smaller thiis forced to open. Finally, every
cycle is closed in the optimal strategy for the example. Nbthie initial strategy is chosen so that every
cycle is open, then these three properties are sufficienirée toth switching policies to take at lea8t 2
steps before terminating.

The example works by forcing the oblivious switching poltoymake the same mistakes repeatedly.
To see this, consider the cycle with index- 1. When the cycle with inder is closed for the first
time, this cycle is forced open. The oblivious optimal sWwitgy policy will then not close it again for
at least another"2? steps. By contrast, the policies Augmghit ) and AugmentOptimal) would close
the cycle again after a single iteration. This breaks theegptial time behaviour, and it turns out that
both of our policies terminate in polynomial time on Friedm& examples.

Of course, for Friedmann’s examples we can tell simply bpéusion that Max always wants to keep
the cycle closed. It is not difficult, however, to imagine aample which replaces the four vertex cycle
with a complicated subgame, for which Max had a winning sgiatand Min’s only escape is to play
to the vertex with a large weight. This would still be a snédmat, the fact that it is a snare would only
become apparent during the execution of strategy impromerievertheless, as long as the complicated
subgame can be solved in polynomial time by non-obliviotastagy improvement, the whole game will
also be solved in polynomial time. This holds for exactly $aene reason as the polynomial behaviour
on Friedmann’s examples: once the snhare representing ligausie has been recorded then consistency
with that snare can easily be enforced in the future.

9 Conclusions and Further Work
In this paper we have uncovered and formalized a strong letlwden the snares that exist in a game

and the behaviour of strategy improvement on that game. We$taown how awareness of this link can
be used to guide the process of strategy improvement. Witlawegmentation procedure we gave one
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reasonable method of incorporating non-oblivious tealesginto traditional strategy improvement, and
we have demonstrated how these techniques give rise to gdwviour on the known exponential time
examples.

It must be stressed that we are not claiming that simply teatitig in polynomial time on Fried-
mann’s examples is a major step forward. After all, the ramded switching policies of Bjorklund
and Vorobyov [[2] have the same property. What is importarthé our strategy improvement algo-
rithms are polynomial because they have a better understandl the underlying structure of strategy
improvement. Friedmann’s examples provide an excellentiar@ary tale that shows how ignorance of
this underlying structure can lead to exponential time taieta.

There are a wide variety of questions that are raised by thik.wFirstly, we have the structure of
snares in parity and mean-payoff games. Thedrem 4 implasathalgorithms that find winning strate-
gies for parity and mean payoff games must, at least imiglic@onsider snares. We therefore propose
that a thorough and complete understanding of how snares iara game is a necessary condition for
devising a polynomial time algorithm for these games.

It is not currently clear how the snares in a game affect tlffecdity of solving that game. It is
not difficult, for example, to construct a game in which thaneexponential number of Max snares: in
a game in which every weight is positive there will be a snareevery connected subset of vertices.
However, games with only positive weights have been showseteery easy to solvé [9]. Clearly, the
first challenge is to give a clear formulation of how the dtnoe of the snares in a given game affects the
difficulty of solving it.

In our attempts to construct intelligent non-obliviousagtgy improvement algorithms we have con-
tinually had problems with examples in which Max and Min ssaoverlap. By this we mean that the set
of vertices that define the subgames of the snares have a iy Enersection. We therefore think that
studying how complex the overlapping of snares can be in a&gaay lead to further insight. There are
reasons to believe that these overlappings cannot beytatdlitrary, since they arise from the structure
of the game graph and the weights assigned to the vertices.

We have presented a non-oblivious strategy improvementitig that passively records the snares
that are discovered by an oblivious switching policy, arehtiises those snares when doing so is guar-
anteed to lead to a larger increase in valuations. While we Bhown that this approach can clearly
outperform traditional strategy improvement, it does ryiear to immediately lead to a proof of poly-
nomial time termination. It would be interesting to find aperential time example for the augmented
versions of the all-switches policy or of the optimal policyhis may be significantly more difficult
since it is no longer possible to trick strategy improvematt making slow progress by forcing it to
repeatedly close a small number of snares.

There is no inherent reason why strategy improvement dlgos should be obsessed with trying
to increase valuations as much as possible in each iteréfioadmann’s exponential time example for
the optimal policy demonstrates that doing so in no way guess that the algorithm will always make
good progress. Our work uncovers an alternate objectivestraegy improvement algorithms can use
to measure their progress. Strategy improvement algositbould actively try to discover the snares
that exist in the game, or they could try and maintain coesist with as many snhares as possible, for
example. There is much scope for an intelligent snare bass@gy improvement algorithm.

We have had some limited success in designing intelligesteshased strategy improvement algo-
rithms for parity games. We have developed a non-oblividteteryy improvement algorithm which,
when given a list of known snares in the game, either solveggime or finds a snare that is not in
the list of known snares. This gives the rather weak resudt strategy improvement algorithm whose
running time is polynomial ifV| andk, wherek is the number of Max snares that exist in the game.
This is clearly unsatisfactory since we have already arghetk could be exponential in the number of
vertices. However, this is one example of how snares can jpiéedo obtain new bounds for strategy
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improvement. As an aside, the techniques that we used téndbia algorithm do not generalize to
mean-payoff games. Finding a way to accomplish this taskifesin-payoff games is an obvious starting
point for designing intelligent snare based algorithmstfigs type of game.

Acknowledgements.l am indebted to Marcin Jurdzihski for his guidance, suppamd encouragement
during the preparation of this paper.
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A Proofs for Section[3

A.1 Proof of Theorem[4

Proof. For the sake of contradiction, suppose that a winning strategy fo8 that does not choose an
edge in EsQN). Sincey also does not choose an edge that le&Vesve have that Play, x, 1) never
leaves the salv, for every vertexv in W. Furthermore, sincg is a winning strategy for the subgame
induced byW we haveZ (Play(v, x, 7)) > O for every vertew in W, which contradicts the fact thatis
a winning strategy fos. O

B Proofs for Section®

B.1 Proof of Proposition[9

Proof. The algorithm is shown as Algorithid 4. We use the notat®hU to refer to the sub-game
of G induced by the set of verticdd. Its correctness follows from a result of Zielonka [[16] wnic
was originally shown for parity games, but identical tecjugis apply in this setting. L& be a set of
vertices, we define the set of vertices from which Max candahe token int&V in one step as

PreW) = {v€Vmax : There is an edde,u) withu e W}
U{V € Vwin : All edgegv,u) haveu € W}.

We then define the attractor Wf to be the set of vertices from which Max can force play Wto

W =W
W =W_;UPreW_1)
Attr (W) =Wy,

Zielonka showed that ¥V is a subset of Max’s winning set, which is the set of verticith walue greater
than 0, then both winning sets can be found by solving thegsuheG | Attr(W).

In our setting the algorithnx finds the seW, and it is clear that the loop computes Aff). There-
fore, we get that our algorithm finds the 0-mean partitionrédwer, since each recursive call decreases
the size of the game by at least one vertex we get that at|Wpeslls toa are made.

Algorithm 4 ZeroMeanPartitiofo, o, G)
o:=ua(o)
while There is an edgév, u) with Val? (v) < « and VaF (u) =« do
0 =0V U
end while
Weo:={v : Val?(v) = o}
U:=V\W.
(W, W.,) := ZeroMeanPartitioto,a,G [ U)
return (W, Wso UW. )
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C Proofs for Section®

C.1 Proof of Proposition[12

Proof. SinceC is a critical set it must be the case that every verte€ imust be in the subtree of
according toog, and this implies thatr[v — u](w) is not the sink for every vertew in C. Note that only
paths ending at the sink can have finite valuations, and thauoh paths can exist wherjv — u] is
played inG | C. This implies that V@F‘"C_)“] (w) is eitheroo or —o, and we will argue that the latter is not
possible.

Suppose for the sake of contradiction that there is a vaevtesth the property Vag[rv:“] (W) = —oo,
Let T be bigic(olv— u]). We definet’ to be a strategys that follows T on the vertices irG | C and
makes arbitrary decisions at the other vertices. For evertexw in Vyin we choose some edder, )

and define
r(w) {T(W) |fwe(?,
X otherwise.

Now considero|v — u] played against’ on the gaméS. Note that neither of the two strategies choose
an edge that leaves the &tind so Play(w, o[v+— u, ') = Playg,c(w,a[v — u],T’) for every vertex

w in C. Since valuations can be derived from the play, this impies Vag[‘"_}““' (W) = —c0. By the
properties of the best response we have for every variexC.

valZ¥ ! (w) < valZVU T (w) = —eo < ValZ(w)

This contradicts Theoren 7, and so we can conclude théﬁ?é'] (w) = o for every vertexwinC. [

C.2 Proof of Proposition[14

Proof. Consider a strategy for player Min for which there is no edge, y) in EsdCritical® (v,u)) with
T(x) =y. We argue that VAI*~"T(w) = w for every vertexw in Critical’(v,u). Note that neither
o[v— u] or T chooses an edge that leaves Crifi¢gju), which implies that Plagw, o[v — u],T) does
not leave Criticell (v,u), for every vertexw in Critical (v,u). By Propositiori IR we have that[v — u]
is a winning strategy foG | Critical® (v,u), and therefore VAIM7Y(w) = « for every vertexw in
Critical? (v, u).

We will now construct a strategy for Min which, when playedmgto[v — u], guarantees a finite
valuation for some vertex in Critica{v,u). Let (x,y) be some edge in E&Critical? (v,u)). We define
the Min strategyr, for every vertexw in Vyin as

T(W):{y if w=x,

br(o)(w) otherwise.

By definition of critical set we have thgtcannot be in the subtree afsince otherwise it would also be in
Critical’ (v,u). This implies that Plafy, o,br(o)) = Play(y, o[v— u], T), sincet = br(ag) on every vertex
that is not in Subtregv), ando = g|v+ u] on every vertex that is net From this we can conclude that
Val?M=UT (y) = Val®(y) < . By construction off we have that VAV YT (x) = Val?MUT (y) 4 w(x),
and so we also have VA7 (x) < o,

In summary, we have shown that every Min stratedlyat does not use an edge in Esgtical’ (v, u))
has the property VA"~ (w) =  for every vertexv in Critical’ (v,u). We have also shown that there
is a Min strategyr which guarantees VAT (w) < oo for some vertexv in Critical®(v,u). From the
properties of a best response we can conclude that Min mestamse edge in E§Critical’ (v,u)). O
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C.3 Proof of Proposition[15

Proof. In order to prove the claim we will construct an alternate ganwe define the gamé’ =
(V, Viviax, Viiin , E’, W) where:

E'={(vu) : o(v) =uor brg(o)(v) =uor x(v) = u}.

In other words, we construct a game where Min is forced to playo)(v) and Max’s strategy can be
constructed using a combination of the edges used bapd x. Since Min is forced to play lay(o)(v)

we have that V@8 (v) = Valg (v) for every vertexv. To decide if an edge is profitable we compare two
valuations, and since the valuation@fis the same in botks andG’ we have that an edge is profitable
for o in G if and only if it is profitable foro in G'. Note also that the only wag can be modified in
G’ is to choose an edge that is chosenxblyut not byo. Therefore, to prove our claim it is sufficient to
show thato has a profitable edge @'.

We define the strategy:
v) ifveWw,
X/(V) — X( ) -
o(v) otherwise.

We will argue thaty’ is a better strategy thao in G'. The definition of a snare implies thatis a
winning strategy for the sub-game inducedWyand by assumption we have thatdy does not use an
edge in EsEN). We therefore have that \é(v) = oo for every vertexv in W. On the other hand, since
we are considering the positive cycle problem, we know ttedf &) < o for every vertexvin W. This
implies thato is not the optimal strategy i6'. Theorenil’ implies that all non-optimal strategies must
have at least one profitable edge, and the only edges thatcarofitable inG’ are those chosen by.
Therefore there is some edge choseryhtat is profitable foio in G’ and as we have argued this also
means that the edge is profitable toin G. O

D Proofs for Section[T

D.1 Proof of Proposition[16

Proof. By Propositiorf_Ib we know that as long as the current straigyt consistent with the snare
(W, x) there must be an edge u) with x (v) = uthat is profitable iro. The switching policy will always
choose this edge, and will terminate once the current giyaseconsistent with the snare. Therefore in
each iteration the number of vertices upon whicland x differ decreases by 1. It follows that after at
most |W/| iterations we will haveo (v) = x(v) for every vertexv in W. Since is a winning strategy
for the sub-game induced by we have that player Min must choose some edge that |&&visavoid
losing once this strategy has been reached. O

D.2 Proof of Proposition[17

Proof. We will prove this proposition by showing that there existeng vertexw with the property
Val? (w) — Val® (w) > Snarelncreas®V, x). Since the procedure FixSnare switches only profitablesdge
we have by Theorefi 7 that Va[v) — Val? (v) > 0 for every vertex. Therefore, this is sufficient to prove
the proposition becausg,cy (Val® (v) — Val? (v)) > Val® (w) — Val® (w).

Propositior 16 implies that’ is consistent with the sna(®V, x). By the definition of snare consis-
tency, this implies that Bo’) must use some edde/,x) in EsqW). We therefore have that Va{w) =
val® (x) +w(w). Since the FixSnare procedure switches only profitable £dge have by Theoref 7
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that VaP (x) > Val(x). The increase atis therefore

Val?' (w) — Val? (w) = Val? (X) +w(w) — Val® (w)
> Val?(x) +w(w) — Val? (w)
> Snarelncreas#V, x )
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