Skip to main content

Structural and Complexity Aspects of Line Systems of Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Abstract

We study line systems in metric spaces induced by graphs. A line is a subset of vertices defined by a relation of betweenness.

We show that the class of all graphs having exactly k different lines is infinite if and only if it contains a graph with a bridge. We also study lines in random graphs—a random graph almost surely has \(n \choose 2\) different lines and no line containing all the vertices.

We call a pair of graphs isolinear if their line systems are isomorphic. We prove that deciding isolinearity of graphs is polynomially equivalent to the Graph Isomorphism Problem.

Similarly to the Graph Reconstruction Problem, we question the reconstructability of graphs from their line systems. We present a polynomial-time algorithm which constructs a tree from a given line system. We give an application of line systems: This algorithm can be extended to decide the existence of an embedding of a metric space into a tree metric and to construct this embedding if it exists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Karp, R.M., Peleg, D., West, D.: A Graph-Theoretic Game and its Application to the k-Server Problem. SIAM J. Comput. 24(1), 78–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.: The Probabilistic Method. John Wiley, New York (1991)

    MATH  Google Scholar 

  3. Bandelt, H.J.: Recognition of tree metrics. SIAM J. Discret. Math. 3(1), 1–6 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandelt, H.J., Chepoi, V.: Metric graph theory and geometry: a survey. Contemporary Mathematics 453, 49–86 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC 1998: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 161–168. ACM, New York (1998)

    Chapter  Google Scholar 

  6. Bondy, J.A., Hemminger, R.L.: Graph reconstruction—a survey. Journal of Graph Theory 1(3), 227–268 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Bruijn, N.G., Erdős, P.: On a combinatorial problem. Indagationes Mathematicae 10, 421–423 (1948)

    MATH  Google Scholar 

  8. Buneman, P.: A note on the metric properties of trees. Journal of Combinatorial Theory, Series B 17(1), 48–50 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X., Chvátal, V.: Problems related to a de Bruijn-Erdős theorem. Discrete Appl. Math. 156(11), 2101–2108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chiniforooshan, E., Chvátal, V.: A de Bruijn-Erdős theorem and metric spaces. arXiv:0906.0123v1 [math.CO] (2009)

    Google Scholar 

  11. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proc. Symp. Pure Math., vol. 7, pp. 101–179 (1963)

    Google Scholar 

  12. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs (2004)

    Google Scholar 

  13. Hemaspaandra, E., Hemaspaandra, L.A., Radziszowski, S.P., Tripathi, R.: Complexity results in graph reconstruction. Discrete Appl. Math. 155(2), 103–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kratsch, D., Hemaspaandra, L.A.: On the complexity of graph reconstruction. Math. Syst. Theory 27(3), 257–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lueker, G.S., Booth, K.S.: A linear time algorithm for deciding interval graph isomorphism. J. ACM 26(2), 183–195 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  MATH  Google Scholar 

  17. Menger, K.: Untersuchungen über allgemeine Metrik. Mathematische Annalen 100(1), 75–163 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zemlyachenko, V.N., Korneenko, N.M., Tyshkevich, R.I.: Graph isomorphism problem. Journal of Mathematical Sciences 29(4), 1426–1481 (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jirásek, J., Klavík, P. (2010). Structural and Complexity Aspects of Line Systems of Graphs. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics