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Simultaneous Interval graphs

Krishnam Raju Jampani ∗ Anna Lubiw †

Abstract

In a recent paper, we introduced the simultaneous representation problem (defined for any graph
class C) and studied the problem for chordal, comparability and permutation graphs. For interval
graphs, the problem is defined as follows. Two interval graphs G1 and G2, sharing some vertices I (and
the corresponding induced edges), are said to be “simultaneous interval graphs” if there exist interval
representations R1 and R2 of G1 and G2, such that any vertex of I is mapped to the same interval
in both R1 and R2. Equivalently, G1 and G2 are simultaneous interval graphs if there exist edges E′

between G1 − I and G2 − I such that G1 ∪G2 ∪ E′ is an interval graph.
Simultaneous representation problems are related to simultaneous planar embeddings, and have

applications in any situation where it is desirable to consistently represent two related graphs, for
example: interval graphs capturing overlaps of DNA fragments of two similar organisms; or graphs
connected in time, where one is an updated version of the other.

In this paper we give an O(n2logn) time algorithm for recognizing simultaneous interval graphs,
where n = |G1 ∪ G2|. This result complements the polynomial time algorithms for recognizing probe
interval graphs and provides an efficient algorithm for the interval graph sandwich problem for the spe-
cial case where the set of optional edges induce a complete bipartite graph.

Keywords: Simultaneous Graphs, Interval Graphs, Graph Sandwich Problem, Probe Graphs,

PQ-trees

1 Introduction

Let C be any intersection graph class (such as interval graphs or chordal graphs) and let G1 and G2 be two
graphs in C, sharing some vertices I and the edges induced by I. G1 and G2 are said to be simultaneously
representable C graphs or simultaneous C graphs if there exist intersection representations R1 and R2 of G1

and G2 such that any vertex of I is represented by the same object in both R1 and R2. The simultaneous
representation problem for class C asks whether G1 and G2 are simultaneous C graphs. For example, Figures
1(a) and 1(b) show two simultaneous interval graphs and their interval representations with the property
that vertices common to both graphs are assigned to the same interval. Figure 1(c) shows two interval
graphs that are not simultaneous interval graphs.

Simultaneous representation problems were introduced by us in a recent paper [9] and have application
in any situation where two related graphs should be represented consistently. A main instance is for
temporal relationships, where an old graph and a new graph share some common parts. Pairs of related
graphs also arise in many other situations, e.g: two social networks that share some members; overlap
graphs of DNA fragments of two similar organisms, etc.
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Figure 1: Graphs in (a) are simultaneous interval graphs as shown by the representations in (b). Graphs
in (c) are not simultaneous interval graphs.

Simultaneous representations are related to simultaneous planar embeddings: two graphs that share
some vertices and edges (not necessarily induced) have a simultaneous geometric embedding [3] if they have
planar straight-line drawings in which the common vertices are represented by common points. Thus edges
may cross, but only if they are in different graphs. Deciding if two graphs have a simultaneous geometric
embedding is NP-Hard [4].

In [9], we showed that the simultaneous representation problem can be solved efficiently for chordal,
comparability and permutation graphs. We also showed that for any intersection class C, the simultaneous
representation problem for G1 and G2 is equivalent to the following problem: Do there exist edges E′

between G1 − I and G2 − I so that the augmented graph G1 ∪G2 ∪ E′ belongs to class C.
The graph sandwich problem [7] is a more general augmentation problem defined for any graph class

C: given graphs H1 = (V,E1) and H2 = (V,E2), is there a set E of edges with E1 ⊆ E ⊆ E2 so that the
graph G = (V,E) belongs to class C. This problem has a wealth of applications but is NP-complete for
interval graphs, comparability graphs, and permutation graphs [7].

The simultaneous representation problem (for class C) is the special case of the graph sandwich problem
(for C) where E2 −E1 forms a complete bipartite subgraph. A related special case where E2 −E1 forms a
clique is the problem of recognizing probe graphs: a graph G with a specified independent set N is a probe
graph for class C if there exist edges E′ ⊆ N ×N so that the augmented graph G ∪ E′ belongs to class C.

Probe graphs have several applications [13, 8] and have received much attention recently. The first
polynomial-time algorithm for recognizing probe interval graphs was due to Johnson and Spinrad [10].
They used a variant of PQ-trees and achieved a run-time of O(n2). Techniques from modular decomposition
provided more speed up [12], but the most recent algorithm by McConnell and Nussbaum [11] reverts to
PQ-trees and achieves linear time.

We note that there has also been work [14] on a concept of simultaneous intersection called “polysemy”
where two graphs are represented as intersections of sets and their complements.

In this paper, we give an O(n2log n) algorithm for solving the simultaneous representation problem for
interval graphs. We use PQ-trees, which were developed by Booth and Lueker for the original linear time
interval graph recognition algorithm. They used a PQ-tree to capture the orderings of the maximal cliques
of the graph (see [6] for an introduction to interval graphs and PQ-trees).

In the probe interval recognition problem, there is a single PQ-tree (of the graph induced by the probes)
and a set of constraints imposed by the non-probes. However in our situation we have two PQ-trees, one
for each graph, that we want to re-order to “match” on the common vertex set I. We begin by “reducing”
each PQ-tree to contain only vertices from I. This results in PQ-trees that store non-maximal cliques, and
our task is to modify each PQ-tree by inserting non-maximal cliques from the other tree while re-ordering
the trees to make them the same.
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2 Reduction to PQ-trees

In this section we transform the simultaneous interval graph problem to a problem about “compatibility”
of two PQ-trees arising from the two graphs.

Recall that an interval graph is defined to be the intersection graph of intervals on the real line. For
any point on the line, the intervals containing that point form a clique in the graph. This leads to the
fundamental one-to-one correspondence between the interval representations of an interval graph and its
clique orderings, defined as follows: A clique ordering of G is a sequence of (possibly empty) cliques
S = Q1, Q2, · · · , Ql that contains all the maximal cliques of G and has the property that for each vertex
v, the cliques in S that contain v appear consecutively. Note that we allow cliques to be empty.

The standard interval graph recognition algorithm attempts to find a clique order of the maximal cliques
of a graph by making the maximal cliques into leaves of a PQ-tree, and imposing PQ-tree constraints to
ensure that the cliques containing each vertex v appear consecutively. This structure is called the PQ-tree
of the graph. Note that the children of a P-node may be reordered arbitrarily and the children of a Q-node
may only be reversed. We consider a node with 2 children to be a Q-node. In the figures, we use a circle
to denote a P-node and a rectangle to denote a Q-node. A leaf-order of a PQ-tree is the order in which
its leaves are visited in an in-order traversal of the tree, after children of P and Q-nodes are re-ordered as
just described.

Note that ignoring non-maximal cliques is fine for recognizing interval graphs; for our purposes, however,
we want to consider clique orders and PQ-trees that may include non-maximal cliques. We say that a PQ-
tree whose leaves correspond to cliques of a graph is valid if for each of its leaf orderings and for each vertex
v, the cliques containing v appear consecutively.

Let S = Q1, Q2, · · · , Ql be a clique ordering of interval graph G and let the maximal cliques of G be
Qi1 , Qi2 , · · · , Qim (appearing in positions i1 < i2 < · · · < im respectively). Note that all the cliques in
S between Qij and Qij+1

contain B = Qij ∩ Qij+1
. We say that B is the boundary clique or boundary

between Qij and Qij+1
. Note that B may not necessarily be present in S. The sequence of cliques between

Qij and Qij+1
that are subsets of Qij is said to be the right tail of Qij . The left tail of Qij+1

is defined
analogously. Observe that the left tail of a clique forms an increasing sequence and the right tail forms
a decreasing sequence (w.r.t set inclusion). Also note that all the cliques that precede Qi1 are subsets of
Qi1 and this sequence is called the left tail of Qi1 and all the cliques that succeed Qim are subsets of Qim

and this sequence is called the right tail of Qim . Thus any clique ordering of G consists of a sequence of
maximal cliques, with each maximal clique containing a (possibly empty) left and right tail of subcliques.

Let Q0 and Ql+1 be defined to be empty sets. An insertion of clique Q′ between Qi and Qi+1 (for some
i ∈ {0, · · · , l}) is said to be a subclique insertion if Q′ ⊇ Qi ∩Qi+1 and either Q′ ⊆ Qi or Q

′ ⊆ Qi+1. It is
clear that after a subclique insertion the resulting sequence is still a clique ordering of G. A clique ordering
S ′ is an extension of S if S ′ can be obtained from S by subclique insertions. We also say that S extends
to S ′. Furthermore, we say that a clique ordering is generated by a PQ-tree, if it can be obtained from a
leaf order of the PQ-tree with subclique insertions. The above definitions yield the following Lemma.

Lemma 1. A sequence of cliques S is a clique ordering of G if and only if S can be generated from the
PQ-tree of G.

Let G1 and G2 be two interval graphs sharing a vertex set I (i.e. I = V (G1) ∩ V (G2)) and its induced
edges. Note that G1[I] is isomorphic to G2[I]. A clique ordering of G1[I] is said to be an I-ordering.

The I-restricted PQ-tree of Gj is defined to be the tree obtained from the PQ-tree of Gj by replacing
each clique Q (a leaf of the PQ-tree) with the clique Q ∩ I. Thus there is a one-to-one correspondence
between the two PQ-trees, and the leaves of the I-restricted PQ-tree are cliques of G1[I].
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Let I = X1,X2, · · · ,Xl be an I-ordering. I is said to be Gj-expandable if there exists a clique ordering
O = Q1, Q2, · · · , Ql of Gj such that Xi ⊆ Qi for i ∈ {1, · · · , l}. Further, we say that I expands to O. By
the definition of clique-ordering it follows that, if I is Gj-expandable then it remains Gj-expandable after
a subclique insertion (i.e. any extension of I is also Gj-expandable). We first observe the following.

Lemma 2. The set of Gj-expandable I-orderings is same as the set of orderings that can be generated
from the I-restricted PQ-tree of Gj .

Proof. Let T be the PQ-tree of Gj and T ′ be the I-restricted PQ-tree of Gj .
Let I be a Gj-expandable I-ordering of Gj . Then there exists a clique ordering O of Gj such that

I expands to O. But by Lemma 1, O can be generated from T (from a leaf order with subclique inser-
tions). This in turn implies that I can be generated from T ′ (from the corresponding leaf order with the
corresponding subclique insertions).

Now for the other direction, let I ′ = X1, · · · ,Xl be any leaf order of T ′. Then there exists a corre-
sponding leaf order O′ = Q1, · · · , Ql of T such that Xi ⊆ Qi for i ∈ {1, · · · , l}. This implies that I ′ is a
Gj-expandable I-ordering. Finally, observe that if I ′′ is generated from I ′ by subclique insertions than I ′′

is also a Gj-expandable I-ordering. Thus the Lemma holds.

Two I-orderings I1 and I2 are said to be compatible if both I1 and I2 (separately) extend to a common I-
ordering I. For e.g. the ordering {1}, {1, 2}, {1, 2, 3, 4} is compatible with the ordering {1}, {1, 2, 3}, {1, 2, 3, 4},
as they both extend to the common ordering: {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}. Note that the compatibility
relation is not transitive. Two PQ-trees T1 and T2 are said to be compatible if there exist orderings O1 and
O2 generated from T1 and T2 (respectively) such that O1 is compatible with O2. The following Lemma is
our main tool.

Lemma 3. G1 and G2 are simultaneous interval graphs if and only if the I-restricted PQ-tree of G1 is
compatible with the I-restricted PQ-tree of G2.

Proof. By Lemma 2, it is enough to show that G1 and G2 are simultaneous interval graphs if and only if
there exists a G1-expandable I-ordering I1 and a G2-expandable I-ordering I2 such that I1 is compatible
with I2. We now show this claim.

Let I1 and I2 be as defined in the hypothesis. Since I1 and I2 are compatible, they can be extended to
a common I-ordering I. Let I expand to clique orderings O1 and O2 in G1 and G2 respectively. Since each
vertex of I appears in the same positions in both O1 and O2, it is possible to obtain interval representations
R1 and R2 of G1 and G2 (from O1 and O2 respectively) such that each vertex in I has the same end points
in both R1 and R2. This implies that G1 and G2 are simultaneous interval graphs.

For the other direction, let G1 and G2 be simultaneous interval graphs. Then there exists an augmenting
set of edges A′ ⊆ V1 − I × V2 − I such that G = G1 ∪G2 ∪A′ is an interval graph. Let O = Q1, Q2, · · · , Ql

be a clique-ordering of G. For each i ∈ {1, · · · , l} and j ∈ {1, 2}, by restricting Qi to Vj (i.e. replacing Qi

with Qi ∩ Vj), we obtain a clique ordering Oj of Gj . Now for j ∈ 1, 2, let Ij be the I-ordering obtained
from Oj by restricting each clique in Oj to I. It follows that I1 is a G1-expandable I-ordering and I2 is a
G2-expandable I-ordering. Further I1 = I2 and hence I1 and I2 are compatible.

Our algorithm will decide if the I-restricted PQ-tree of G1 is compatible with the I-restricted PQ-tree
of G2. We first show how the I-restricted PQ-trees can be simplified in several ways. Two I-orderings I1
and I2 are said to be equivalent if for any I-ordering I ′, I1 and I ′ are compatible if and only if I2 and
I ′ are compatible. Note that this is an equivalence relation. The Lemma below follows directly from the
definitions of equivalent orderings and subclique insertions.
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Lemma 4. Let I = X1,X2, · · · ,Xl be an I-ordering in which Xi = Xi+1 for some i ∈ 1, · · · , l − 1. Let I ′

be the I-ordering obtained from I by deleting Xi+1. Then I is equivalent to I ′.

Further, because equivalence is transitive, Lemma 4 implies that an I-ordering I is equivalent to the
I-ordering I ′ in which all consecutive duplicates are eliminated. This allows us to simplify the I-restricted
PQ-tree of Gj . Let T be the I-restricted PQ-tree of Gj . We obtain a PQ-tree T ′ from T as follows.

1. Initialize T ′ = T .
2. As long as there is a non-leaf node n in T ′ such that all the descendants of n are the same, i.e. they are
all duplicates of a single clique X, replace n and the subtree rooted at n by a leaf node representing X.
3. As long as there is a (non-leaf) Q-node n in T ′ with two consecutive child nodes na and nb (among
others) such that all the descendants of na and nb are the same i.e. they are all duplicates of a single clique
X, replace na, nb and the subtrees rooted at these vertices by a single leaf node representing the clique X.

Note that the resulting T ′ is unique. We call T ′ the I-reduced PQ-tree of Gj .

Lemma 5. G1 and G2 are simultaneous interval graphs if and only if the I-reduced PQ-tree of G1 is
compatible with the I-reduced PQ-tree of G2.

Proof. For j ∈ {1, 2}, let Tj and T ′
j be the I-restricted and I-reduced PQ-trees of Gj respectively. Let I

be any I-ordering. Observe that by Lemma 4, I is compatible with a leaf ordering of Tj if and only if I is
compatible with a leaf ordering of T ′

j . Thus the conclusion follows from Lemma 3.

3 Labeling and Further Simplification

In section 2, we transformed the simultaneous interval graph problem to a problem of testing compatibility
of two I-reduced PQ-trees where I is the common vertex set of the two graphs. These PQ-trees may have
nodes that correspond to non-maximal cliques in I. In this section we prove some basic properties of such
I-reduced PQ-trees, and use them to further simplify each tree.

Let T be the I-reduced PQ-tree of Gj . Recall that each leaf l of T corresponds to a clique X in Gj [I].
If X is maximal in I, then X is said to be a max-clique and l is said to be a max-clique node, otherwise
X is said to be a subclique and l is said to be a subclique node. When the association is clear from the
context, we will sometimes refer to a leaf l and its corresponding clique X interchangeably, or interchange
the terms “max-clique” and “max-clique node” [resp. subclique and subclique node]. A node of T is said
to be an essential node if it is a non-leaf node or if it is a leaf node representing a max-clique.

Given a node n of T , the descendant cliques of n are the set of cliques that correspond to the leaf-
descendants of n. Because our algorithm operates by inserting subcliques from one tree into the other, we
must take care to preserve the validity of a PQ-tree. For this we need to re-structure the tree when we
do subclique insertions. The required restructuring will be determined based on the label U(n) that we
assign to each node n as follows.

U(n) or the Universal set of n is defined as the set of vertices v such that v appears in all descendant
cliques of n.

Note that for a leaf node l representing a clique X, U(l) = X by definition. Also note that along any
path up the tree, the universal sets decrease. The following Lemma gives some useful properties of the
I-reduced PQ-tree.
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Lemma 6. Let T be the I-reduced PQ-tree of Gj . Let n be a non-leaf node of T (n is used in properties
2–6). Then we have:
0. Let l1 and l2 be two distinct leaf nodes of T , containing a vertex t ∈ I. Let y be the least common
ancestor of l1 and l2. Then: (a) If y is a P-node then all of its descendant cliques contain t. (b) If y is
a Q-node then t is contained in all the descendant cliques of all children of y between (and including) the
child of y that is the ancestor of l1 and the child that is the ancestor of l2.
1. Each max-clique is represented by a unique node of T .
2. A vertex u is in U(n) if and only if for every child n1 of n, u ∈ U(n1).
3. n contains a max-clique as a descendant.
4. If n is a P-node, then for any two child nodes n1 and n2 of n, we have U(n) = U(n1) ∩ U(n2).
5. If n is a P-node, then any child of n that is a subclique node represents the clique U(n).
6. If n is a Q-node and n1 and n2 are the first and last child nodes of n then U(n) = U(n1) ∩ U(n2).

Proof. (0) Observe that in any leaf ordering of T , all the nodes that appear between l1 and l2 must also
contain the vertex t, otherwise T would be invalid. Now let l3 be a leaf descendant of y, that doesn’t
contain t.

If y is a P-node, then we can reorder the children of y in such a way that in the leaf-ordering of
the resulting tree l3 appears between l1 and l2. But this contradicts the validity of T . This proves (a).
Similarly, if y is a Q-node, then l3 cannot be equal to l1 or l2 or any node between them. Thus (b) also holds.

(1) Note that by definition of I-reduced PQ-tree of Gj , each max-clique must be present in T . Now
assume for the sake of contradiction that a max-clique X is represented by two leaf nodes, say l1 and l2. Let
y be the least common ancestor of l1 and l2. Let c1 and c2 be the child nodes of y that contain n1 and n2

(respectively) as descendants. Now by (0), if y is a P-node then all of its descendant cliques must contain
all the vertices of X. But as X is maximal, all these cliques must be precisely X. However this is not
possible, as we would have replaced y with a leaf node representing X in the construction of T . Similarly,
if y is a Q-node then the descendant cliques of c1, c2 and all the nodes between them must represent the
max-clique X. But then we would have replaced these nodes with with a leaf node representing X in the
construction of T . This proves (1).

(2) If u ∈ U(n), then all the descendant cliques of n contain u. This implies that for any child n1 of
n, all the descendant cliques of n1 contain u. Hence u ∈ U(n1). On the other hand, if each child n1 of n
contains a vertex u in its universal set, then u is present in all the descendant cliques of n and thus u ∈ U(n).

(3) Note that if each descendant clique of n contains precisely U(n) (and no other vertex), then we
would have replaced the subtree rooted at n with a leaf node corresponding to the clique U(n), when
constructing T . Thus there exists a clique Q2 that is a descendant of n, such that Q2−U(n) is non-empty.
If Q2 is a max-clique then we are done. Otherwise let t ∈ Q2−U(n) and let Q1 be a max-clique containing
t. Suppose Q1 is a not a descendant of n1. Applying (0) on Q1 and Q2, we infer that irrespective of
whether n is a P-node or a Q-node, all the descendant cliques of n must contain t. But then t ∈ U(n), a
contradiction. Thus Q1 is a descendant of n1.

(4) By (2) we observe that U(n) ⊆ U(n1)∩U(n2). Thus it is enough to show that U(n1)∩U(n2) ⊆ U(n).
Let u ∈ U(n1) ∩ U(n2), then u is present in all the descendant cliques of n1 and n2. By (0), u must be
present in all the descendant cliques of n and hence u ∈ U(n). Therefore U(n1) ∩ U(n2) ⊆ U(n).
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(5) Consider any child n1 of n. Suppose n1 is a leaf-node and is not a max-clique. It is enough to
show that n1 represents the clique U(n) i.e. U(n1) = U(n). Suppose not. Then there exists a vertex
t ∈ U(n1) − U(n). Let Q1 be a max-clique containing t. Note that the common ancestor of Q1 and n1 is
either n or an ancestor of n. Applying (0) on Q1 and n1, we infer that all the descendant cliques of n must
contain t. But then t ∈ U(n), a contradiction.

(6) This follows from (2) and (0).

Let T be the I-reduced PQ-tree of Gj . Recall that an essential node is a non-leaf node or a leaf node
representing a maximal clique. Equivalently (by Lemma 6.3), an essential node is a node which contains
a max-clique as a descendant. The following Lemma shows that in some situations we can obtain an
equivalent tree by deleting subclique child nodes of a P-node n. Recall that by Lemma 6.5, such subclique
nodes represent the clique U(n).

Lemma 7. Let T be the I-reduced PQ-tree of Gj and n be a P-node in T . Then
1. If n has at least two essential child nodes, then T is equivalent to the tree T ′, obtained from T by
deleting all the subclique children of n.
2. If n has at least two subclique child nodes, then T is equivalent to the tree T ′, obtained from T by
deleting all except one of the subclique children of n.

Proof. We give the proof of (1) below. The proof of (2) is very similar and hence omitted.
Let O1 be any I-ordering. It is enough to show that there exists a leaf orderingO of T that is compatible

with O1 if and only if there exists a leaf ordering O′ of T ′ that is compatible with O1.
Let O be any leaf ordering of T , compatible with O1. Consider the ordering O′ obtained from O by

deleting the cliques U(n) that correspond to the child nodes of n in T . Clearly O′ is a leaf ordering of T ′.
Further O′ can be extended to O by adding copies of the cliques U(n) at appropriate positions. Thus O′

is compatible with O1.
Now for the other direction, let O′ be a leaf order of T ′, compatible with O1 and let O′ and O1 extend to

a common ordering OF . From the hypothesis, we can assume that there exist two essential child nodes n1

and n2 of n in T ′ such that the clique descendants of n1, appear immediately before the clique descendants
of n2 in O′. Also let S(n1) and S(n2) be the two subsequences of O′ containing the clique descendants
of n1 and n2 respectively. Since n1 and n2 are essential nodes, S(n1) and S(n2) each contain at least one
max-clique. Let Q1 be the last max-clique in S(n1) and Q2 be the first max-clique in S(n2). By Lemma
6.0, Q1 ∩ Q2 = U(n1) ∩ U(n2) = U(n). Since O′ is compatible with O1, in each of the two orderings O′

and O1, Q2 occurs after Q1 and no other max-clique appears between them. Further the same holds for
OF (as it is an extension of O′). Let k be the number of subclique children of n (that represent the clique
U(n)). Then obtain a leaf ordering O of T , from O′, by inserting k copies of U(n) between S(n1) and
S(n2). Now extend OF to O′

F by inserting k copies of U(n) between Q1 and Q2 (there is a unique way
of adding a subclique between two max-cliques). It is clear that O′

F is an extension of both O and O1.
Therefore O is compatible with O1. This proves (1).

We will simplify T as much as possible by applying Lemma 7 and by converting nodes with two
children into Q-nodes. We call the end result a simplified I-reduced PQ-tree, but continue to use the term
“I-reduced PQ-tree” to refer to it. Note that the simplification process does not change the universal sets
and preserves the validity of the PQ-tree so Lemma 5 and all the properties given in Lemma 6 still hold.
Because we consider nodes with 2 children as Q-nodes Lemma 7 implies:

Corollory 1. In a [simplified] I-reduced PQ-tree, any P-node has at least 3 children, and all the children
are essential nodes.
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4 Algorithm

For k ∈ {1, 2}, let Tk be the [simplified] I-reduced PQ-tree of Gk. By Lemma 5, testing whether G1 and
G2 are simultaneous interval graphs is equivalent to testing whether T1 and T2 are compatible. We test
this by modifying T1 and T2 (e.g. inserting the sub-clique nodes from one tree into the other) so as to make
them identical, without losing their compatibility. The following is a high level overview of our approach
for checking whether T1 and T2 are compatible.

Our algorithm is iterative and tries to match essential nodes of T1 with essential nodes of T2 in a
bottom-up fashion. An essential node n1 of T1 is matched with an essential node n2 of T2 if and only if the
subtrees rooted at n1 and n2 are the same i.e. their essential children are matched, their subclique children
are the same and furthermore (in the case of Q-nodes) their child nodes appear in the same order. If n1

is matched with n2 then we consider n1 and n2 to be identical and use the same name (say n1) to refer
to either of them. Initially, we match each max-clique node of T1 with the corresponding max-clique node
of T2. Note that every max-clique node appears uniquely in each tree by Lemma 6.1. A sub-clique node
may appear in only one tree in which case we must first insert it into the other tree. This is done when
we consider the parent of the subclique node.

In each iteration, we either match an unmatched node u of T1 to an unmatched node v of T2 (which
may involve inserting subclique child nodes of v as child nodes of u and vice versa) or we reduce either T1
or T2 without losing their compatibility relationship. Reducing a PQ-tree means restricting it to reduce
the number of leaf orderings. Finally, at the end of the algorithm either we have modified T1 and T2 to
a “common” tree TI that establishes their compatibility or we conclude that T1 is not compatible with
T2. The common tree TI is said to be an intersection tree (of T1 and T2) and has the property that any
ordering generated by TI can also be generated by T1 and T2. If T1 and T2 are compatible, there may be
several intersection trees of T1 and T2, but our algorithm finds only one of them.

We need the following additional notation for the rest of this paper. A sequence of subcliques S =
X1,X2, · · · ,Xl is said to satisfy the subset property if Xi ⊆ Xi+1 for i ∈ {1, · · · , l− 1}. S is said to satisfy
the superset property if Xi ⊇ Xi+1 for each i. Note that S satisfies the subset property if and only if
S̄ = Xl, · · · ,X2,X1 satisfies the superset property.

Let d be an essential child node of a Q-node in Tk. We will overload the term “tail” (previously defined
for a max clique in a clique ordering) and define the tails of d as follows. The left tail (resp. right tail) of
d is defined as the sequence of subcliques that appear as siblings of d, to the immediate left (resp. right)
of d, such that each subclique is a subset of U(d). Note that the left tail of d should satisfy the subset
property and the right tail of d should satisfy the superset property (otherwise Tk will not be valid). Also
note that since the children of a Q-node can be reversed in order, “left” and “right” are relative to the
child ordering of the Q-node. We will be careful to use “left tail” and “right tail” in such a way that this
ambiguity does not matter. Now suppose d is a matched node. Then in order to match the parent of d in
T1 with the parent of d in T2, our algorithm has to “merge” the tails of d.

Let L1 and L2 be two subclique sequences that satisfy the subset property. Then L1 is said to be
mergable with L2 if the union of subcliques in L1 and L2 can be arranged into an ordering L′ that satisfies
the subset property. Analogously, if L1 and L2 satisfy the superset property, then they are said to be
mergable if the union of their subcliques can be arranged into an ordering L′ that satisfies the superset
property. In both cases, L′ is said to be the merge of L1 and L2 and is denoted by L1 + L2.

A maximal matched node is a node that is matched but whose parent is not matched. For an unmatched
essential node x, the MM-descendants of x, denoted by MMD(x) are its descendants that are maximal
matched nodes. If x is matched then we define MMD(x) to be the singleton set containing x. Note
that the MM-descendants of an essential node is non-empty (since every essential node has a max-clique
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descendant).
Our algorithm matches nodes from the leaves up, and starts by matching the leaves that are max-

cliques. As the next node n1 that we try to match, we want an unmatched node whose essential children
are already matched. To help us choose between T1 and T2, and also to break ties, we prefer a node with
larger U set. Then, as a candidate to match n1 to, we want an unmatched node in the other tree that has
some matched children in common with n1. With this intuition in mind, our specific rule is as follows.

Among all the unmatched essential nodes of T1 union T2 choose n1 with maximal U(n1), minimal
MMD(n1), and maximal depth, in that preference order. Assume without loss of generality that n1 ∈ T1.
Select an unmatched node n2 from T2 with maximal U(n2), minimal MMD(n2) and maximal depth (in
that order) satisfying the property that MMD(n1) ∩ MMD(n2) 6= ∅. The following Lemma captures
certain properties of n1 and n2, including why these rules match our intuitive justification.

Lemma 8. For n1 and n2 chosen as described above, let M1 = MMD(n1), M2 = MMD(n2) and X =
M1 ∩M2. Also let C1 and C2 be the essential child nodes of n1 and n2 respectively. Then we have:
1. M1 = C1 and X ⊆ C2.
Further when T1 is compatible with T2, we have:
2. For every (matched) node l in M1 −X of T1, its corresponding matched node l′ in T2 is present outside
the subtree rooted at n2. Analogously, for every (matched) node r′ in M2 − X of T2, its corresponding
matched node r in T1 is present outside the subtree rooted at n1.
3. If n1 [resp. n2] is a Q-node, then in its child ordering, no node of C1−X [resp. C2−X] can be present
between two nodes of X.
4. If n1 and n2 are Q-nodes, then in the child ordering of n1 and n2, nodes of X appear in the same
relative order i.e. for any three nodes x1, x2, x3 ∈ X, x1 appears between x2 and x3 in the child ordering of
n1 if and only if x1 also appears between x2 and x3 in the child ordering of n2.
5. If C1 −X (resp.C2 −X) is non-empty then U(n1) ⊆ U(n2) (resp. U(n2) ⊆ U(n1)). Further, if C1 −X

is non-empty then so is C2 −X and hence U(n1) = U(n2).
6. Let C1 − X be non-empty. If n1 [resp. n2] is a Q-node, then in its child-ordering either all nodes of
C1 −X [resp. C2 −X] appear before the nodes of X or they all appear after the nodes of X.

Proof. (1) If there exists an unmatched child c of n1, then as U(c) ⊇ U(n1), MMD(c) ⊆ MMD(n1) and
c has a greater depth than n1, we would have chosen c over n1. Thus every node in C1 is matched and
hence by the definition of MM-descendants C1 = M1.

For the second part, suppose there exists a node x ∈ X that is not a child of n2. Let c2 be the child of
n2 that contains x as a descendant. c2 must be an unmatched node. (Otherwise MMD(n2) would have
contained c2 and not x). But then we would have picked c2 over n2.

(2) Let l be a (matched) node in M1 − X (in T1) such that the corresponding matched node l′ in T2
is a descendant of n2. Note that l′ cannot be a child of n2. Otherwise l′ ∈ M2 and thus l = l′ is in X.
Let p′ be the parent of l′. Now p′ cannot be a matched node. (Otherwise p′ would have been matched
to n1, a contradiction that n1 is unmatched). Also p′ is a descendant of n2 and hence U(p′) ⊇ U(n2),
MMD(p′) ⊆ MMD(n2) and p′ has greater depth than n2. Further l = l′ is a common MM-descendant of
n1 and p′. This contradicts the choice of n2.

Now let r′ be a (matched) node in M2 −X (in T2), such that the corresponding matched node r is a
descendant of n1. Note that r is not a child of n1, otherwise r = r′ is a common MM-descendant of n1

and n2 and hence r′ = r ∈ X. Let p be the parent of r in T1. Since p is a proper descendant of n1, p is a
matched node. Let p be matched to a node p′ in T2. Now p′ is a parent of r′ and a descendant of n2. But
then the MM-descendants of n2 should not have contained r′.
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(3) Suppose in the child ordering of n1, node y ∈ C1−X is present between nodes xa ∈ X and xb ∈ X.
Let Y,Xa and Xb be any max-cliques that are descendants of y, xa and xb respectively. Then in any
ordering of T1, Y appears between Xa and Xb. But by (2), the corresponding matched node y′ of y in T2
appears outside the subtree rooted at n2. Thus in any ordering of T2, Y appears either before or after both
Xa and Xb. Thus T1 and T2 are not compatible. This shows the claim for n1. The proof for n2 is similar.

(4) This follows from the fact that T1 and T2 are compatible and by observing that each matched node
(in particular any node in X) contains a max-clique as a descendant.

(5) Let xa ∈ X be a common child of n1 and n2. Let Xa be a max-clique descendant of xa. Suppose
C1 −X is non-empty. Then let Ya be any max-clique descendant of a node in C1 −X. Note that by (2),
Ya is present outside the subtree rooted at n2. Now by Lemma 6.0 and observing that the least common
ancestor of Xa and Ya (in T2) is an ancestor of n2, we get U(n2) ⊇ Xa∩Ya ⊇ U(n1). Thus U(n1) ⊆ U(n2).
Using an analogous argument we can show that if C2 −X is non-empty then U(n2) ⊆ U(n1). This proves
the first part of the property.

For the second part we once again assume that C1 −X is non-empty and hence U(n1) ⊆ U(n2). Now
if C2 −X is empty then MMD(n2) = X ⊂ MMD(n1). But this contradicts the choice of n1 (we would
have selected n2 instead).

(6) By (5), C2 −X is non-empty and U(n1) = U(n2). Let xa ∈ X and suppose ya, yb ∈ C1 −X are
any two nodes on different sides of X. Let za ∈ C2 −X. Note that by (2), the matched nodes of ya, yb in
T2 appear outside the subtree rooted at n2 and the matched node of za in T1 appears outside the subtree
rooted at n1. Now let Xa, Ya, Yb and Za be any descendant max-cliques of xa, ya, yb and za respectively. In
any leaf-ordering of T1, Xa appears between Ya and Yb, and Za doesn’t appear between Ya and Yb. But in
any leaf-ordering of T2, either Za and Xa both appear between Ya and Yb or they both appear before or
after Ya and Yb. This contradicts that T1 and T2 are compatible. Therefore all nodes of X appear before or
after all nodes of C1 −X in the child ordering of n1. Similarly, the claim also holds for the child ordering
of n2 in T2.

We now describe the main step of the algorithm. Let n1, n2,M1,M2, C1, C2 and X be as defined in
the above Lemma. We have four cases depending on whether n1 and n2 are P or Q-nodes. In each of
these cases, we make progress by either matching two previously unmatched essential nodes of T1 and T2
or by reducing T1 and/or T2 at n1 or n2 while preserving their compatibility. We show that our algorithm
requires at most O(nlog n) iterations and each iteration takes O(n) time. Thus our algorithm runs in
O(n2 log n) time.

During the course of the algorithm we may also insert subcliques into a Q-node when we are trying to
match it to another Q-node. This is potentially dangerous as it may destroy the validity of the PQ-tree.
When the Q-nodes have the same universal set, this trouble does not arise. However, in case the two
Q-nodes have different universal sets, we need to re-structure the trees. Case 4, when n1 and n2 are both
Q-nodes, has subcases to deal with these complications.

Case 1: n1 and n2 are both P-nodes.

By Corollary 1, the children of n1 and n2 are essential nodes, so C1 and C2 are precisely the children of n1

and n2 respectively. Let X consist of nodes {x1, · · · , xk0}. If C2−X is empty, then by Lemma 8.5, C1−X
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(a) C1 −X is empty
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T1 T2

(b) C1 −X is non-empty

Figure 2: Reduction templates for Case 1

is also empty and hence n1 and n2 are the same. So we match n1 with n2 and go to the next iteration.
Suppose now that C2 −X is non empty. Let C2 −X = {r1, · · · , rk2}. If C1 −X is empty, then we use the
reduction template of Figure 2(a) to modify T2, matching the new parent of X in T2 to n1. It is easy to
see that T1 is compatible with T2 if and only if T1 is compatible with the modified T2.

Now let C1 − X = {l1, · · · , lk1} be non-empty. In this case we use the reduction template of Figure
2(b) to modify T1 and T2 to T ′

1 and T ′
2 respectively. Note that it is possible to have ki = 1 for some i’s, in

which case the template is slightly different because we do not make a node with one child, however, the
reduction always makes progress as each ni has at least 3 children.

We now claim that T1 is compatible with T2 if and only if T ′
1 is compatible with T ′

2 . The reverse
direction is trivial. For the forward direction, let O1 and O2 be two compatible leaf orderings of T1 and
T2 respectively. Recall that by Lemma 8.2, for every [matched] node of C1 −X in T1, the corresponding
matched node in T2 appears outside the subtree rooted at n2. This implies that the descendant nodes
of {x1, x2, · · · , xk0} all appear consecutively in O1. Hence the descendant nodes of {x1, x2, · · · , xk0} also
appear consecutively in O2. Thus we conclude that T1 and T2 are compatible if and only if the reduced
trees T ′

1 and T ′
2 are also compatible. Note that both the template reductions take at most O(n) time.

Case 2: n1 is a P-node and n2 is a Q-node.

If C1 −X = ∅, we reduce T1 by ordering the children of n1 as they appear in the child ordering of n2, and
changing n1 into a Q-node (and leading to Case 4). This reduction preserves the compatibility of the two
trees.

Now suppose C1 −X 6= ∅. Lemma 8.5 implies that, C2 −X 6= ∅ and U(n1) = U(n2). By Lemma 8.6,
we can assume that the nodes in X appear before the nodes in C2−X in the child ordering of n2. Now let
X = x1, · · · , xk0 , C1 −X = l1, · · · , lk1 and C2 −X = r1, · · · , rk2 . For i ∈ 2, · · · , k0, let Si be the sequence
of subcliques that appear between xi−1 and xi in the child ordering of n2. Note that Si consists of the
right tail of xi−1 followed by the left tail of xi. We let S1 and Sk0+1 denote the left and right tails of x1
and xk0 respectively. We now reduce the subtree rooted at n1 as shown in Figure 3, changing it into a
Q-node. Clearly U(n1) is preserved in this operation. The correctness of this operation follows by Lemma
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S1 Sk0+1

xk0
x1

T ′
1

Figure 3: Reduction template for Case 2, when C1 −X 6= ∅

8.2. It is easy to see that both the template reductions run in O(n) time.

Case 3: n1 is a Q-node and n2 is a P-node.

If C2 − X is empty, then we reduce T2 by ordering the child nodes of n2 (i.e. X) as they appear in the
child ordering of n1, and changing n2 into a Q-node.

Now let C2 −X be nonempty. By Lemma 8.5, U(n2) ⊆ U(n1). Let X = {x1, x2, · · · , xk0}, C2 −X =
{r1, · · · , rk2} and S1, · · · , Sk0+1 be defined as in the previous case: S1 is the left tail of x1 (in T1), Si is the
concatenation of the right tail of xi−1 and the left tail of xi, for i ∈ {2, · · · , k0} and Sk0+1 is the right tail
of xk0 .

Now if C1 −X is empty, then we use the template of Figure 4 to reduce T2, grouping all nodes of X
into a new Q-node w, ordering them in the way they appear in T1 and inserting the subclique children of
n1 into w. Note that since U(n2) ⊆ U(n1), this operation doesn’t change U(n2) and hence it preserves the
validity of T2. Further n1 is identical to w and hence we match these nodes. Thus we make progress even
when |X| = 1.

If C1 −X is non-empty, we use the template similar to Figure 3 (to reduce T2) in which the roles of n1

and n2 have been switched. Note that the template reductions of this case run in O(n) time.

Case 4: n1 and n2 are both Q-nodes

Let X = {x1, · · · , xk0} appear in that order in the child ordering of n1 and n2. (They appear in the same
order because of Lemma 8.4.) Let p1 and p2 be the parents of n1 and n2 respectively.

If n1 and n2 have no other children than X, we match n1 with n2 and proceed to the next iteration.
More typically, they have other children. These may be essential nodes to one side or the other of X (by
Lemma 8.6) or subclique nodes interspersed in X as tails of the nodes of X. We give a high-level outline
of Case 4, beginning with a discussion of subclique nodes.

For i ∈ {1, · · · , k0}, let Li and Ri be the left and right tails of xi in T1 and, L′
i and R′

i be the left and
right tails of xi in T2. The only way to deal with the subclique nodes is to do subclique insertions in both
trees to merge the tails. This is because in any intersection tree TI obtained from T1 and T2, the tails of xi
in TI must contain the merge of the tails of xi in T1 and T2. So long as |X| ≥ 2, the ordering x1, · · · , xk0
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Figure 4: Reduction template for Case 3, when n1 is a Q-node, n2 is a P-node and C1 −X is empty.

completely determines which pairs of tails must merge: Li must merge with L′
i and Ri must merge with

R′
i.
The case |X| = 1 is more complicated because the intersection tree may merge L1 with L′

1 and R1 with
R′

1 or merge L1 with R̄1 and R1 with L̄1. This decision problem is referred to as the alignment problem.
We prove (at the beginning of Case 4.3) that in case both choices give mergable pairs, then either choice
yields an intersection tree, if an intersection tree exists.

This completes our high-level discussion of subclique nodes. We continue with a high-level description
of the subcase structure for Case 4. We have subcases depending on whether U(n1) = U(n2) and whether
n1 and n2 have the same essential children. If both these conditions hold, then we merge the tails of the
nodes of X and match n1 with n2. (In other words we replace Li and L′

i with Li +L′
i, and replace Ri and

R′
i with Ri +R′

i). The cost of matching any two nodes x and y is (mx +my)|I|), where mx and my are
the number of subclique children of x and y respectively. Once a node is matched its subclique children
will not change. Hence the total amortized cost of matching all the nodes is O(n · |I|) = O(n2).

When U(n1) 6= U(n2) or when n1 and n2 do not have the same essential children then we have three
subcases. Case 4.1 handles the situation when U(n1) 6⊇ U(n2). In this case we either insert subcliques
of one tree into another and match n1 with n2 or we do some subclique insertions that will take us to
the case when U(n1) ⊇ U(n2). The remaining cases handle the situation when U(n1) ⊇ U(n2), Case 4.2
when C1 − X is non-empty and Case 4.3 when it is empty. In both cases, we reduce T1 but the details
vary. However in both cases our reduction templates depend on whether p1 is a P-node or a Q-node. If
p1 is a P-node, we reduce T1 by grouping some of the child nodes of p1 into a single node, deleting them
and adding the node as a first or last child of n1. If p1 is a Q-node then there are two ways of reducing:
delete n1 and reassign its children as children of p1 or reverse the children of n1, delete n1 and reassign its
children as children of p1. We refer to this operation as a collapse. We now give the details of each case.

Case 4.1: U(n1) 6⊇ U(n2)
Since n1 was chosen so that U(n1) is maximal, we also have U(n2) 6⊇ U(n1). Now using Lemma 8.5, we
infer that C1 −X is empty and C2 −X is empty. Thus the difference between U(n1) and U(n2) arises due
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to the subcliques. Let L be a subclique that is either the first or the last child of n1, with the property
that L 6⊆ U(n2). Such a subclique exists since by Lemma 6.6, the intersection of the universal sets of the
first and last child nodes of n1 is U(n1). Also let R be a subclique that is either the first or the last child
of n2, with the property that R 6⊆ U(n1).

Note that even if |X| = 1, the alignment is unique since L and R cannot appear in the same tail of x1
in any intersection tree. Further, we can assume without loss of generality that L is present in the left tail
of x1 in T1 and R is present in the right tail of xk0 in T2.

Let X1 be any max-clique descendant of x1. If p1 is a P-node then we claim that U(p1) ⊆ U(n2). To
see this, let Z be a max-clique descendant of p1, that is not a descendant of n1. In T2, Z appears outside
the subtree rooted at n2. Now by applying Lemma 6.0 on X1 and Z, we conclude that every descendant
of n2 must contain the vertex set Z ∩X1. Thus we have U(p1) ⊆ (Z ∩X1) ⊆ U(n2). Note that if T1 and
T2 are compatible, then in any intersection tree of T1 and T2, the nodes of L1 and L′

1 appear in the left tail
of x1 and the nodes of Rk0 and R′

k0
appear in the right tail of xk0 . Now if L′

1 is non-empty, then we insert
the left most subclique of L′

1 into L1 (at the appropriate location so that the resulting sequence is still a
subclique ordering), as a child of n1. Also if R′

k0
is non-empty, then we insert the right most subclique of

R′
k0

into Rk0 , as a child of n1. These insertions change U(n1) to U(n1)∩U(n2) ⊇ U(p1) and we would be
in case 4.3 with the roles of n1 and n2 being reversed. (Note that since the universal set of the modified
n1 is a superset of the universal set of p1, the resulting reduced tree of T1 is valid). Although this doesn’t
constitute a progress step since the number of leaf orderings of n1 doesn’t change, we will make progress
in the Case 4.3.

Similarly if p2 is a P-node then we insert the first subclique of L1 (if it exists) into L′
1 and the last

subclique of Rk0 (if it exists) into R′
k0
. After this we would be in Case 4.3.

Now if the parents of n1 and n2 are both Q-nodes then we look at the tails of n1 and n2. If all the
subcliques in these tails are subsets of U(n1)∩U(n2), then we replace Li and L′

i with Li +L′
i and Ri and

R′
i with Ri +R′

i. This changes U(n1) and U(n2) to U(n1)∩U(n2) and makes n1 identical to n2. Thus we
match n1 with n2 and iterate.

Otherwise without loss of generality let the subclique S 6⊆ U(n2) be present in the (say left) tail of n1.
Observe that in any intersection tree S and R cannot be present in the same tail of xk0 (since neither is
a subset of the other). This implies that we can reduce the tree T1 by collapsing n1 i.e. by removing n1,
inserting the sequence of child nodes of n1 after S (S and L are now in the left tail of x1), and assigning
p1 as their parent. This completes case 4.1. Note that all the steps in this case take O(n) time, except the
matching step (recall that all the matching steps take O(n2) amortized time).

Case 4.2: U(n1) ⊇ U(n2) and C1 −X is non-empty.

By Lemma 8.5, C2 −X is also non-empty and further U(n1) is equal to U(n2). In this case we will reduce
T1 depending on whether p1 is a P-node or a Q-node. Further when p1 is a Q-node, our reduction template
also depends on whether n1 has sibling essential nodes.

Let l1, l2, · · · , lk1 be the essential nodes in C1 −X appearing in that order and appearing (without loss
of generality) before the nodes of X in T1. Note that by Lemma 8.2, for each node in C1 −X, the corre-
sponding matched node in T2 appears outside the subtree rooted at n2. Thus if T1 and T2 are compatible,
then all the nodes of C2−X must appear after the nodes of X in the child ordering of n2. Let these nodes
be r1, r2, · · · , rk2 .

Case 4.2.1: p1 is a P-node

Let Y = {y1, y2, · · · , yk3} be the child nodes of p1 other than n1 . Also, let TI be any intersection tree of
T1 and T2. We first observe that for i ∈ {1, · · · , k0} and j ∈ {1, · · · , k2}, MMD(yi) ∩ MMD(rj) 6= ∅, if
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and only if yi and rj have a max-clique descendant.
For any such pair yi and rj , let MMD(yi) ∩ MMD(rj) 6= ∅ and let Y be a common max-clique

descendant of yi and rj. Then note that because of the constraints imposed by the child ordering of n2,
in any leaf ordering of TI , the descendant cliques of l1 do not appear between the descendant cliques
of x1 and Y . Thus yi must appear after xk1 , and so we reduce T1, by grouping all nodes yi satisfying
MMD(yi)∩MMD(rj) 6= ∅ for some rj into a P-node and adding it as a child node of n1 to the (immediate)
right of Rk0 as shown in Figure 5(top).

Now if MMD(yi) ∩ MMD(rj) = ∅ for all yi and rj , then the above reduction doesn’t apply. But
in this case (because of the constraints on n2), for every yi and every leaf ordering of TI , no max-clique
descendant of yi appears between the max-clique descendants of n2. Thus we group all the nodes of Y into
a P-node and add it as a child of n1 to the left of l1 as shown in Figure 5(bottom).

Note that for any two distinct nodes ya, yb ∈ {y1, · · · , yk3} we have: MMD(ya) ∩ MMD(yb) = ∅.
Similarly, for any two distinct nodes ra, rb ∈ {r1, · · · , rk2} we have: MMD(ra) ∩ MMD(rb) = ∅. This
implies that we can first compute the MM-Descendants of all yi and rj in O(n) time and further we can
compute all nodes yi that satisfy MMD(yi)∩MMD(rj) 6= ∅ for some rj , in O(n) time. Thus the template
reductions of Figure 5 run in O(n) time.

Case 4.2.2: p1 is a Q-node and n1 is its only essential child.

Since the only essential child of p1 is n1, all of its remaining children are subcliques that are present as
tails of n1. Thus each of these subcliques is a subset of U(n1). Now let Z and R be any two max-clique
descendants of xk0 and r1 respectively. By Lemma 8.2, R appears outside the subtree rooted at n1 (in T1)
and hence outside the subtree rooted at p1. By Lemma 6.0, we conclude that each descendant clique of p1
must contain Z ∩R. Thus we have U(p1) ⊇ Z ∩R ⊇ U(n2) = U(n1) ⊇ U(p1). Hence all of these sets must
be equal and hence we infer the following: Z ∩ R = U(n1) and hence U(xk0) ∩ U(r1) = U(n1). Further,
each subclique child of p1 must precisely be the clique U(n1).

Since we have eliminated adjacent duplicates from all Q-nodes, there can be at most one such subclique
in each tail of n1. Now if the subclique (U(n1)) appears on both sides of n1, then there is a unique way
of collapsing n1 (see Figure 6(top)). Otherwise we collapse n1 in such a way that U(n1) is present in the
tail of xk0 as shown in Figure 6(bottom). This is justified (i.e. it preserves compatibility between T1 and
T2) because U(n1) can be inserted into the right tail of xk0 in both T1 and T2. In other words, if T1 and
T2 are compatible, then there exists an intersection tree in which U(n1) is present in the right tail of xk0 .
The template reductions of this case, clearly run in O(n) time.

Case 4.2.3: p1 is a Q-node and has more than one essential child.

Let y be an essential child of p1, such that all the nodes between n1 and y are subcliques. Without
loss of generality, we assume that y appears to the right of n1. We collapse n1, depending on whether
MMD(y) ∩MMD(r1) is empty or not, as shown in Figure 7. Thus the template reduction runs in O(n)
time.

If MMD(y) ∩ MMD(r1) is non-empty, there exists a max-clique Y that is a descendant of both r1
and y. Now if T1 and T2 are compatible, then in the leaf ordering of any intersection tree, the max-clique
descendants of xk0 appear in between the max-clique descendants of l1 and Y . Thus we collapse the node
n1, by deleting n1, and reassigning p1 as the parent of all the children of n1. (Thus no essential node
appears between xk0 and y).

On the other hand if MMD(y) ∩MMD(r1) is empty, we observe the following: In the leaf ordering
of any intersection tree TI no max-clique appears in between the max-clique descendants of xk0 and the
max-clique descendants of r1. Therefore, in this case we collapse n1, by reversing its children, deleting it,
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Figure 5: Reduction template of T1 for Case 4.2.1. A node ya has horizontal stripes if MMD(ya) ∩
MMD(rb) 6= ∅ for some rb and no stripes otherwise.
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Figure 6: Reduction templates of T1 for Case 4.2.2.

and reassigning p1 as the parent of all the children of n1. (Thus no essential node appears between l1 and y).

Case 4.3: U(n1) ⊇ U(n2) and C1 −X is empty

As before we have three cases depending on whether p1 is a P-node or a Q-node and whether p1 has more
than one essential child. In each of these cases, when |X| = 1, we need to first solve the alignment problem
(as a preprocessing step). Also when p1 is a Q-node, unlike in Case 4.2, both ways of collapsing n1 may
lead to a valid intersection tree.

Alignment Problem

Recall that when |X| = 1 (and C1 −X = ∅), the alignment may not be unique i.e. one of the following
might happen in the intersection tree TI .

1. Left and right tails of x1 (in TI) contain L1 + L′
1 and R1 +R′

1 respectively.

2. Left and right tails of x1 (in TI) contain R̄1 + L′
1 and L̄1 +R′

1 respectively.

If one of the merges in (1) or (2) is invalid, then there is only a single way of aligning the tails, otherwise
we show in the following Lemma that if T1 and T2 are compatible, then choosing either one of the two
alignments will work.

Lemma 9. Let U(n1) ⊇ U(n2), |X| = 1 and C1 −X be empty. Let L1, R1 be the left and right tails of
x1 in T1 and L′

1, R
′
1 be the left and right tails of x1 in T2. If both ways of alignment are mergable i.e. (a)

L1 + L′
1, R1 +R′

1 are valid and (b) R̄1 + L′
1, L̄1 +R′

1 are valid, then there exists an intersection tree TI
(of T1 and T2) with L1 + L′

1 and R1 +R′
1 contained in the left and right tails of x1 (respectively) if and

only if there exists an intersection tree T ′
I with R̄1 + L′

1 and L̄1 +R′
1 contained in the left and right tails

of x1 (respectively).
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Figure 7: Reduction template of T1 for Case 4.2.3

Proof. Let L, R be the left and right tails of x1 in an intersection tree TI . Each subclique S in L or R
appears as a subclique in T1 or T2. In particular we observe the following:

Property 1: If S is a subclique in L or R then in T1 or T2, S is present in a tail of x1 or in a tail of an
ancestor of x1.

Note that since n contains at least two children, L and R both cannot be empty. If one of them, say
L is empty then the last clique in R must be U(n1). If both L and R are non-empty then the intersection
of the first subclique of L1 with the last subclique of R1 is U(n1). In either case we observe that, since
L1 + L′

1 and R̄1 + L′
1 are both valid (subclique orderings), each subclique in L′

1 is either a superset of
U(n1) or a subset of U(n1). Similarly, since R1 +R′

1 and L̄1 +R′
1 are both valid (superclique orderings),

each subclique in R′
1 is either a superset of U(n1) or a subset of U(n1). Further for any ancestor na of n2,

U(na) ⊆ U(n2) ⊆ U(n1) and hence the tails of any such na would consist of subcliques that are subsets of
U(n1). Note that this condition also holds for any ancestor of n1 in T1.

By above conditions and (1) we infer that for any subclique S in L or R, S is either a superset of U(n1)
or a subset of U(n1). Furthermore, if S is a superset of U(n1) then it is present in one of L1,R1,L

′
1 or

R′
1. This implies that if there exists an intersection tree TI in which L contains L1 + L′

1 and R contains
R1 +R′

1, then replacing L with L − L1 + R̄1 and R with R−R1 + L̄1 also results in a valid intersection
tree.

Note that the amortized cost of doing the mergability checks (a) and (b) of Lemma 9 (over all iterations
of the algorithm) is O(n · |I|) = O(n2). For the rest of the cases, we can assume that L1 is aligned with L2
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and R1 is aligned with R2. In other words if T1 and T2 are compatible, then there exists an intersection
tree that contains L1 + L2 and R1 +R2 as the tails of x1.

Case 4.3.1: p1 is a P-node.
If C2 − X = ∅, then using the same argument as before (Lemma 6.0), we get U(p1) ⊆ U(n2). Hence we
replace Li and L′

i with Li + L′
i in T1 and T2 changing U(n1) to U(n1) ∩ U(n2) ⊇ U(p1), and we match n1

with n2.
Now we look at the case when C2 − X is non-empty. Let L = {l1, l2, · · · , lk1} be the set of essential

nodes appearing to the left of X and R = {r1, · · · , rk2} be the set of essential nodes appearing to the
right of X in T2. Let Y = {y1, · · · , yk3} be all the remaining child nodes of p1 other than n1. For all
i ∈ {1, · · · , k3}, if MMD(yi)∩MMD(lj) 6= ∅ for some j ∈ {1, · · · , k1}, then yi and lj both have a common
max-clique descendant say Y , and further in any leaf order of a common intersection tree L1 + L′

1 must
appear between Y and the descendants of x1.

Thus we group all yi such that MMD(yi) ∩ MMD(lj) 6= ∅ into a new P-node and add it to the
(immediate) left of L1 (see Figure 8). Similarly, we group all yi such that MMD(yi)∩MMD(rj) 6= ∅, for
some j ∈ {1, · · · , k2} into a new P-node and add it to the (immediate) right of Rk0 .

Note that if for some y ∈ Y , there exists li and rj such that both MMD(y)∩MMD(li) and MMD(y)∩
MMD(rj) 6= ∅, then we can conclude that T1 and T2 are incompatible.

Also if L and R are both non-empty and for all y ∈ Y , MMD(y) doesn’t intersect with any MMD(li)
for i ∈ {1, · · · , k1} and with any MMD(rj) for j ∈ {1, · · · , k2} then once again we conclude that T1 and
T2 are incompatible.

On the other hand if one of L or R is empty, say L, and MMD(yi)∩MMD(rj) is empty for all yi ∈ Y

and rj ∈ R, then the above template would not reduce T1. But then note that in any leaf-ordering of any
intersection tree, L1 + L′

1 should appear between the descendants of yi and x1 for all yi ∈ Y (because of
the constraints imposed by T1 and T2). Hence in this case we group all the nodes of Y into a P-node and
add it a child node of p1 to the (immediate) left of L1 as shown in Figure 9.

Note that since the MM-Descendents of any two sibling nodes are disjoint, both of the above templates
can be implemented in O(n) time.

Case 4.3.2: p1 is a Q-node and n1 is its only essential child.

Let Lp and Rp be the left and right tails of p1. Note that in this case all the siblings of n1 are subcliques
that are present in its tails. We have three subcases depending on how U(p1) intersects U(n2).

Suppose U(p1) properly intersects U(n2). We have U(p1)−U(n2) 6= ∅ and U(n2)−U(p1) 6= ∅. We first
claim that C2 −X is empty. Suppose not. Let Z be a max-clique descendant of a node in C2 −X and X1

be a max-clique descendant of x1. By Lemma 6.2, in T1, Z appears outside the subtree rooted at n1, and
hence outside the subtree rooted at p1. Thus using Lemma 6.0, we conclude that each descendant of p1
must contain all the vertices in Z ∩X1 ⊇ U(n2). A contradiction. Hence C2 −X is empty.

Now by Lemma 6.6, there exists a subclique S1 6⊇ U(n2) such that S1 is the first clique of Lp or the
last clique of Rp. Similarly there exists a subclique S2 6⊇ U(p1) such that S1 is the first clique of L′

1 or the
last clique of R′

k0
. Without loss of generality let S1 be the first clique of Lp and S2 be the last clique of

R′
k0
. Observe that S1 ⊇ U(p1) and S2 ⊇ U(n2). This implies that S1 and S2 cannot be in the same tail

(of x1 or xk0) in any intersection tree of T1 and T2. Thus we reduce T1 by collapsing n1 i.e. by deleting n1,
changing the parent of child nodes of n1 to p1 and arranging the child nodes such that Lp appears to the
left of L1 and Rp appears to the right of Rk0 . Clearly, this reduction can be done in O(n) time.

Now we have to deal with the case when either U(n2) ⊆ U(p1) or U(p1) ⊆ U(n2). Note that in any
intersection tree TI (of T1 and T2), the cliques of L1 + L′

1 appear in the left tail of x1 and the cliques of
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Figure 8: First reduction template of T1 for Case 4.3.1. A node ya has vertical stripes if MMD(ya) ∩
MMD(lb) 6= ∅ for some lb, horizontal stripes if MMD(ya) ∩ MMD(rb) 6= ∅ for some rb and no stripes
otherwise.
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Figure 9: Second reduction template of T1 for Case 4.3.1. The stripes on the y nodes are defined as before
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Rk0 +R′
k0

appear in the right tail of xk0 . Further either (a) the cliques of Lp appear in the left tail of x1
and the cliques of Rp appear in the right tail of xk0 or (b) the cliques of Lp appear in the right tail of xk0
and the cliques of Rp appear in the left tail of x1. In the first case L1 + L′

1 + Lp and Rk0 +R′
k0

+Rp are
both valid and in the second case L1 + L′

1 + R̄p and Rk0 + R′
k0

+ L̄p are both valid. If neither of these
is valid then we conclude that T1 and T2 are incompatible. If exactly one of the above merges is valid,
then there is a unique way of collapsing n1. When both of the above merge pairs are valid, we use the
reduction template shown in Figure 10. The justification (given below) depends on whether U(n2) ⊆ U(p1)
or U(p1) ⊆ U(n2).

Let U(n2) ⊆ U(p1). Note that by Lemma 6.6, the intersection of the universal nodes of the first and
last child nodes of p1 is U(p1). Hence if L1+L′

1+Lp, Rk0 +R′
k0
+Rp, L1+L′

1+R̄p and Rk0 +R′
k0
+ L̄p are

all valid then any subclique in L′
1 or R′

k0
is either a superset or a subset of U(p1). Thus in any intersection

tree TI , any subclique S in the left tail of x1 or the right tail of xk0 is either a superset or a subset of
U(p1). Further if S ⊇ U(p1), then S must appear in one of {L′

1,R
′
k0
,Lp,Rp,L1,Rk0}. This implies that

an intersection tree satisfying condition (a) exists if and only if an intersection tree satisfying condition (b)
exists. This justifies the use of our template in Figure 10, for reducing T1.

Similarly, if U(p1) ⊆ U(n2), we infer that any clique in Lp or Rp is either a subset of U(n2) or a superset
of U(n2). This in turn implies that in TI , any subclique S in the left tail of x1 or the right tail of x1, is either
a subset or a superset of U(n2). Further, if S ⊇ U(n2) then it must appear in {L1,Rk0 ,L

′
1,R

′
k0
,Lp,Rp}.

This implies that an intersection tree satisfying condition (a) exists if and only if an intersection tree
satisfying (b) exists. This justifies the use of our template in Figure 10, for reducing T1.

We now show that the amortized cost of executing the reduction template in Figure 10, over all instances
of the algorithm takes O(n2) time. Note that we use the same template for Case 4.3.3 when C2 − X is
empty. It is enough to show that the amortized time of all the mergability checks: (whether L′

1 + Lp and
R′

k0
+Rp are both valid) take O(n2) time.
Let c(L′

1) and c(R′
k0
) be the (consecutive) subsequences of L′

1 and R′
k0

(respectively) such that each
subclique in c(L′

1) and c(R′
k0
) contains U(p1) but not U(n1). c(L

′
1) and c(R′

k0
) are said to be the core tails

of n2.
Similarly let c(Lp) and c(Rp) be the (consecutive) subsequences of Lp and Rp (respectively) such that

each subclique in c(Lp) and c(Rp) contains U(n2). c(Lp) and c(Rp) are said to be the core tails of p1.
Note that the core tails are only defined for p1 and n2, for the current case and Case 4.3.3, when C2−X

is empty. We define the core tails of all other nodes to be empty. Observe that when n1 is collapsed, the
(new) core tails of any node in T1 (resp. T2) are disjoint from the core tails of p1 (resp. n2) before the
collapse.

We observe that checking the validity of L′
1 + Lp reduces to checking the validity of c(L′

1) + c(Lp).
Similarly, checking the validity of R′

k0
+Rp reduces to checking the validity of c(R′

k0
) + c(Rp).

Now computing the cores over all executions of this template , takes O(n · |I|) = O(n2) amortized time.
Also, computing the mergability of the cores, over all executions of the template takes

∑
i(mi + ti)|I|,

where mi, ti are the number of subcliques in the cores of n2 and p1 (respectively), in the ith execution
of the template. Since

∑
imi = O(n) and

∑
i ti = O(n), the total running time of template 10 over all

executions is O(n2).

Case 4.3.3: p1 is a Q-node with more than one essential child.

Now let y be an essential child of p1, such that all the nodes between n1 and y are subcliques. Without
loss of generality, we assume that y appears to the right of n1.

We first consider the subcase when C2 − X is empty. In this case observe that all the max-clique
descendants of y appear outside the subtree rooted at n1 in T1. Applying Lemma 6.0 on a max-clique
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Figure 11: Reduction template of T1 for Case 4.3.3.

descendant of y and a max-clique descendant of x1, we infer that each descendant clique of n2 must
contain all the vertices in U(p1). In other words we get U(p1) ⊆ U(n2). Now the template (and the
argument) in this case is analogous to case 4.3.2, when U(p1) ⊆ U(n2) (Figure 10).

Now suppose C2 − X is non empty. Let r1 be the first essential child to the right of xk0 in T2.
We use the templates in Figure 11, depending on whether MMD(y) ∩ MMD(r1) is empty or not. If
MMD(y)∩MMD(r1) is non-empty, then by Lemma 6.2, there exists a max-clique Y that is a descendant
of both r1 and y. Now if T1 and T2 are compatible, then in any leaf ordering of an intersection tree TI , the
subcliques of Rk0 +R′

k0
appear in between the descendants of xk and Y (because of T2). This justifies the

reduction template of T1 in Figure 11.
On the other hand, if MMD(r1)∩MMD(y) = ∅, then by the constraints of T2, in any leaf ordering of

TI , the subcliques of Rk0 +R′
k0

appear between the descendants of xk0 and l1 and further no max-clique
appears between them. This justifies the reduction template of T1 in Figure 11. Moreover the template
reduction takes O(n) time.

Run time of the Algorithm

In this Section, we show that the run time of our algorithm is O(n2log n), where n is the total number of
vertices in G1 ∪G2.

Observe that reducing T1 [resp. T2] decreases the number of leaf orderings of T1 [resp. T2] by at least
half. Moreover the total number of nodes in T1 and T2 is at most n. Thus the number of leaf orderings of
T1 and T2 is at most n! and hence the algorithm requires at most nlog n reductions.

We begin by showing that selecting the nodes n1 and n2 takes O(n) time in any iteration. We first note
that computing the number of MM-Descendants for all the nodes takes O(n) time (they can be computed
in a bottom-up fashion). With each node x, we store U(x) and the cardinality of MMD(x).
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Recall that as we go down the tree the universal sets increase and the MM-Descendants sets decrease.
Thus n1 must have maximal depth among all unmatched essential nodes. Hence we can select n1 in O(n)
time by looking at the unmatched essential nodes of maximal depth in T1 and T2, and selecting a node
with the greatest universal set size and the least number of MM-Descendants in that order. Note that by
property 1 of Lemma 8, the MM-descendants of n1 are same as the essential child nodes of n1. Now we can
select n2 from the other tree T2 in O(n) time as follows: Let S be the set of [matched] essential children of
n1 and S′ be the corresponding set of matched nodes in T2. Let p(S

′) be the set of parent nodes of nodes
in S′. We select n2 to be a node of maximum depth among p(S′).

Also recall that at the high-level our algorithm has 4 cases depending on whether n1, n2 are P-nodes
or Q-nodes. We showed that each step in cases 1,2 or 3 takes O(n) time. For case 4, we showed that
each of reduction steps, excluding the mergability checks in Cases 4.3.2 and 4.3.3 take O(n) time. We also
showed that the mergability checks of Cases 4.3.2 and 4.3.3 take O(n2) amortized time over all steps of the
algorithm. Further, in the beginning of Case 4, we showed that the matching steps, which involve inserting
the subcliques of one tree into the other take at most O(n2) amortized time. Thus the total time taken
by our algorithm is O(n2log n+ n2 + n2) = O(n2log n). At each node y of T1 (resp. T2) we explicitly store
the set U(y) and the cardinality of MMD(y). Since the number of internal nodes is less than the number
of leaf nodes, this additional storage still takes O(n +m). Thus the space complexity of our algorithm is
O(n+m).

5 Open Problem

Simultaneous graphs can be generalized in a natural way to more than two graphs: whenG1 = (V1, E1), G2 =
(V2, E2), · · · , Gk = (Vk, Ek) are k graphs in class C, sharing a vertex set I and its induced edges i.e. Vi∩Vj =
I for all i, j ∈ {1, · · · , k}. In this version of the problem the set of optional edges induces a complete k-
partite graph and hence this also generalizes probe graphs. This generalized version can be solved in
polynomial time for comparability and permutation graphs [9]. We conjecture that it can be solved in
polynomial time for interval graphs.
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