Skip to main content

Priority Range Trees

  • Conference paper
Book cover Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Included in the following conference series:

  • 1142 Accesses

Abstract

We describe a data structure, called a priority range tree, which accommodates fast orthogonal range reporting queries on prioritized points. Let S be a set of n points in the plane, where each point p in S is assigned a weight w(p) that is polynomial in n, and define the rank of p to be \(r(p)=\lfloor \log w(p) \rfloor\). Then the priority range tree can be used to report all points in a three- or four-sided query range R with rank at least \(\lfloor \log w \rfloor\) in time O(logW/w + k), and report k highest-rank points in R in time O(loglogn + logW/w′ + k), where W = ∑  p ∈ S w(p), w′ is the smallest weight of any point reported, and k is the output size. All times assume the standard RAM model of computation. If the query range of interest is three sided, then the priority range tree occupies O(n) space, otherwise O(nlogn) space is used to answer four-sided queries. These queries are motivated by the Weber–Fechner Law, which states that humans perceive and interpret data on a logarithmic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. In: Proc. 5th IEEE Symposium on Foundations of Computer Science, pp. 129–138 (2009)

    Google Scholar 

  2. Agarwal, P.K.: Range searching. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 575–598. CRC Press LLC, Boca Raton (1997)

    Google Scholar 

  3. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemporary Mathematics, vol. 223, pp. 1–56. AMS, Providence (1999)

    Chapter  Google Scholar 

  4. Alstrup, S., Stolting Brodal, G., Rauhe, T.: New data structures for orthogonal range searching. In: Proc. 41st IEEE Symposium on Foundations of Computer Science, pp. 198–207 (2000)

    Google Scholar 

  5. Baeza-Yates, R., Castillo, C., López, V.: Characteristics of the web of spain. International Journal of Scientometrics, Informetrics, and Bibliometrics 9 (2005)

    Google Scholar 

  6. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM J. Comput. 14, 545–568 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–229 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boore, D.: The Richter scale: its development and use for determining earthquake source parameters. Tectonophysics 166, 1–14 (1989)

    Article  Google Scholar 

  9. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  10. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15, 703–724 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1(3), 133–162 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Dehaene, S.: The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences 7(4), 145–147 (2003)

    Article  MathSciNet  Google Scholar 

  14. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dujmović, V., Howat, J., Morin, P.: Biased range trees. In: Proc. 19th ACM-SIAM Symposium on Discrete Algorithms, pp. 486–495. SIAM, Philadelphia (2009)

    Chapter  Google Scholar 

  16. Evans, J.: The history & practice of ancient astronomy. Oxford University Press, Oxford (October 1998)

    Google Scholar 

  17. Floyd, R.W.: Algorithm 245: Treesort 3. Commun. ACM 7(12), 701 (1964)

    Google Scholar 

  18. Frakes, W.B., Baeza-Yates, R. (eds.): Information retrieval: data structures and algorithms. Prentice-Hall, Inc., Upper Saddle River (1992)

    Google Scholar 

  19. Fries, O., Mehlhorn, K., Näher, S., Tsakalidis, A.: A loglogn data structure for three-sided range queries. Inform. Process. Lett. 25, 269–273 (1986)

    Article  MATH  Google Scholar 

  20. Hecht, S.: The visual discrimination of intensity and the Weber-Fechner law. Journal of General Physiology 7(2), 235–267 (1924)

    Article  Google Scholar 

  21. Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th IEEE Symposium on Foundations of Computer Science, pp. 28–34 (1978)

    Google Scholar 

  22. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morrison, J., Roser, S., McLean, B., Bucciarelli, B., Lasker, B.: The guide star catalog, version 1.2: An astronomic recalibration and other refinements. The Astronomical Journal 121, 1752–1763 (2001)

    Google Scholar 

  25. Overmars, M.H.: Efficient data structures for range searching on a grid. J. Algorithms 9, 254–275 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, previous number = SIDL-WP-1999-0120 (November 1999), http://ilpubs.stanford.edu:8090/422/

  27. Richter, C.F.: Elementary Seismology. W.H. Freeman and Co., New York (1958)

    Google Scholar 

  28. Satterthwaite, G.E.: Encyclopedia of Astronomy. Hamlyn (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goodrich, M.T., Strash, D. (2010). Priority Range Trees. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics