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AND COMBINATORIAL PROPERTIES
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Abstract. A permutation graph is an intersection graph of segments lying between two
parallel lines. A Seidel complementation of a finite graph at one of it vertex v consists
to complement the edges between the neighborhood and the non-neighborhood of v. Two
graphs are Seidel complement equivalent if one can be obtained from the other by a successive
application of Seidel complementation.

In this paper we introduce the new concept of Seidel complementation and Seidel minor,
we then show that this operation preserves cographs and the structure of modular decom-
position.
The main contribution of this paper is to provide a new and succinct characterization of per-
mutation graphs i.e. A graph is a permutation graph if and only if it does not contain the
following graphs: C5, C7, XF26, XF2n+3

5 , C2n,n > 6 and their complement as Seidel minor. In
addition we provide a O(n+m)-time algorithm to output one of the forbidden Seidel minor
if the graph is not a permutation graph.

Keywords: Graphs, Permutation graphs, Seidel complementation, Seidel minor, Modular
decomposition, Cographs, Local complementation, Well Quasi Order.

1. Introduction

The aim of this paper is to present a new local operator on graphs, called Seidel comple-
mentation, and to show how this local operator leads to a new and compact characterization,
by Seidel minors, of permutation graphs – intersection graph of segments between parallel
lines – this characterization is in the same spirit as the famous Kuratowski’s characterization
of planar graph [22] which is: a graph is planar if and only if it does not contain K5 neither
K3,3 as topological minor.

The Seidel complementation of a graph at a given vertex v consists to complement the
edges between the neighborhood of v and its non-neighborhood. A schema of Seidel comple-
mentation is presented figure 1.

The main result of this paper is: A graph is a permutation graph if and only if it does not
contain the following graphs C5, C7, XF26, XF2n+3

5 , C2n,n > 6 and their complement as Seidel
minors. This results consistutes, in a sense, an improvement compared to the characterization
of permutation graphs by forbidden induced subgraphs which counts no less than 18 finite
graphs, and 14 infinite families. As an algorithmic consequence of our result, we provide in
linear time, when the graph is not a permutation graph, one of the obstruction by Seidel
minor.
In order to proove the main result we study what are the relationship between Seidel com-
plementation and modular decomposition. We prove that primality of a graph is invariant
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2 V. LIMOUZY

under Seidel complemention. We then provide a complete characterization of Seidel equiv-
alent cographs, and we provide a linear time algorithm to decide if two cographs are Seidel
equivalent.

Actually a similar approach, using local operators, has been used to characterize circle
graphs, intersection of chords in a circle. This operator is the local complementation – i.e.
complement the graph induced by the neighborhood of a vertex – Local complementation
and vertex minor were used by Bouchet [6, 5, 7] study the structure of Circle graphs. He
finally obtained a very elegant characterization of circle graphs [8]: A graph is a circle graph
if and only if it does not contain W5,W7 and BW3 as vertex minor. Recently Geelen and Oum
[15] gave a characterization of the same flavor, using pivot minor. Vertex minor encountered
a new celebrity with the fundamental work of Oum and Seymour [25, 26, 27] on the study
of rank-width and later by Courcelle and Oum [11]. Another aspect of vertex minors and
local complementation have been studied by Arratia et al. [2, 3, 4] in their serie on Interlace
polynomials of graphs.

The Seidel complementation comes from a modification of another well known graph trans-
formation introduced by Seidel in its seminal paper [29]. This operator is called after his name,
the Seidel switch. Seidel switch have been intensively studied since its introduction, Colbourn
et al. [10] proved that to decide if two graphs are Seidel switch equivalent is ISO-Complete,
this results was independently proved in [20]. The Seidel switch has also applications in graph
coloring [19]. Other interesting applications of Seidel switch concerns structural graph prop-
erties [16, 18] recently Montgolfier et al. [23, 24] used it to characterize graph completely
decomposable w.r.t. Bi-join decomposition. Seidel switch is not only relevant to the study
of graphs, Ehrenfeucht et al. [13] showed the interest of this operation for the study of 2-
structures and recently Bui-Xuan et al. extended this results to broader structures called
Homogeneous relations [9].

All the above mentionned local operators have applications in various of area of computer
science. For instance local complementation constitutes, in Bio-Informatic, an elementary
tool to sort signed permutations by reversals [28, 31]. Recently these local operators were
employed in quantum computing. In their papers Van den Nest et al. [33] and Hein et al.
[17] consider local complementation on graph states. More recently Severini [30] used, this
time, Seidel switch on two-colorable graph states.

The paper is organized as follows, in section 2 we formally introduce the Seidel complement
operation and its associated minor: the Seidel minor. Then we present some structural
properties of Seidel complementation and we briefly recall the notions and notations used in
the sequel of the paper. In section 3 we present what are the connections between Seidel
complementation and Modular decomposition, namely we prove that Seidel complementation
preserves the structure of modular decomposition of a graph. Then we show that cographs are
closed under this relation. In addition we provide a linear time algorithm to decide whether
two cographs are Seidel complement equivalent or not.
The section 4 is devoted to the proof of the main theorem, namely to prove that a graph is a
permutation graph if and only if it does not contain any of the forbidden Seidel minors. We
also prove that permutation graphs are not Wqo w.r.t. Seidel minor. We then derive from
the main theorem a linear time algorithm to output one of the forbidden Seidel minor if the
graph is not a permutation graph.
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2. Definitions and notations

In the sequel of the paper the graphs used are undirected, finite, loopless and simple. Here
are some notations used in the papers. The graph induced by a subset of vertices X is noted
G[X]. By N(v), v a vertex, we mean the neighborhood of v, the set of non-neighbors of v is
represented by N(v). Sometimes we need to use a refinement of the neighborhood on a subset
of vertices X, noted NX(v) it is simply N(v) ∩ X.

Definition 2.1 (Seidel complement). Le G = (V,E) be a finite undirected graph. And let v
be a vertex of V. The Seidel complement at v on G, noted G ∗ v is defined as follows:
Inverse all the edges between G[N(v)] and G[N(v)].
(G ∗ v) = (V,E1 ∪ E2 ∪ E3). Where E1 = {e = xy|x and y ∈ {v} ∪ N(v) and e ∈ E},
E2 = {e = xy|x and y ∈ N(v) and e ∈ E} and E3 = {e = xy|x ∈ N(v), y ∈ N(v) and e /∈ E}.

From the previous definition it is straightforward to notice that G ∗ v ∗ v = G. As a remark
it is clear that G∗v∗v = G. However contrary to the Seidel switch for Seidel complementation
G ∗ v ∗ u is not (always) isomorph to G ∗ u ∗ v.

Proposition 2.2. Let G be a graph, if vw is an edge of G. Then G∗v∗w∗v = G∗w∗v∗∗w.
This operation is noted G ∗ vw.

Definition 2.3 (Seidel Minor). Let G = (V,E) and H = (V ′,E ′) be two graphs. H is a Seidel
Minor of G (noted H 6S G) if H can be obtained from G by a sequence of the following
operations:

• Perform a Seidel complemention at a vertex v of G,
• Delete a vertex v of G.

Definition 2.4 (Seidel Equivalent Graphs). Let G = (V,E) and H = (V, F) be two (finite)
graphs. G and H are said to be Seidel equivalent if and only if there exists a word ω defined
on V∗ such that G ∗ω ∼= H.

v v
G ¤   v

Figure 1. An illustration of the Seidel complement concept

3. Modular decomposition and cographs

In this section we investigate the relations between Seidel complementation and modular
decomposition. This study is relevant in order to prove the main result. Actually a permuta-
tion graph is uniquely representable if and only if it is prime w.r.t. to modular decomposition.
And one of the results of this section is to prove that if the graph considered is prime w.r.t.
modular decomposition this property is preserved by Seidel complementation. From the point
of view of permutation graphs it means that if the graph is uniquely representable so are their
Seidel complement equivalent graphs.
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Let us now briefly introduce the definition of module. A module in a graph is subset
of vertices M such that any vertex outside M is either completely connected to M or is
completely disjoint from M. Modular decomposition is a decomposition of graph introduced
by Gallai [14]. The modular decomposition of a graph G is the decomposition of G into
its modules. Without going too deep into the details, there exists for each graph a unique
modular decomposition tree, and it is possible to compute it in linear time (cf. [32]).

In the sequel of this section we show that if G is prime, i.e. not decomposable, w.r.t.
modular decomposition, then applying a Seidel complementation at any vertex of the graph
preserves this property. Actually, it is interesting to notice that this phenomenon occurs
for local complementation w.r.t. Split decomposition (cf. [12]) which is a generalization of
modular decomposition.
Then we prove that the family of cographs is closed under Seidel minor. We show that any
cographs that are Seidel complement equivalent are at distance at most 1 –the size of the
sequence of Seidel complementation– and then from this properties we design a linear time
algorithm to decide if two cographs are Seidel complement equivalent.

3.1. Modular decomposition.

Theorem 3.1. Le G = (V,E) be graph , and let v be an arbitrary vertex of G. G is prime
w.r.t. modular decomposition if and only if G ∗ v is prime w.r.t. to modular decomposition.

Proof. Let us proceed by contradiction. Let us assume that G is prime and G∗v has a module
M. We have to consider two cases: (1) v ∈M and (2) v /∈M
v ∈M: Since M is not trivial we have |M| > 2 and |M| > 1.
We can identify four representant vertices of G. Let A be a vertex of N(v) ∩M, let B be a
vertex of N(v) ∩M, let C be a vertex of N(v) ∩M and let D be a vertex of N(v) ∩M. Since
M is a module we have the following edges: CA and CD and the following non edges: BA
and BD (cf. figure 2(a)).

By definition of Seidel complementation at a vertex, it is equivalent to swap the edges and
non-edges between the neighborhood and the non-neighborhood of v. We obtain the result
depicted in figure 2(b). Now we can clearly see that M ∪ {v} is a module in G, and since
|M| > 1 we obtain a non trivial module. Thus a contradiction.
v /∈M : Let us consider the case where v does not belong to M. We can assume, w.l.o.g., that
M ⊆ N(v). We can partition N(v) into A1,A2 such that NM(A1) = M and NM(A2) = ∅.
And similarly we can partition N(x) into B1,B2 such that NM(B1) = M and NM(B2) = ∅.
(cf. figure 2(c)-(d))

Since we have proceeded to a Seidel complement on v, the original configuration in G is
such that NM(B1) = ∅ and NM(B2) = M. This is the only change w.r.t. M. So M is also a
module in G. Contradiction. �

3.2. Cographs. Cographs are the graphs which are completely decomposable w.r.t. modular
decomposition. There exist several characterizations of cographs, one of them is given by a
list fordidden induced subgraphs, i.e. cographs are the graphs without P4 –a path on four
vertices– as induced subgraph. Another fundamental properties of cograph is the fact that
its modular decomposition tree –called its co-tree– has only serie (1) and parallel (0) nodes
as internal nodes. An example of cograph and its associated co-tree is given in figure 3(a). A
co-tree is a rooted tree, where the leafs represent the vertices of the graphs. And the internal
nodes of the co-tree encode the adjacency of the vertices of the graph. Two vertices are
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(a) G ∗ v
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(c) Configuration in
G ∗ v
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M

A
1

A
2

B
2

B
1

(d) Configuration in G

Figure 2. Details of theorem 3.1. The figures (a)-(b) correspond to the case
where v belongs to M. And the figures (c)-(d) correspond to the other case.

adjacent iff their Least Common Ancestor1 (LCA) is a serie node (1). Conversely two vertices
are disconnected iff their LCA is a parallel node (0). The following theorem shows that the
class of cographs is closed under Seidel complemention.

Theorem 3.2. Let G = (V,E) a cograph, and v a vertex of G, then G ∗ v is also a cograph.

Proof. Let T be the co-tree of G. The Seidel complementation at a vertex v is obtained as
follows: Let T ′ be the tree obtained by T ∗ v. P(v) becomes the new root of T ′. and now the
parent of v in T ′ is the former root, to know R(T). In other words by performing a Seidel
complementation we have reversed the path from P(v) to R(T).
It is easy to see that G[N(v)] and G[N(v)] are not modified. Now to see that the adjacency
between G[N(v)] and G[N(v)] is reversed, it is sufficient to remark that for two vertices, one
belonging to the neighborhood of v and the other one belonging to the non neighborhood of
v. If these two vertices are adjacent in G it means that their LCA is a serie node. We can
notice that this node lies on the path from v to the root of T . After proceeding to a Seidel
complementation their LCA is modified and it is now a parallel node. Consequently reversing
the adjacency between the neighborhood and the non-neighborhood. �

A schema of the Seidel complement of the co-tree is given in figure 3(b).

Remark 3.3 (Exchange property). Actually a Seidel complemention on a cograph, or more
precisely on its co-tree is equivalent to exchange the root of the co-tree with the vertex v used
to proceed to the Seidel complement, i.e. the vertex v is attached to the former root of the
co-tree and the new root is the former parent of the vertex v.

Except this transformation the others parts of the co-tree remain unchanged, i.e. the
number and the types of internal nodes are preserved, and no internal nodes are merged.

The following theorem show that if two cographs are Seidel complement equivalent, then
they are at distance at most 1.

Theorem 3.4. Let G = (V,E) and H = (V, F) be two cographs. G and H are Seidel comple-
ment equivalent if and only if H is at distance at most one of G, i.e. there exists one vertex
v of V such that G ∼= H ∗ v.

1The LCA of two leafs x and y is first node in common on the paths from the leafs to the root.
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1

0

0

1

v

G ¤ v

(b)

Figure 3. (a) An example of cograph on 5 vertices and its respective co-tree.
(b)A schema of a Seidel complement at a vertex v on a co-tree.

Proof. If G and H are isomorphic then it is done. Let us now consider the case: G and H are
not isomorph but are Seidel complement equivalent (cf. 2.4). This proof relies on theorem
3.4 and uses as a key tool the observation made in remark 3.3.
Let us consider that H is at distance 2 of G, i.e. there exist v and u two vertices of H such
that G ∼= H ∗ v ∗ u. Using the remark 3.3 once we have done the Seidel complement using v
we have exchanged P(v) and R(T(H)). In other words P(v) is now the root of T(H ∗ v) and
now v is connected to the node which used to be the root of T(H). When we proceed to the
second Seidel complement, using the vertex u on H ∗ v, once again we exchange P(u) and the
root of T(H ∗ v), and we connect now u to the previous root i.e. to R(T(H ∗ v)).
Let us now consider what is the situation when we proceed directly to a Seidel complement
using u. After the operation using u the co-tree obtained T(H ∗u) has for root P(u) and now
u is connected to the former root of T(H).
If we now look to the two trees obtained, T(H ∗ v ∗u) and T(H ∗u) we can easily see that the
two trees are isomorph. And we can remark that in a sense u and v have been “switched”.

Consequently we deduce that we can always reduce a sequence of Seidel complementation
of length k (k > 2) by applying this procedure. And proceeding greedily, it yields that two
co-graphs are Seidel complement equivalent if and only if they are at distance at most 1.
Better insights appear clearly in figure 4. �

Corollary 3.5. The number of cographs that are Seidel complement equivalent to a given
cograph G on n vertices is at most O(n).

Proof. It is a direct consequence of theorem 3.4 since all the graphs are at distance at most one.
It means that the number of different graphs, up to isomorphism, is no more than O(n), i.e.
from G each vertex v can give a different graph by proceeding to a Seidel complement G∗v. �

Corollary 3.6. To decide if two cographs G and H are Seidel complement equivalent can be
computed in linear tine O(n).

Proof. Let us consider the co-trees T(G) and T(H). We modify T(G) and T(H) as follows:
Let T ′(G) be the co-tree of G on which we add a dummy vertex attached to the root of T(G).
We proceed in a similar manner for T ′(H).
G and H are Seidel complement equivalent if and only if T ′(G) and T ′(H) are isomorph.

⇒ This direction is easy, since according to the previous remark, and theorem 3.4. That if G
and H are Seidel complement equivalent then T ′(G) and T ′(H) are isomorph.
⇐ Let us assume now that T ′(G) and T ′(H) are isomorph and let ϕ : V(T ′(G)) 7→ V(T ′(H))
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u

u v

H∗v v

u

H∗u v

u

v

H∗u

 

Figure 4. Schemas of co-trees and their transformations. The roots of the
trees are indicated with the ingoing arc.

be the mapping function. The isomorphism considered here is the labelled isomorphism, i.e.
labels of the internal nodes, 0 or 1, are preserved.

Using the result of theorem 3.4 we know that cographs are at distance at most 1. It is thus
sufficient to find the actual vertex to transform one co-tree into another.

Let us call the dummy vertices added to turn T(G) (resp. T(H)) into T ′(G) (resp. T ′(H))
duG and duH. Now if since we want to transform T(H) into T(G) it suffices to pick a vertex
f in T(H) such that it is the image by ϕ of duG i.e. f = ϕ(duG). Once we have obtained
this vertex in T(G) it is sufficient to proceed to a Seidel complement on f, H ∗ f, so now P(f)
is the root of T(H ∗ f) as requested since f was an image of duG and f is now attached to the
former root R(H). Consequently we have shown that when T ′(G) and T ′(H) are isomorph we
can find a vertex permitting to transform T(H) into T(G) and hence proving that they are
Seidel complement equivalent.

This procedure can be achieved in linear time, since decide if two given trees are isomorph
is well known to be linear [1], and the find the actual vertex and perform the Seidel comple-
mentation is done in constant time. �

Proposition 3.7. The Seidel complementation of a cograph on its co-tree can be performed
in O(1)-time.

Proof. It suffices to consider the co-tree of G. As proven in previous lemmas to perform a
Seidel complementation at a vertex v is equivalent to exchange a vertex – i.e. a leaf – with
the root of the tree. We need to store, in a lookup table, for each vertex its parent node in
the tree and the root of the tree. Updating the structure is done in constant time. �

4. Permutation graphs

In this section we show that the class of permutation graphs is closed under Seidel minor,
and we prove the main theorem that states that a graph is a permutation graph if and only
if it does not contain none of the following graph: C5, C7, XF26, XF2n+3

5 , C2n,n > 6 and their
complement as Seidel minor.
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We also show that a Seidel complementation at a vertex on the permutation diagram can
be achieved in constant time. Where as this operation can be quadratic on the graph itself.

Definition 4.1 (Permutation graph). A graph G = (V,E) is a permutation graph if there
exist two permutations σ1,σ2 on V = {1, . . . ,n}. And two vertices u, v of V are adjacent iff
σ1(u) < σ1(v) and σ2(v) < σ2(u).

An example of permutation graph is presented in figure 5

e

ea

ab

bc

cd

dda b c

e

Figure 5. A permutation graph and its representation

Theorem 4.2 (Gallai’67 [14]). A permutation graph is uniquely representable iff it is prime
w.r.t. modular decomposition

Theorem 4.3 ([14]2). A graph is a permutation graph if and only if it does not contain one
of the finite graphs as induced subgraphs T2, X2, X3, X30, X31, X32, X33, X34, X36 and their
complement and does not contain the graphs given by the infinite families: XF2n+3

1 , XF2n+3
5 ,

XF2n+2
6 , XFn+1

2 , XFn
3 , XFn

4 , the Holes, and their complement.

(a) T2 (b) X31 (c) X2 (d) X3 (e) X36

(f) X30 (g) X32 (h) X33 (i) X34

Figure 6. Finite forbidden induced subgraphs for permutation graphs.

Theorem 4.4. Let G = (V,E) a permutation graph, and v a vertex of G, then G ∗ v is also
a permutation graph.

2http://wwwteo.informatik.uni-rostock.de/isgci/classes/AUTO_3080.html

http://wwwteo.informatik.uni-rostock.de/isgci/classes/AUTO_3080.html


SEIDEL MINOR 9

1

n

2

3

4

(a) Hole

A B

C

X

1 n+1

(b) XFn+1
2

A B

CE

D

1 n

(c) XFn
3

A B

CE

D

1 n

(d) XFn
4

A B

X

1 n+1

(e) XF2n+3
1

A B

CD

1 n+1

(f) XF2n+3
5

A B

CE

1 n+1

(g) XF2n+2
6

Figure 7. Forbidden infinite families for permutation graphs. The families
in the left box (a)-(d) contains asteroidal triples. The families in the right box
(e)-(g) do not contain asteroidal triple, the key point is the parity of the dashed
path.

Proof. Let G = (V,E) be a permutation graph and v a vertex of G. Let us prove that G ∗ v
remains a permutation graph. To do so we present now the transformation on D(G), the
permutation diagram of G, which corresponds to the Seidel complementation at v. In order
to give a better insight this transformation is depicted in figure 8(a). Let σ1 be A . v . B and
σ2 be C . v . D. Where A is a word on V \ {v} and B is a word on V \ (A ∪ {v}) and similarly
C is a word on V \ {v} and D is a word on V \ (C ∪ {v}).
The following transformation σ1 ∗ v = B . v . A and σ2 ∗ v = D . v . C corresponds to a
Seidel complementation at v. We have to prove that the graphs induced by the neighborhood
G[N(v)] and G[N(v)] are unchanged. Let us begin with the non-neighborhood of v. It is
easy to notice on figure 8(a) that the non neighborhood of v is contained in the two vertical
rectangles, one on the left of v and the other one on their right, (A,C) and (B,D). by
proceedind to the transformation described above, and by keeping the order of the words,
it is easy to notice that first of all, theses vertices remains disconnected of v and since the
order of vertices in the words are preserved then this subgraphs remain unchanged. In a
similar manner for the subgraph induced by the neighborhood of v, now the vertices of their
neighborhood are contained in the gray crosses (A,D) and (B,C) and for the same reason as
for non-neighborhood, the order, the subgraphs remains unchanged and it is still connected
to v.
Now let us consider the less obvious part which is to inverse the adjacency between G[N(v)]

and G[N(v)]. Let w be a neighbor of v and let u be a non-neighbor of v. Let us assume,
w.l.o.g., that w and u are connected. Let us consider the case where u belongs to the (A,C)
rectangle and w ∈ (A,D), if uv ∈ E it means that σ1(w) < σ1(u) and σ2(u) < σ2(v), after
proceeding to a Seidel complement at v we obtain σ1 ∗ v and σ2 ∗ v but now according to the
transformation we have σ1 ∗ v(w) < σ1 ∗ v(u) and σ2 ∗ v(w) < σ1 ∗ v(u). And according to
the definition 4.1 now u and w are no longer connected. The proof is similar for the other
cases. Consequently Seidel complementation preserves permutation graphs. �

Corollary 4.5. The Seidel complementation at a vertex v of a permutation graph can be
achieved in O(1)-time.

Proof. It is sufficient to consider the permutation representation of G as two doubly linked
list. Then the Seidel complementation consists to apply the pattern described in the proof of
theorem (4.4). It consist w.l.o.g. on σ1 to exchange A and B: A · v ·B becomes B · v ·A. So it
suffices to change the successor of v in the list as the first element of A and the predecessor
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v

vA B

C D v

v AB

CD

G ¤ v

¾1

¾2

¾1¤ v

¾2¤ v

(a)

G ¤  b

e

ea

ab

bc

cd

d

e

e a

a b

b c

cd

d

da b c

e

a b c

e

d

(b)

Figure 8. (a) Schematic view of Seidel complementation on permutation dia-
gram and (b) An example of Permutation graph and a Seidel complementation
at a vertex b

of v as the last element of B. Then update the first and last element of the new list. All this
operations can obviously be done in constant time. �

One can remark that to perform a Seidel complementation at a vertex on graph can require
in the worst case O(n2)-time. It suffices to consider a the graph consituted of a Star K1,n

and a stable Sn. its size is 2n + 1 with n + 1 connected components. Applying a Seidel
complementation on the vertex of degree n results in a connected graph with O(n2) edges.

4.1. Finite Families. In this section we show that it is possible to reduce the list of fordidden
induced subgraphs by using Seidel Complementation. Actually a lot of forbidden subgraphs
are Seidel equivalent. The graphs that are Seidel complement equivalent are in the same box
in figure 6. Finally, the list of forbidden graphs is reduced from 18 induced subgraphs to only
6 finite Seidel minor. The fordidden Seidel minors are C5, C7, XF26 and their complement.

Proposition 4.6. The graphs X3, X2, X36 ( cf. figure 6(c)-(e)) are Seidel complement equiv-
alent.

Proposition 4.7. The graphs X30, X32, X33 and X34 ( cf. figure 6(f)-(i)) are Seidel comple-
ment equivalent.

Proposition 4.8. The graph XF04 is a Seidel minor of T2 and X31.

Proposition 4.9. The graph C6 is a Seidel minor of XF04.

Proof. Applying a Seidel complementation on the degree 2 vertex of the C4 in XF04 we obtain
C6. �

4.2. Infinite Families. We show in this section that actually forbidden infinite families
under the relation on induced subgraphs are redundant when the Seidel minor operation
is considered. Consequently the following propositions allows us to reduce from 14 infinite
families with the induced subgraph relation to only 4 infinite families under Seidel minor.
The forbidden families are XF2n+3

5 and C2n,n > 6 and their complement.

Proposition 4.10. The Hole is a Seidel minor of XFn
3 , XFn

4 and XF2n+ 1.

Proposition 4.11. XF2n+1
5 is a Seidel minor of XF2n+2

6 .

Proposition 4.12. XF2n+1
5 is a Seidel minor of XF2n+3

1 .

Proposition 4.13. XF2n+1
5 is a Seidel minor of C2n+3.
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4.3. Main Theorem.

Definition 4.14 (Seidel Complement Stable). A graph G = (V,E) is said to be Seidel
complement stable if: ∀v ∈ V : G ∼= G ∗ v

Few smalls graphs are Seidel complement stable, for instance, P4, C5, and more trivially
Kn the clique on v vertices and Sn the stable on n vertices.

Lemma 4.15. The graph XFn
5 is Seidel complement stable.

Due to lack of space the proof is postponed in the appendix p. 14.

Lemma 4.16. The Seidel stable class of the hole Cn is consituted of Cn, XFn−6
4 .

The previous lemma means that the only graphs that are Seidel complement equivalent to
Cn are Cn and XFn−6

4 . Due to lack of space the proof is omitted, but in few words, it relies
on the “regular” structure of XFn

5 and the lemma 4.15.

Theorem 4.17 (Main Theorem). A graph is a permutation graph if and only if it does not
contain as finite graphs C5, C7 and XF26 and their complement and as infinite families XF2n+3

5
and C2n,n > 6 and their complement as Seidel minor.

Sketch of Proof. This theorem relies on Gallai’s theorem 4.3. If G is not a permutation graph
then it contains one of the graph listed in theorem 4.3 as an induced subgraph. Thanks to the
previous proposition we are able to reduce each of this induced subgraphs into a smaller set
of graphs which are now forbidden Seidel minor. It remains to prove that this list is minimal.
Concerning infinite family lemma 4.15 prove that it is not possible to get rid of this family
since it is Seidel stable. Concerning Even Holes (since Odd holes are dismissed because they
contain XF2n−1

5 as Seidel minors) the lemma 4.16 says that it is not possible to get rid of
them. The same kind of argument holds for the finite graphs. �

Theorem 4.18. If G is not a permutation graph a Seidel minor certificate can be given in
O(n+m) time.

Proof. If G is not a permutation graph, Kratsch et al. [21] gave a linear time algorithm to
output one of the graph used in theorem 4.3 as induced . Consequently, once one of this
graph is found, one can use the above propositions to turn it into a graph of the list given by
theorem 4.17. And it is clear that is done in linear time in the worst case. �

Corollary 4.19 (Permutation graphs not Wqo). The class of permutation graphs is not
Wqo under Seidel minor relation.

Proof. XF2n+3
5 constitutes an obstruction for permutation graphs. But since for even values

XF2n
5 this graph is a permutation graph. Furthermore it is easy to check that for k and l two

positives integers such that k < l. XF2k
5 is not an induced subgraph of XF2l

5 . Consequently
the family XF2n

5 is an infinite family of finite permutation graphs. Since XFn
5 is Seidel stable

by lemma 4.15, these graphs are not comparable each other with the Seidel minor relation.
It is thus an infinite antichain for Seidel minor relation and consequently permutation graphs
are not Wqo under Seidel minor relation. �

5. Conclusion and Perspectives

We have shown that the new paradigm of Seidel minor allows to provide a nice and compact
characterization of permutation graphs. In addition we provided a linear time algorithm to
output a certificate that the graph is not a permutation graph.
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A lot of questions remain open. Concerning the distance, i.e. the size of the sequence of
Seidel complementation, between two Seidel complement equivalent graphs, a natural ques-
tion :is there a polynomial upper bound for this distance ?
What is the status of the problem to decide if given two graphs are Seidel complement equiv-
alent. Is that harder, easier or equivalent to the ISO problem ?
Another natural question lies on the fact that theorem 4.17 is obtained using Gallai’s result on
forbidden induced subgraphs. Is that possible to give a direct proof of theorem 4.17 whitout
using Gallai’s result.
Another direction concerns graph decomposition Oum and Seymour [27] have shown that Lo-
cal Complementation preserves rank-width. Is there a graph decomposition that is preserved
by Seidel complementation?
Finally it could be interesting to generalize the Seidel complement operator to directed graphs,
and possibly to hypergraphs.

We hope that this Seidel minor will be relevant in the future as a tool to study graph
decomposition and to provide similar characterizations, as the one presented for permutations
graphs, to other graph classes.
Acknowledgement. The author is grateful to M. Bouvel, B. Courcelle, D. Corneil, M.C.
Golumbic, M. Habib and M. Rao for fruitful discussions and for pointing out relevant refer-
ences.
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Appendix A. Additional proofs

Proof of lemma 4.15. XFn
5 is a path of length n dominated by two non-adjacent vertices C

and D. In addition to that, a vertex A is connected to D and 1, and a vertex B is connected
to C and n+ 1. This graph is represented in figure 7(f).

The degree sequence for this graph for n > 1 is 2; 2; 4× n;n + 2;n + 2. Except for n = 3
the degree sequence allows to “identify” the vertices. A and B are the vertices of degree 2, C
and D are the vertices of degree n+ 1 and the vertices of the path [1,n+ 1] are the vertices
of degree 4.

Now let us formulate two easy observations. Since the graph presents of lot of symmetries,
i.e. A is equivalent to B; C is equivalent to D. It suffices to check that the graph obtained
after a Seidel complement on the following vertices will preserve the desired properties. So
the set of vertices to consider is {A,D, 1, . . . , dn+ 1e}.

Now two easy observations: G denotes XFn
5 . G ∼= G∗D. Since D is connected to {A, 1, . . . ,n+

1}. After the Seidel complement it means that C is now connected to only B and A. And it
also means that B is connected to C and since it was only connected to n+ 1 in the original
graph B is now connected to {A, 1, . . . ,n}. So now the path is consituted of the vertices
{A, 1, . . . ,n}, B and D dominate this path and C and n + 1 consitute the extremities. The
function ϕ is given by this permutation.

σ =

(
A B C D 1 2 . . . n+ 1
1 D A C 2 3 . . . B

)
Let us show now that G ∼= G ∗ A. by definition the subgraph induced by {B,C, 2, . . . ,n + 1}

remains unchanged. The vertex 1 is now connected to {3, . . . ,n+ 1,B}, and is still connected
to A and D. Concerning D, it now only connected to B and C in G[N(A)]. So the bijection
ϕ is given by the following permutation:

σ =

(
A B C D 1 2 . . . n+ 1
A n C n+ 1 D B . . . n− 1

)
It is easy to see that G ∼= G ∗ 1. The path is 3, 4, . . . ,n + 1,B,D, 1,C. The vertex A is
connected to {3, 4, . . . ,n+1,B,D, 1} and the vertex 2 is connected to {4, . . . ,n+1,B,D, 1,C}.
Let us consider the case for the vertex 2. Actually G ∼= G ∗ 2 The path is {4, 5, . . . ,n +
1,B,D, 2,C,A}. and the vertex 1 is connected to {4, 5, . . . ,n + 1,B,D, 2,C}. And the vertex
3 is connected to {5, . . . ,n+ 1,B,D, 2,C,A}.

Concerning the vertices on the path let us consider the case of their vertex k such that
k ∈ [3,n − 1]. It is clear that the graph G[{C,D,k − 1,k,k + 1}] remains unchanged as for
the graph G[V \ {C,D,k − 1,k,k + 1}]. Now let us briefly check that the degree sequence is
relevant with the desired goal. The vertex C is now connected to A,k− 1,k and k+ 1. So it
is 4. A similar thing happens for D. It is now connected to B,k− 1,k and k+ 1. Concerning
k − 1 and k + 1. k − 1 is connected to every vertex except k − 2 and k + 1 so its degree is
n + 2. And k + 1 is connected to every vertex except k − 1 and k + 2. Concerning A and B
their degree are now equal to 4 (because of k − 1 and k + 1). And concerning the vertices
k − 2 and k + 2 their degree equal to 2 because they are no longer connected to C,D,k ± 1
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but are now connected to k± 1 (i.e. k− 1 and k+ 1 swap roles).
Now the extremities of the path are k− 2 and k+ 2.
The path is of the form: k− 2, . . . , 1,A,C,k,D,B,n+ 1,n, . . . ,k+ 2
Consequently the graph XFn

5 is Seidel complement stable. �

Proof of proposition 4.8. XF04 <S T2 and XF04 <S X31
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