
On the Continuous CNN Problem

John Augustine? and Nick Gravin

School of Physical and Mathematical Sciences
Nanyang Technological University

Singapore 637371.
jea@ics.uci.edu, ngravin@gmail.com

Abstract. In the (discrete) CNN problem, online requests appear as
points in R2. Each request must be served before the next one is revealed.
We have a server that can serve a request simply by aligning either its
x or y coordinate with the request. The goal of the online algorithm is
to minimize the total L1 distance traveled by the server to serve all the
requests. The best known competitive ratio for the discrete version is
879 (due to Sitters and Stougie).
We study the continuous version, in which, the request can move con-
tinuously in R2 and the server must continuously serve the request. A
simple adversarial argument shows that the lower bound on the compet-
itive ratio of any online algorithm for the continuous CNN problem is
3. Our main contribution is an online algorithm with competitive ratio
3 + 2

√
3 ≈ 6.464. Our analysis is tight. The continuous version general-

izes the discrete orthogonal CNN problem, in which every request must
be x or y aligned with the previous request. Therefore, Our result im-
proves upon the previous best competitive ratio of 9 (due to Iwama and
Yonezawa).

1 Introduction

The k-server problem has been influential in the development of online algo-
rithms [3]. We have k servers that can move around a metric space. Requests
arrive in an online manner on various locations in the metric space. After each
request arrives, one of the k servers must move to the request location. The
online algorithm must make this decision without any knowledge of the future
requests. The objective is to minimize the sum of the distances traveled by the
k servers.

A natural variant of the k-server problem, the (discrete) CNN problem, was
introduced by Koutsoupias and Taylor [4]. The name derives from the following
illustrative example: consider a sequence of newsworthy events that occur in
street intersections in Manhattan. A CNN news crew must cover these events
with minimal movement. Since they have powerful zoom lenses, they only need
to be at some point on either one of the two cross streets. More formally, we are

? Work done in part while at Tata Research Development and Design Centre, Pune,
India.

ar
X

iv
:1

00
4.

23
93

v3
 [

cs
.D

S]
 1

6
Se

p
20

10

given a sequence of requests as points from R2 that appear in an online manner.
We have one server that can move around in R2. To serve a request, the server
must merely align itself to the x or y coordinate of the request. The objective is
to minimize the total distance traveled by the server in L1 norm.

There is an equivalent alternative definition that is also used in literature in
which, instead of a single server that can move in 2D, we have two independent
servers with one restricted to move along the x-axis, while the other is restricted
to move along the y-axis. Given an online request at (a, b), either the x-axis server
must move to x = a or the y-axis server must move to y = b. The objective is
to minimize the sum of distances moved by either servers. Notice that the two
independent servers in different dimensions are equivalent to a single server that
can move around in both dimensions. For this reason, the CNN problem is also
called sum of two 1-server problems [4].

pi

~di

Fig. 1. Illustration for the two server definition of the continuous CNN problem.

We introduce the continuous version of the CNN problem. We use the al-
ternative two server definition to illustrate the continuous version. Consider the
problem of covering the activities of a soccer match (see Figure 1). For the sake
of simplicity in our illustration, let us have two cameras on rails, one along the
length (i.e., the x-axis server) and the other along the breadth (the y-axis server)
of the field. Their orientations are fixed perpendicular to the direction of move-
ment (of course, pointing into the field). As the ball is kicked around, at least one
of the two cameras must track the ball continuously. Informally, the input is a
request point moving along a continuous trajectory that is revealed in an online
manner and a server must continuously align itself to the x or y coordinate of
the request.

We say that two points are x-aligned (respectively, y-aligned) if they share
the same x (respectively, y) coordinate. Also, we say that two points are aligned
if they are either x-aligned or y-aligned. We are now ready to formally define
the continuous CNN problem. For this formal definition (and for the rest of the
paper) we have a single server that can move around in 2D space. Our input is an
online sequence of pairs ri = (pi,di), where pi is a point on pi−1 + tdi−1, t ≥ 0,
and di is a unit vector in some arbitrary direction. (In the soccer illustration, pi
is the point on the previous trajectory where the ball is intercepted and di is the

new direction in which it is kicked.) Without loss of generality, the first point is
assumed to be the origin. The server also starts at the origin. When an input pair
(pi,di) is revealed, the server and pi are already aligned. The online algorithm
must then commit to a continuous trajectory Ti(t) of the server parameterized by
t such that for all t ≥ 0, Ti(t) is aligned with pi + tdi. After the online algorithm
commits, the next request (pi+1,di+1) arrives, the online server moves to the
point on Ti that aligns with pi+1 along the trajectory Ti. The objective is to
minimize the total distance traveled by the server in L1 norm.

History of CNN problems: The discrete version of the CNN problem was dis-
cussed in several conferences and seminars in the late 1990s without any break-
throughs[1, 2]. It was formally introduced by Koutsoupias and Taylor [4]1. They
conjectured that this problem has a competitive algorithm along with a lower
bound of 6 +

√
17 on the competitive ratio of any deterministic online algo-

rithm. Their conjecture was proved affirmatively in [5] by Sitters, Stougie, and
de Paepe, albeit, with an algorithm that was 105-competitive. For a fascinating
discussion of the prevailing understanding of this problem in 2003, see [1]. Even-
tually, Sitters and Stougie [6] made further improvements and provided a 879-
competitive algorithm. In fact, their work focussed on the generalized k-server
problem which can be characterized as the sum of several 1-server problems on
arbitrary metric spaces. The orthogonal CNN problem was introduced by Iwama
and Yonezawa [2]. Each request (except the first one) must either share the x
coordinate or the y coordinate with the previous request. With this restriction,
they were able to improve the competitive ratio dramatically to 9.

Our Contribution: We focus on the continuous CNN problem, which is a gen-
eralization of the orthogonal CNN problem. We formalize this in the following
Claim (with proof deferred to the Appendix).

Claim 1. Any c-competitive algorithm A for the continuous CNN problem can
be applied to the orthogonal CNN problem in a manner that preserves the com-
petitive ratio.

A typical adversarial argument gives us the following lower bound on the com-
petitive ratio.

Claim 2. If there is a c-competitive algorithm for the continuous CNN problem,
then c ≥ 3 even on a unit square.

In Section 2, we introduce a simpler problem called the unit CNN problem and
prove a lower bound of 3 on its competitive ratio in Theorem 4. The proof of
Theorem 4 can be easily adapted for Claim 2.

We now provide an example that informally illustrates how we get a lower
bound of 3 on the competitive ratio of the continuous CNN problem; see Figure 2.
Consider the unit square with both the optimal offline server and the online
server at the top-left corner. In this adversarial example, the request moves to the

1 Conference version appeared in STACS 2000.

bottom-right corner so that the online server is forced to choose between either
a clockwise or counter-clockwise direction. Assume, without loss of generality,
that it chooses the clockwise direction and moves to the top-right. The offline
server, however, makes a single move down to the bottom-left. Suppose now the
request moves around repeatedly in the left and bottom edges of the unit square,
i.e., it makes a repeated “L” shaped move. Clearly, the offline server is already at
a “sweet spot” and therefore stays unmoved. The online server, however, must
correct its position and move to the sweet spot to offset its disadvantage. Notice
that the online server moved three units of distance while the optimal offline
server just needed just one.

Sweet spot

Starting point

Trajectory of request

Trajectory of

Trajectory of

offline server

online server

Correction for online server

Sweet spot

Starting point

Fig. 2. The figure on the left shows the request trajectory. The figure on the right
shows the trajectory of online and offline servers.

The significant contribution of our paper is an online algorithm for the con-
tinuous CNN problem with a competitive ratio of 3 + 2

√
3 = 6.464. In light of

Claim 1, our result improves upon the 9-competitive algorithm for the orthogo-
nal CNN problem [2]. Our algorithm alternates between two phases, namely, the
bishop phase and the rook phase. Hence, we call it the Bishop-Rook algorithm or
just the BR algorithm. Our analysis using a non-decreasing potential function
is non-trivial. Finally, we show that our analysis is tight by constructing input
instances for which the competitive ratio is realized.

Organization of the paper: In Section 2, we introduce a simplified problem called
the unit CNN problem. We prove a lower bound of 3 on the competitive ratio
of algorithms for the unit CNN problem, from which, the lower bound of the
continuous CNN problem follows quite immediately. In Section 3 we present the
BR Algorithm for the continuous CNN problem. We analyze the BR algorithm in
Section 4 and show that it has a competitive ratio of (3 + 2

√
3) ≈ 6.464.

2 Preliminaries: Lower Bound

The lower bound for the competitive ratio of the continuous CNN problem (see
Claim 2) is 3. As it turns out, this lower bound shows up in a much simpler
problem that we call the unit CNN problem. We provide the lower bound proof
for the unit CNN problem (Theorem 4) which easily encompasses Claim 2. For
the sake of completeness, we state the upper bound for the unit CNN problem,
but defer all details and proofs to the Appendix.

In the unit CNN problem, a sequence of requests, (r1, r2, . . .), appear online
as points in R2. We have a server that must serve each request ri by moving to a
location that is aligned vertically or horizontally with the request. Each time the
server moves either horizontally or vertically, it has to pay $1 (regardless of the
distance moved). If the move has both a horizontal and a vertical component, it
pays $2. The objective of the server is to minimize the total payment. We also
consider the restricted version called the unit orthogonal CNN problem in which
any pair of consecutive requests must either share an x or y coordinate.

We begin with a simple observation that we state without proof because,
in essence, it has been noticed before by Iwama and Yonezawa [2]. Define a
sequence of moves by any algorithm to be frugal if, for each move in the sequence,
the payment is never more than the minimum required to serve the current
outstanding request. Therefore, by definition, no frugal sequence of moves will
include a $2 move.

Observation 3. Given any sequence of moves that pays $d to serve the input
sequence of requests, there is a frugal sequence that also pays at most $d to serve
all the requests.

Theorem 4. If there is a c-competitive algorithm for the unit CNN problem,
then c ≥ 3 even when the requests arrive in an orthogonal manner.

Proof. For this proof, we limit ourselves to input instances in which the requests
can only appear in the vertices of the unit square with the origin at its bottom
left. Furthermore, we restrict the requests to appear in an orthogonal manner,
i.e., each request (except the first one) shares either an x or y coordinate with
the previous request.

Given Observation 3, we can assume that the server will not move if it is
already aligned to the request. Notice that an adversary can force the online
algorithm to move at each step. We keep server one step away from each request
ri by placing next request ri+1 diagonally opposite to the current position of the
server.

Given such a sequence of requests, an offline algorithm splits it into consecu-
tive triples. The offline server moves at most once to service each triple ri−1, ri
and ri+1. If possible, the offline server moves to ri in one step — it can service
ri−1, ri and ri+1 from ri. Such a one step move to ri is not possible only when
the server and ri are diagonally opposite each other, so the server must be within
1 hop of both ri−1 and ri+1. It simply serves ri−1 from the current position and
then hops to ri+1 to serve both ri and ri+1.

So, for every three steps of the online algorithm, the offline server requires
at most 1 move, thereby completing the proof. ut
Claim 5. There exists a 4-competitive algorithm for the unit CNN problem

Claim 6. There exists a 3-competitive algorithm for the orthogonal unit CNN
problem.

3 The BR Algorithm for the Continuous CNN Problem

We now turn our attention to the main problem that we address in this paper
— the continuous CNN problem. Recall that we formally defined the input as
an online sequence of pairs (pi,di). Informally, we treat the request as a point
starting at the origin and moving to each subsequent pi in straight line segments
whose direction is given by the vector di. So we use the term request trajectory
to refer to the path traversed by the request. The server’s trajectory must stay
aligned with request trajectory at all times. In this section, we describe the
Bishop-Rook algorithm or just the BR algorithm that alternates between two
phases, namely, the Bishop phase and the Rook phase. As the name implies,
the server moves diagonally during the Bishop phase. In the Rook phase, we
treat the horizontal and vertical components of the server separately, leading
to movements that mimic Rooks in Chess. The algorithm switches between the
phases when appropriate conditions (described subsequently for each phase) are
met.

The key intuition behind the algorithm is the following. Suppose the offline
server manages to get to a “sweet spot” from which it can align with the request
trajectory with little or no movement. Then, the online server also must home
into that spot. Iwama and Yonezawa [2] also exploit this idea. They get closer
to a potential sweet spot using “L” shaped moves — hence, one can call it the
Knight algorithm. To achieve this homing effect in the BR algorithm, we define
an offset vector at the end of the bishop phase that, when added to the online
server’s position, will point to our candidate sweet spot. In the rook phase, we
use the offset vector to guide the online server to the sweet spot.

Bishop Phase: During the bishop phase, as the name implies, the server moves
diagonally making a 45◦ angle with the axes. Without loss of generality, let the
point pi be at (0, 0) and the online server be on the non-negative part of y-axis
at (0, h), so h ≥ 0; see Figure 3. Throughout the bishop phase, the server moves
in a manner that maintains x-alignment with the request trajectory. Notice that
this defines the x component of the server movement. To ensure the diagonal
movement of the bishop phase, the server also moves in the −y direction. For
every maximal δx that the server moves in either the +x or −x direction, the
server simultaneously moves a distance |δx| in the −y direction. If (and when)
the position of server and request trajectory coincide, we terminate the bishop
phase and switch to the rook phase. Let (sx, sy) be the coordinates of the point
at which they coincide. Then, the offset vector o = −sxx, where x is the unit
vector in the positive x direction.

Fig. 3. Bishop phase

Fig. 4. Rook phase without offset
update

Fig. 5. Rook phase
showing offset update

Rook Phase: At the beginning of the rook phase, positions of server and request
trajectory coincide. Without loss of generality we assume that offset is in the
−x direction. We maintain two invariants throughout the rook phase. However,
in so doing, we are judicious with the L1 distance traveled by the server.

y-alignment: The server and request trajectory are always y-aligned. This fully
defines the movement of the server along the y direction because the server
maintains the same y coordinate as that of the request.

x coordinate inequality: The x coordinate of the server is always less than
or equal to the x coordinate of the request trajectory. This invariant is more
subtle. When the x coordinate of the request trajectory is strictly greater
than that of the server, the server’s x coordinate stays unchanged — this is
to ensure that we are judicious with the L1 distance traveled. When the x
coordinates coincide and the request trajectory is moving in the−x direction,
then the server moves along with the request trajectory.

During the rook phase, the offset vector o decreases whenever the server
moves. The rate of decrease depends on the horizontal and vertical components
of the movement. The rate at which |o| decreases is given by:

|o| ←

 |o| − (1 +
√

3)|t| if server and request move a distance t vertically
|o| if request moves but server does not
|o| − t if server and request move a distance t horizontally

When |o| reaches 0, we switch to the bishop phase. Fig. 4 depicts the working
of the rook phase, but does not show the change in offset . Fig. 5 shows how
the offset shrinks as the phase progresses.

4 Analysis of the BR Algorithm

To simplify the analysis, we assume that we are working on an instance of the
continuous orthogonal CNN problem, i.e, all the direction vectors di are orthog-
onal with respect to the axes. This does not affect our analysis because any
straight line of arbitrary angle can be approximated by a series of infinitesimally
small x and y components.

Before we proceed with the analysis, we make a simple observation that
allows us to insert artificial points into the input sequence. Suppose we are given
a sequence of input requests I = ((p1,d1), . . . , (pi,di), (pi+1,di+1), . . .). Consider
the sequence I ′ = (p1,d1), . . . , (pi,di), (p

′
i,di), (pi+1,di+1), . . ., where p′i lies on

the line segment between pi and pi+1. Then any server trajectory for serving the
request sequence I will also serve I ′ and vice versa.

Our analysis uses a potential function that is non-decreasing throughout the
execution of the algorithm. We define a cycle to be the combination of a bishop
phase and the subsequent rook phase. Recall that at the start of a cycle, the
offset is 0. We re-orient our view such that the next outstanding request is at
the origin and the online server is at (0, h), where h ≥ 0. When re-orienting our

view, we ensure that the potential remains unchanged. This is shown formally
in Remark 1. The potential function Φ is a function of the offset and the
parameters defined as follows:

`opt and `on are the distances traveled by the optimal offline server and the
online server, respectively,

popt and pon are the positions of the optimal offline server and the online server,
respectively.

The potential function is given by

Φ = (3 + 2
√

3)`opt − 3d(pon + o, popt)− `on − |o|+ f(|o|, popt, pon), (1)

where d(p, q) is the L1 distance between points p and q. To define f , we first
define h = popty − pony , where popty and pony are the y coordinates of popt and pon.
Now,

f(o, popt, pon) =

0 if h ≤ 0

(6− 2
√

3)h if 0 ≤ h ≤ |o|
(6− 2

√
3)|o| if |o| ≤ h

Theorem 7. Φ is non-decreasing throughout the execution of the BR algorithm
and this implies a competitive ratio of (3 + 2

√
3).

We first provide a series of lemmas that lead to the proof of Theorem 7.

Lemma 1. If the online server stays still, Φ does not decrease.

Proof. Note that o remains unchanged when the online server stays still. Also,
the optimal server either (i) does not move, (ii) moves horizontally (arbitrary
distance) or (iii) moves vertically the same distance that the request moves. In
all three cases, Φ does not decrease. ut

Corollary 1. From Lemma 1, it follows that, in the bishop phase, Φ does not
decrease when request moves vertically.

We define the offset halfplane to be the halfplane x ≤ ponx . Naturally, its
complement is x > ponx . Since ponx can change as the online server moves, the
offset halfplane also changes accordingly.

Corollary 2. From Lemma 1, it follows that, in the rook phase, Φ does not de-
crease when request moves horizontally in the complement of the offset halfplane.

Remark 1. At the start of each cycle, the axes of the euclidean plane can be
redrawn (orthogonally) without changing Φ.

Proof. At the start of each cycle, offset is 0. Therefore, only the first three
terms of Equation 1 are non-zero. Those three terms do not change if the axes
are redrawn orthogonal to the previous axes. ut

In the rest of the lemmas, since we can insert new points into the request
sequence, we show that Φ does not decrease for small ε moves of the request in
the direction specified.

Lemma 2. In the bishop phase, Φ does not decrease when the request moves a
distance ε in the horizontal direction.

Proof. We treat this proof in cases based on the behavior of the optimal offline
algorithm.

Case: popt is unchanged. This is only possible if popt and request are y-
aligned. `opt is unchanged. `on increased by 2ε. |o| has changed by at most
ε. f = 0 because h ≤ 0. If the request moves in the same direction as o,
then |o| decreases by ε. d(pon + o, popt) decreased by ε. Overall, Φ does not
decrease (see Fig. 6).

Case: popt moves vertically and aligns with request. This is a composi-
tion of Lemma 1 and the previous case (see Fig. 7).

Case: popty ≤ pony and popt and request are x-aligned for the duration of the move.
`opt increases by ε. If request moves in the same direction as o, then |o| de-
creases by ε and d(pon + o, popt) decreases by 2ε, otherwise, |o| increases
by ε and d(pon + o, popt) is unchanged. `on increases by 2ε. f remains at 0.
Therefore, Φ does not decrease (see Fig. 8).

Case: popty ≥ pony and popt and request are x-aligned for the duration of the move.
`opt increases by ε. If request moves in the same direction as o, then |o| de-
creases by ε and d(pon + o, popt) remains unchanged. Otherwise, |o| increases
by ε and d(pon + o, popt) increases by 2ε. `on increases by 2ε. h in f increased
by ε (see Fig. 9).
The easy case is when |o| decreases. We assume that either |o| ≥ h or |o| ≤ h.
Otherwise, we can insert a request when the change happens. With either
option, the change in f term is positive and since |o| decreases, one can work
out that Φ increases.
When |o| increases, the analysis tightens. The f term increases by (6−2

√
3)ε

because |o| and h also increase by ε. Therefore, ∆Φ = (3 + 2
√

3)ε−6ε−2ε−
ε+ (6− 2

√
3)ε = 0.

Case: popt and request are x-aligned for the duration of the move. In this
case, we are not restricting the relative locations of popt and pon. In partic-
ular, pon ≥ popt first, then after some point, the inequality is interchanged.
If we insert a request at that point, then, this case breaks into the previous
two cases.

ut

Lemma 3. In the rook phase, Φ does not decrease when request moves horizon-
tally into the offset halfplane.

Proof. As the request moves a distance ε, the online server goes with it. (So, the
request does not enter the offset halfplane, but rather pushes it by a distance ε.)
Therefore, |o| decreases by ε.

popt

pon

ε

Fig. 6. Case: popt is un-
changed

o

o

pon

popt

ε

Fig. 7. Case: popt moves ver-
tically

pon

o

o

popt

ε

Fig. 8. Case: popty ≤ pony

o

pon

o

popt

ε

Fig. 9. Case: popty ≥ pony

Case: popt stays still. Clearly, popt is y-aligned with the request. `opt and
d(pon + o, popt) are unchanged, but `on increases by ε. Since popt and pon are
y-aligned, f = 0. Recall that |o| decreases by ε. Therefore, Φ is unchanged
(see Fig. 10).

Case: popt makes a vertical move after which, popt and request are y-aligned.
We can assume that popt made the jump first before pon moved along with
the request. From Lemma 1, Φ does not decrease when popt jumped. pon

moving along with the request is handled by the previous case (see Fig. 11).

Case: popt makes an x-aligned move. `opt and `on increase by ε. d(pon + o, popt)
decreased by ε. Since |o| decreased by ε, f decreases at most by (6− 2

√
3)ε

(see Fig. 12). Therefore,

∆(Φ) ≥ (3 + 2
√

3)ε+ 3ε+ ε− ε− (6− 2
√

3)ε ≥ 0. ut

Lemma 4. In the rook phase, Φ does not decrease when request moves vertically.

Proof. Note that all vertical moves of ε distance in the rook phase decrease |o|
by (1 +

√
3)ε.

popt pon

o

o

ε

Fig. 10. Case: popt stays still

pon

o

o

popt

ε

Fig. 11. Case: popt moves vertically

pon

o

o

popt

ε

Fig. 12. Case: popt makes an x-
aligned move

Case: popty ≤ pony and popt is x-aligned and therefore does not move. `opt

is obviously unchanged, but `on increases by ε. d(pon + o, popt) decreased
by at least (1 +

√
3)ε − ε =

√
3ε. Since h ≤ 0, ∆(f) = 0. Therefore,

∆(Φ) ≥ 3
√

3ε+
√

3ε > 0 (see Fig. 13).
Case: popty ≥ pony and popt is x-aligned, so it does not move. pon and request move up by ε.

As in the previous case, `opt remains unchanged, but `on increases by ε. Also,
|o| decreased by (1 +

√
3)ε. d(pon + o, popt) decreased by (1 +

√
3)ε + ε =

2ε +
√

3ε. Both h and |o| decreased, so f decreased as well by at most
(1 +

√
3)(6− 2

√
3)ε (see Fig. 14). Therefore,

∆(Φ) ≥ 3(2 +
√

3)ε− ε+ (1 +
√

3)ε− (6− 2
√

3)(1 +
√

3)ε ≥ 0

Case: popt is still, but pon and request start below popt, move up and cross over to above popt.
This is simply a composition of the above two cases, so Φ does not decrease.

Case: popty ≥ pony and popt is x-aligned, so it does not move. pon and request move down by ε.

`opt is unchanged, but `on increases by ε. |o| decreased by (1+
√

3)ε. d(pon + o, popt)
decreased by (1 +

√
3)ε− ε =

√
3ε. While h increases, |o| decreased. There-

fore, f might decrease, but at most by (1 +
√

3)(6 − 2
√

3)ε. Therefore,
∆(Φ) ≥ 3

√
3ε+

√
3ε− (1 +

√
3)(6− 2

√
3)ε = 0 (see Fig. 15).

Case: popt starts out y-aligned, but it x-aligns itself to the request with a horizontal move.
This case can be viewed as the composition of two parts. popt moves first
and Φ does not decrease (by Lemma 1). Then, popt stays still, but request
and server move up. This is the previous case. Hence, Φ does not decrease
(see Fig. 16).

Case: popt moves vertically (up or down) and stays y-aligned. `opt and
`on increase by ε. |o| decreases by (1+

√
3)ε, but d(pon + o, popt) increases by

at most (1 +
√

3)ε. Finally, f remains at 0. Therefore, ∆(Φ) ≥ (3 + 2
√

3)ε−
3(1 +

√
3)ε− ε+ ε+

√
3ε = 0 (see Fig. 17). ut

ε

popt

pon

o

o

Fig. 13. Case: popty ≤ pony and popt

is x-aligned

ε

pon

o

o

popt

Fig. 14. Case: popty ≥ pony and popt

is x-aligned. pon moves up

o

popt

ε

pon

o

Fig. 15. Case: popty ≥ pony and popt

is x-aligned. pon moves down

o ε

pon

o

popt

Fig. 16. Case: popt x-aligns with a
horizontal move

o ε

pon

o

popt

Fig. 17. Case: popt moves vertically

Proof (of Theorem 7). Φ started at 0 and, from Lemmas 1, 2, 3, 4, and Corol-
lary 2, we know that it only increased. Without loss of generality, we can as-
sume that we terminate at the end of the rook phase, at which point, the f
function will evaluate to 0. If we terminate at some other point in the cycle,
f might be non-zero. For the purpose of analysis, we can perform a simple

trick to bring f to zero without increasing `opt. In particular, we artificially
move the request repeatedly in an “L” shaped manner with popt at the cor-
ner. pon will home in on this corner point as well and once it coincides with
the corner, f will become zero without incurring any increase in `opt. Since
Φ = (3 + 2

√
3)`opt − 3d(pon + o, popt) − `on − |o| ≥ 0, and d(pon + o, popt) and

|o| are non negative, (3 + 2
√

3)`opt ≥ `on. ut

Remark 2. The analysis of our algorithm is tight, i.e. there are infinite sequences
of requests for which `on = (3 + 2

√
3)`opt.

Proof. We provide two different sequence of input. Our first sequence starts with
popt at the origin. pon and request are at (0, 1) and we are at the beginning of
the bishop phase. Then request moves to (0, 0) and then to (1, 0). pon makes a
diagonal move to (1, 0), but popt does not move. So, `on has increased by 2, but
`opt stays unchanged. At this moment our algorithm is in the beginning of the
rook phase with o = −x, where x is the unit vector along x-axis. Request moves
from (1, 0) to (1, 1

1+
√
3
); popt moves together with it from (0, 0) to (0, 1

1+
√
3
).

According to our algorithm pon should follow after the request and at the end
of its move o becomes 0. Thus we get to the bishop phase of our algorithm. `opt

and `on have both increased by 1
1+
√
3
. Note that we are back in the situation

that we started, so the adversary can repeat this sequence ad infinitum. In each
cycle, `opt has increased by 1

1+
√
3

and `on increased by 2 + 1
1+
√
3

length in total.

Therefore, `on

`opt = (2 + 1
1+
√
3
)(1 +

√
3) = 3 + 2

√
3. ut

In the proof of Remark 2, we provide two tight examples (although the sec-
ond example is deferred to the Appendix) to indicate how Φ balances between
multiple scenarios. We feel that minor adjustments to Φ will not reduce the
competitive ratio.

Acknowledgment

We are grateful to Ning Chen, Edith Elkind, Sachin Lodha, Srinivasan Iyengar,
Sasanka Roy and Dilys Thomas for useful discussions and ideas.

References

1. Marek Chrobak. Sigact news online algorithms column 1. SIGACT News, 34(4):68–
77, 2003.

2. Kazuo Iwama and Kouki Yonezawa. The orthogonal CNN problem. Inf. Process.
Lett., 90(3):115–120, 2004.

3. Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118,
2009.

4. Elias Koutsoupias and David Scot Taylor. The CNN problem and other k-server
variants. Theor. Comput. Sci., 324(2-3):347–359, 2004.

5. René Sitters, Leen Stougie, and Willem de Paepe. A competitive algorithm for
the general 2-server problem. In ICALP ’03: 29th International Colloquium on
Automata, Languages and Programming, Malaga, Spain, pages 624–636, 2003.

6. René A. Sitters and Leen Stougie. The generalized two-server problem. J. ACM,
53(3):437–458, 2006.

Appendix

Proof (of Claim 1). Recall that, in the orthogonal CNN problem, any two con-
secutive pairs of requests must share either the same x or y coordinate. Given
an online input sequence Iortho = (p1, p2, . . .), we must construct an online se-
quence of requests Icont for the continuous CNN problem. When a new request
pi arrives in Iortho, we construct the next request in Icont as follows: (pi−1,di−1),
where di−1 = pi−pi−1

|pi−pi−1| is the unit vector in new direction. Clearly, the request

trajectories in both the orthogonal and the continuous CNN problem instances
are exactly the same. Therefore, any online algorithm A for Icont can also be
used for Iortho. ut

For the purpose of this proof, we restrict requests to appear in an orthogonal
manner, i.e., each request (except the first one) shares either the same x or y
coordinate as the previous request.

Second tight instance for Remark 2: The second sequence is as follows. Both popt

and pon be at (0, 1) in the beginning of the bishop phase. The request is at the
origin. Then request moves to (1, 0) and pon moves to (1, 0) and `on increases by
2; popt moves to (1, 1). At this moment our algorithm is in the beginning of the
rook phase with o = −x. Request moves from (1, 0) to (1,− 1

1+
√
3
); OPT stays

still. Server follows after the request untile o = 0. Thus we get to the bishop
phase of the algorithm. Then request moves to (1, 1); popt and pon stay. Then,
request moves to (− 1

1+
√
3
, 1) and finally returns back to (1, 1); popt stays still;

pon moves to (1, 1) at a total length 3(1 + 1
1+
√
3
). At this point, we are again

at the beginning of the bishop phase. Then request moves to (say) (1, 0) and we
are back to the starting situation, i.e., we are in the bishop phase with popt and
pon coinciding and are at unit distance away from the request. Hence, this cycle
can be repeated ad infinitum. Clearly, `on

`opt = 4(1 + 1
1+
√
3
) + 1 = 3 + 2

√
3.

The Unit CNN Problem

Proof (of Claim 5). We now provide a 4-competitive online algorithm. Our al-
gorithm works in cycles. In each cycle, the online algorithm pays at most $4 .
Therefore, to prove that the algorithm is 4-competitive, we have to simply show
that the offline optimal algorithm must pay $1 per cycle. The intuition behind
the algorithm is as follows. In each cycle, for the offline algorithm to avoid pay-
ing, there must be a sweet spot in R2 such that if the offline server were located
there, it would not have to move throughout the cycle. The goal of the online
algorithm is to discover such a position (if it exists) and reach it in at most four
$1 steps. The next cycle starts either (i) when the online algorithm establishes
that there is no sweet spot (so the offline server has moved), or (ii) when the
offline server cannot serve a request from the sweet spot (again, requiring the
offline server to move).

Formally, the algorithm works as follows. Assume that we are at the start of a
cycle and the first request in that cycle, r1, has arrived. We also assume that the
offline algorithm has positioned its server in the advantageous sweet spot. The
online algorithm pays $1 (if required) and aligns with the x1. We assume that
r2 does not share the same x coordinate with r1. If it does, the server need not
move and it can be discarded from the input sequence (for analysis purposes).
When r2 = (x2, y2) arrives, the online server moves to (x1, y2) and serves r2. If
y1 = y2, then the sweet spot (if it exists) is somewhere on y = y1 = y2; this is
case A. Otherwise, the sweet spot is either (x1, y2) or (x2, y1); this is case B.

Suppose we are in case A. Then we assume that r3 = (x3, y3) does not share
the y coordinate with r2; if it did, the online server need not move and r3 can
be discarded for analysis purposes. The sweet spot must be (x3, y1). The online
algorithm can reach it in one step and stays there till a request that it cannot
serve from (x3, y1) arrives. The cycle is over.

Suppose we are in case B. If the third event r3 = (x3, y3) does not share
either an x or y coordinate with r1 or r2, then clearly, there cannot be a sweet
spot; the cycle is over. Suppose, instead, that r3 shares the x coordinate with
r2; other subcases can be seen symmetrically. Then, the sweet spot is (x2, y1).
Then, the online algorithm pays $2 and moves to (x2, y1). Again it stays there
until forced to move when the cycle is over. Claim 5 (stated in Section 2) follows
in a straightforward manner. Furthermore, there are instances for which the
competitive ratio 4 can be realized, but we defer their description to the full
version. ut

Proof (of Claim 6). Suppose the sequence of events is guaranteed to be orthog-
onal, i.e., each request shares a coordinate with the previous request. Then, we
provide a very simple and tight algorithm with competitive ratio 3. The algo-
rithm is very simple. The online server does not move unless the event is not
visible to it. In that situation, it moves to the last event that it could see. By the
orthogonality condition, we know that this algorithm is correct. Our claim that
this algorithm is 3-competitive is along the same lines as the previous theorem,
only simpler.

We claim that for every consecutive sequence of moves worth $3 in our al-
gorithm, OPT has to do at least one $1 move. The proof is similar to that of
Claim 5. Consider four consecutive orthogonal requests (r0, r1, r2, r3); note that
adjacent requests must be at distinct locations. At the start of the cycle, both
online and offline servers are in some position to serve r0. We assume for the
sake of contradiction that the offline algorithm has positioned itself so it does
not have to move for the next three requests. The online server will move from
its current position to r0 → r1 → r2 to serve r1, r2, and r3, respectively. For the
offline optimal algorithm to have served this sequence without moving, it must
be in a position to see all four requests. The only candidate for the first three
requests is r1, while the only candidate for the second three requests is r2. Since
we require adjacent requests to be distinct, this is a contradiction. ut

