Skip to main content

Computing the Discrete Fréchet Distance with Imprecise Input

  • Conference paper
Book cover Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6507))

Included in the following conference series:

Abstract

We consider the problem of computing the discrete Fréchet distance between two polygonal curves when their vertices are imprecise. An imprecise point is given by a region and this point could lie anywhere within this region. By modelling imprecise points as balls in dimension d, we present an algorithm for this problem that returns in time \(2^{O(d^2)} m^2n^2\log^2(mn)\) the Fréchet distance lower bound between two imprecise polygonal curves with n and m vertices, respectively. We give an improved algorithm for the planar case with running time O( mn log2(mn) + (m 2 + n 2)log(mn)). In the d-dimensional orthogonal case, where points are modelled as axis-parallel boxes, and we use the L  ∞  distance, we give an O(dmn log(dmn))-time algorithm.

We also give efficient O(dmn)-time algorithms to approximate the Fréchet distance upper bound, as well as the smallest possible Fréchet distance lower/upper bound that can be achieved between two imprecise point sequences when one is allowed to translate them. These algorithms achieve constant factor approximation ratios in “realistic” settings (such as when the radii of the balls modelling the imprecise points are roughly of the same size).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. Computing Surveys 30(4), 412–458 (1998)

    Article  Google Scholar 

  2. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algorithms 17(3), 292–318 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, H., Knauer, C., Wenk, C.: Matching polygonal curves with respect to the Fréchet distance. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 63–74. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Alt, H., Knauer, C., Wenk, C.: Comparison of distance measures for planar curves. Algorithmica 38(1), 45–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for curves, revisited. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 52–63. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dyer, M.E.: A class of convex programs with applications to computational geometry. In: Proc. 8th Symposium on Computational Geometry, pp. 9–15. ACM, New York (1992)

    Google Scholar 

  8. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  9. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Tech. Rep. CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria (1994)

    Google Scholar 

  10. Frederickson, G.N., Johnson, D.B.: Generalized selection and ranking: Sorted matrices. SIAM Journal on Computing 13(1), 14–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In: Proc. 15th Canadian Conference on Computational Geometry, pp. 94–97 (2003)

    Google Scholar 

  12. Knauer, C., Löffler, M., Scherfenberg, M., Wolle, T.: The directed Hausdorff distance between imprecise point sets. In: ISAAC. LNCS, vol. 5878, pp. 720–729. Springer, Heidelberg (2009)

    Google Scholar 

  13. Löffler, M., van Kreveld, M.J.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 375–387. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Löffler, M., Snoeyink, J.: Delaunay triangulation of imprecise points in linear time after preprocessing. Computational Geometry: Theory and Applications 43(3), 234–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moffat, A., Turpin, A.: Compression and Coding Algorithms. Kluwer, Dordrecht (2002)

    Book  MATH  Google Scholar 

  16. Rote, G.: Computing the Fréchet distance between piecewise smooth curves. Computational Geometry: Theory and Applications 37(3), 162–174 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sember, J., Evans, W.: Guaranteed Voronoi diagrams of uncertain sites. In: Proc. 20th Annual Canadian Conference on Computational Geometry (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, HK., Knauer, C., Scherfenberg, M., Schlipf, L., Vigneron, A. (2010). Computing the Discrete Fréchet Distance with Imprecise Input. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17514-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17514-5_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17513-8

  • Online ISBN: 978-3-642-17514-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics