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Abstract. We study fixed parameter algorithms for three problems:
Kemeny rank aggregation, feedback arc set tournament, and betweenness
tournament. For Kemeny rank aggregation we give an algorithm with

runtime O∗(2O(
√

OPT)), where n is the number of candidates, OPT ≤
(

n
2

)

is the cost of the optimal ranking, and O∗(·) hides polynomial factors.
This is a dramatic improvement on the previously best known runtime of
O∗(2O(OPT )). For feedback arc set tournament we give an algorithm with

runtime O∗(2O(
√
OPT )), an improvement on the previously best known

O∗(OPTO(
√
OPT )) Alon et al. [2009]. For betweenness tournament we

give an algorithm with runtime O∗(2O(
√

OPT/n)), where n is the number
of vertices and OPT ≤

(

n
3

)

is the optimal cost. This improves on the

previously known O∗(OPTO(OPT1/3) Saurabh [2009]), especially when
OPT is small. Unusually we can solve instances with OPT as large as
n(log n)2 in polynomial time!

Keywords: Kemeny rank aggregation, Feedback arc set tournament,
Fixed parameter tractability, Betweenness tournament

1 Introduction

Suppose you ran a chess tournament, everybody played everybody (a.k.a. round
robin) and you wanted to use the results to rank everybody. Unless you were
really lucky, the results would not be acyclic, so you could not just sort the
players by who beat whom. A natural objective is to find a ranking that min-
imizes the number of upsets, where an upset is a pair of players where the
player ranked lower in the ranking beat the player ranked higher. Minimizing
the number of upsets is called feedback arc set problem on tournaments (FAST).

⋆ A preliminary version of this work appeared in version 1 of the arXiv preprint
Karpinski and Schudy [2009].

⋆⋆ Parts of this work done while visiting Microsoft Research.
⋆ ⋆ ⋆ Parts of this work done while visiting University of Bonn.
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The complementary problem of maximizing the number of pairs that are not
upsets is called the maximum acyclic subgraph problem on tournaments. These
problems are NP-hard [Ailon et al., 2008, Alon, 2006, Charbit et al., 2007] (see
also [Conitzer, 2006]), but a polynomial-time approximation scheme (PTAS)
Mathieu and Schudy [2007] is known.

In statistics and psychology, one motivation is ranking by paired compar-
isons [Slater, 1961]: here, you wish to sort some set by some objective but
you do not have access to the objective, only a way to compare a pair and
see which is greater; for example, determining people’s preferences for types of
food. This problem attracted computational attention as early as 1961 [Slater,
1961] (for comparison Hoare published quicksort the same year). Feedback arc
set tournament and closely related problems have also been used in machine
learning [Cohen et al., 1999, Ailon et al., 2008].

The FAST problem can be generalized to a problem we call weighted FAST,
sometimes known as feedback arc set with probability constraints. The input is
a complete directed graph with arc weights {wuv}u,v with wuv + wvu = 1 for
every pair of vertices u, v. In other words a weighted FAST instance is a convex
combination of unweighted FAST instances.

We study the parameterized complexity of this problem, in particular the
parameter OPT , the cost of an optimal ranking. We use the notation O∗(·) to
hide factors that are polynomial in the input size, that is f(I) ∈ O∗(g(I)) iff
f(I) ≤ g(I)|I|c for some c > 0 and all sufficiently large inputs I. The first fixed-
parameter algorithms for feedback arc set tournament had runtime O∗(2O(OPT ))

and later algorithms made a dramatic improvement toO∗(OPTO(
√
OPT )) Alon et al.

[2009]. We improve this to O∗(2O(
√
OPT )).

Theorem 1. There exists a deterministic parameterized subexponential algo-

rithm for weighted FAST with runtime 2O(
√
OPT ) + nO(1). A variant of the

algorithm uses OPTO(
√
OPT ) + nO(1) time and nO(1) space.

The Exponential time hypothesis (ETH) Impagliazzo and Paturi [2001] is
that 3-SAT cannot be solved in time 2o(number of variables). We also give a match-
ing lower bound assuming the ETH:

Theorem 2. There does not exist a parameterized algorithm for weighted FAST

with runtime O∗(2o(
√
OPT )) unless the exponential time hypothesis Impagliazzo and Paturi

[2001] is false.

We leave open the possibility that unweighted FAST may admit an exact

algorithm with runtime O∗(2o(
√
OPT )).

We note that independently of this work Uri Feige Feige [2009] gave an un-
related algorithm for unweighted FAST matching Theorem 1.

An important application of weighted feedback arc set tournament is rank
aggregation. Frequently, one has access to several rankings of objects of some
sort, such as search engine outputs [Dwork et al., 2001], and desires to aggre-
gate the input rankings into a single output ranking that is similar to all of



the input rankings: it should have minimum average distance from the input
rankings, for some notion of distance. This ancient problem was already stud-
ied in the context of voting by [Borda, 1781] and [Condorcet, 1785] in the
18th century, and has aroused renewed interest recently [Dwork et al., 2001,
Conitzer et al., 2006]. A natural notion of distance is the number of pairs of
vertices that are in different orders, which is known as the Kendall-Tau dis-
tance. This defines the Kemeny rank aggregation problem (KRA) [Kemeny,
1959, Kemeny and Snell, 1962]. This choice yields a maximum likelihood es-
timator for a certain näıve Bayes model [Young, 1995]. This problem is NP-
hard [Bartholdi et al., 1989], even with only four voters [Dwork et al., 2001],
and has a PTAS Mathieu and Schudy [2007].

We denote the average distance between the optimal ranking and the in-
put rankings by OPT ≤

(

n
2

)

. Two parameters have attacted the bulk of the
study: OPT and the average Kendall-Tau distance between the input rank-
ings. It is easy to see (triangle inequality) that these two parameters are within
a constant factor of each other, so these parameters give equivalent runtimes
up to constants in the exponent. All previous work give algorithms with run-
time O∗(2O(OPT )) Betzler et al. [2009]. There is a standard reduction from Ke-
meny rank aggregation to weighted FAST Ailon et al. [2008], Coppersmith et al.
[2006], Mathieu and Schudy [2007], so we improve the best known parameterized

algorithm for KRA dramatically to O∗(2O(
√
OPT )) as a corollary of our Theorem

1.

Corollary 3. Let n be the number of candidates and OPT ≤
(

n
2

)

the optimum
value. There exists a deterministic parameterized subexponential algorithm for

Kemeny Rank Aggregation with runtime and space 2O(
√
OPT )+nO(1). A variant

uses OPTO(
√
OPT ) + nO(1) time and nO(1) space.

Some other paramters have attracted attention. The parameter of maximum
Kendall-Tau distance has been studied but yield bounds no tighter (up to con-
stants in the exponent) than is known for the average Kendall-Tau distance
Betzler et al. [2009]. Another parameter is the maximum rmax, over candidates
c and pairs of voters v1, v2, of the absolute difference between the rank of c in
v1 and v2. The best runtime known is O∗(2O(rmax)) Betzler et al. [2009].

In the Betweenness problem we are given a ground set of vertices and a set
of betweenness constraints involving 3 vertices and a designated vertex among
them. The objective function of a ranking of the elements is the number of
betweenness constraints for which the designated vertex is not between the other
two vertices. The goal is to minimize the objective function. For the status
of the general Betweenness problem, see e.g. Opatrny [1979], Chor and Sudan
[1998], Ailon and Alon [2007], Charikar et al. [2009]. We refer to the Betweenness
problem in tournaments, that is in instances with a constraint for every triple
of vertices, as the BetweennessTour problem (see Ailon and Alon [2007]).
This problem is NP-hard Ailon and Alon [2007] and has a recently discovered
polynomial-time approximation scheme Karpinski and Schudy [2009]. We study
its parameterized complexity.



Theorem 4. There exists a randomized parameterized subexponential algorithm

for BetweennessTour with runtime and space 2O(
√
OPT/n) · nO(1), where n

is the number of vertices and OPT is the cost of the optimal ranking. It succeeds
with constant probability.

The previously best known runtime wasO∗(2O(OPT 1/3 logOPT )) Saurabh [2009].
Our result is better by a logarithmic factor in the exponent for the largest pos-
sible OPT = Θ(n3) and even better for smaller OPT . Interestingly we can solve
all instances with OPT = O(n log2 n) in polynomial time!

Our results easily generalize to all fully dense ranking CSPs of arity three with
fragile constraints as introduced by Karpinski and Schudy [2009]. For simplicity
we limit ourselves to the well-known problems discussed above.

We now outline the organization of our paper. Section 2 discusses weighted
feedback arc set tournament, including our algorithm (Section 2.1), analysis
(2.2), and lower bound (2.3). Section 3 discusses our results for betweenness
tournament, including our algorithm (Section 3.1) and analysis (3.2).

2 Feedback arc set tournament

2.1 Algorithm

We now outline some of our key techniques. Firstly any two low-cost rankings
for a FAST problem are nearby in Kendall-Tau distance. Secondly two rankings
that are Kendall-Tau distance D apart are equivalent to within additive O(

√
D)

in how good each position for each a vertex is (Lemma 6). Thirdly most vertices
(in a low-cost instance) have a vee-shaped cost versus position curve and optimal
rankings are locally optimal so we know that each vertex belongs at the bottom of
its curve. The uncertainty in this curve by

√
D causes an uncertainty in the opti-

mal position also around
√
D (Lemmas 7 and 8). Our algorithm simply computes

uncertainties r(v) in the positions of all of the vertices v and solves a dynamic
program for the optimal ranking that is near a particular constant-factor approx-
imate ranking. We remark that Braverman and Mossel Braverman and Mossel
[2008] and Betzler et al. Betzler et al. [2008, 2009] previously applied dynamic
programming to FAST and KRA.

First we state some core notation. Throughout this paper let V refer to the
set of objects (vertices) being ranked and n denote |V |. Our O(·) hides absolute
constants only. Our O∗(·) hides a polynomial in n. A ranking is a bijective
mapping from a set S ⊆ V to {1, 2, 3, . . . , |S|}. We call π(v) the position of
v in the ranking π. We let d(π, π′) denote the Kendall-Tau distance between
rankings π and π′, i.e. the number of pairs of vertices in different orders in the
two rankings. An ordering is an injection from S into R. We use π and σ (with
superscripts) to denote rankings and orderings respectively.

The input to weightedFAST is a set V of vertices and arc weights {wuv}u,v∈V
such that wuv + wvu = 1 for all u, v ∈ V . The FAST objective function is
the weight of the backwards arcs C(π) =

∑

u,v∈V :π(v)>π(u) wvu. For ranking π,



Algorithm 1 Exact algorithm for FAST. If dynamic programming is used in the

last line the runtime and space are both nO(1)2O(
√
OPT ). If divide-and-conquer

is used the runtime is nO(
√
OPT ) and the space is nO(1).

Input: Vertex set V , arc weights {wuv}u,v∈V .

1: Sort by weighted indegree Coppersmith et al. [2006], yielding ranking π1 of V .
2: Set r(v) = 4

√

2C(π1) + 2b(π1, v, π1(v)) for all v ∈ V .
3: Use dynamic programming or divide-and-conquer (Details: Lemma 9) to find the

optimal ranking π2 with |π2(v)− π1(v)| ≤ r(v) for all v.

vertex v ∈ V and p ∈ R (with π(u) 6= p for all u 6= v) we define b(π, v, p) =
∑

u6=v

{

wvu if p > π(u)
wuv if p < π(u)

, i.e. the cost of the arcs incident to v in the ordering

formed by moving v to position p in π. Let π∗ denote an optimal ranking and
OPT = C(π∗) its cost.

Before running our main Algorithm 1 we compute a small kernel, that is
a smaller instance with the same optimal cost as the input instance (up to a
known shift). This preliminary step allows us to separate the dependence on n
and OPT in the runtime, yielding the runtime stated in Theorem 1.

Dom et al. Dom et al. [2006] give an algorithm for computing kernels of
unweighted FAST instances with O(OPT 2) vertices. This was later improved
to O(OPT ) vertices by Bessy et al. Bessy et al. [2009]. There is a kernelization
algorithm for Kemeny rank aggregation in Betzler et al. [2009], but it produces
an instance of size O((Number of voters) · OPT ), not the desired OPTO(1). To
get the desired kernel for general weighted FAST we consider a slight variant of
the algorithm from Dom et al. [2006].

Lemma 5. There is polynomial-time computable O(OPT 2)-vertex kernel for
weighted FAST.

Proof (sketch). Let OPT ≤ U ≤ 5OPT be the cost of a 5-approximate ranking
Coppersmith et al. [2006].

We say that an arc is a majority arc if it has greater weight than its reverse,
with ties broken arbitrarily. A majority arc clearly has weight at least 1/2. The
majority tournament Ailon et al. [2008] is the unweighted directed graph with
vertex set V and arc set equal to the majority arcs.

Our kernelization algorithm is simple: we apply the following two reduction
rules, which are extensions of two reduction rules in Dom et al. [2006], as often
as possible.

The first reduction rule is eliminating a vertex that is part of no cycles of
three arcs in the majority tournament. Consider some such vertex v. It is easy
to see that there exists an optimal ranking that puts every predecessor of v (in
the majority tournament) before v and every successor of v after v, while implies
the validity of this rule.

The second reduction rule concerns an arc (u, v) of the majority tournament
that is in more than 2U cycles of three arcs in the majority graph. Any feedback



arc set not not paying for such an arc must pay for more than 2OPT other
arcs of the majority tournament, each of cost at least 1/2, and hence cannot be
optimal. Therefore we record that we must pay wuv, then set weight wuv to zero
and wvu to one.

Now we argue that the resulting instance after these two rules are exhaus-
tively applied has O(OPT 2) vertices. An optimal feedback arc set, which nec-
essarily has cost OPT , can include at most 2OPT majority arcs. Each such
majority arc is in at most 10OPT triangles by the second rule, so there are at
most 20OPT 2 triangles. Finally by the first rule every vertex is in a triangle, so
there are at most 60OPT 2 vertices.

We have not investigated whether or not the O(OPT ) vertex kernel for un-
weighted FAST Bessy et al. [2009] can be extended to weighted FAST.

2.2 Analysis

Variants of the following Lemma are given in Mathieu and Schudy [2007] and
Karpinski and Schudy [2009]. We give a simplified proof here for completeness.

Lemma 6 (Mathieu and Schudy [2007], Karpinski and Schudy [2009]).
Let π and π′ be rankings over V . It follows that |b(π, v, p)−b(π′, v, p)| ≤ 2

√

d(π, π′)
for all v ∈ V and p ∈ R \ Z.

Proof. Fix v ∈ V , p ∈ R \Z and rankings π,π′. Consider the sets of vertices L =
{ u ∈ V \ {v} : π(u) < p < π′(u) } and R = { u ∈ V \ {v} : π′(u) < p < π(u) }.
Intuitively these are the vertices that cross p from left to right (resp. right to
left) when going from π to π′. It follows easily from the definition of b that
|b(π, v, p)− b(π′, v, p)| ≤ |L|+ |R|, so we now proceed to bound |L| and |R|.

The bijective nature of π and π′ implies that |L| = |R|. Observe that all
vertices in L are before all vertices in R in π, and vice versa for π′, hence
d(π, π′) ≥ |L||R|. Putting these facts together proves the Lemma.

Lemma 7. In Algorithm 1 we have |π∗(v) − π1(v)| ≤ r(v) for all v ∈ V and
any optimal ranking π∗ of V .

Proof. The weight of an arc and its reverse sum to one so d(π∗, π1) ≤ C(π∗) +
C(π1) ≤ 2C(π1). By Lemma 6 therefore

|b(π∗, v, j + 1/2)− b(π1, v, j + 1/2)| ≤ 2
√

2C(π1) (1)

for any j ∈ Z.



Fix v ∈ V . We conclude

|π∗(v)− π1(v)|
≤ b(π1, v, π∗(v)) + b(π1, v, π1(v)) (wuv + wvu = 1 for all u)

= b(π1, v, π∗(v) + 1/2) + b(π1, v, π1(v) + 1/2) (π1 is integral)

≤ b(π∗, v, π∗(v) + 1/2) + 2
√

2C(π1) + b(π1, v, π1(v) + 1/2) (By (1))

≤ b(π∗, v, π1(v) + 1/2) + 2
√

2C(π1) + b(π1, v, π1(v) + 1/2) (Optimality of π∗)

≤ 4
√

2C(π1) + 2b(π1, v, π1(v) + 1/2) (By (1))

= r(v) (Definition of r(v)).

Lemma 8. In Algorithm 1 we have maxj∈Z |{ v ∈ V : |π1(v)− j| ≤ r(v) }| =
O(

√
OPT ).

Proof. Fix j ∈ Z. Let R = { v ∈ V : |π1(v)− j| ≤ r(v) }, the cardinality of which
we are trying to bound. We say v ∈ V is pricey if 2b(π1, v, π1(v)) >

√

2C(π1).

Clearly 2C(π1) =
∑

v b(π
1, v, π1(v)) ≥ (number pricey)12

√

2C(π1) hence the

number of pricey vertices is at most 2C(π1)

(1/2)
√

2C(π1)
= 2

√

2C(π1). All non-pricey

vertices in R have |π1(v) − j| ≤ r(v) ≤ 5
√

2C(π1), so at most 10
√

2C(π1) + 1

non-pricey vertices are in R. We conclude |R| ≤ 12
√

2C(π1) + 1 = O(
√
OPT )

since π1 is a 5-approximation Coppersmith et al. [2006].

Lemma 9. There is a dynamic program for FAST that finds the optimal rank-
ing π2 with |π2(v)− π1(v)| ≤ r(v) for all v using space and runtime O(|V |2)2ψ,
where ψ = maxj |{ v ∈ V : |π1(v) − j| ≤ r(v) }|. A divide and conquer variant
uses |V |O(ψ) time and |V |O(1) space.

Proof. Say that a set S ⊆ V is valid if it contains all vertices v with π1(v) ≤
|S| − r(v) and no vertex v with π1(v) > |S|+ r(v). Observe that for any s ∈ N

all valid sets of size s agree except for the presence or absence of ψ vertices.
Therefore there are at most n2ψ valid sets.

We say that a ranking π of valid set S is valid if { v : π(v) ≤ j } is a valid
set for all 0 ≤ j ≤ |S|. It is easy to see that a ranking π is valid if and only if
satisfies |π(v)− π1(v)| ≤ r(v) for all v.

One can easily see the following optimal substructure property: prefixes of
an optimal valid ranking are optimal valid rankings themselves.

For any valid set S let C̄(S) denote the cost of the optimal valid ranking of
S. The recurrence relation is

C̄(S) = min
v∈S:S\{v} is valid



C̄(S \ {v}) +
∑

u∈S\{v}
wvu



 .

The space-efficient variant evaluates C̄ using divide and conquer instead of
dynamic programming, similar to Dom et al. [2006]. Details deferred.



Now we put the pieces together and prove Theorem 1.

Proof (of Theorem 1). The kernelization algorithm of Lemma 5 allows us to
assume without loss of generality that n = O(OPT 2). Algorithm 1 returns an
optimal ranking by Lemmas 7 and 9. Lemmas 8 and 9 allow us to bound the
runtime and space requirements of the dynamic program.

2.3 Lower bound

Proof (of Theorem 2). For sake of contradiction suppose we have an algorithm

for weighted FAST with runtime 2o(
√
OPT ). We present a series of reductions

which converts such an algorithm into a subexpontial-time algorithm for vertex
cover, the existence of which is known to contradict the ETH Flum and Grohe
[2006].

Let an instance of vertex cover with n vertices be given. Applying Karp’s
reduction from vertex cover to feedback arc set Karp [1972] produces a feedback
arc set instance with 2n vertices. Finally one can reduce this to a weighted FAST
instance with the same number of vertices by representing incomparable pairs of
vertices by opposite arcs of weight 1/2. The result is an weighted FAST instance
with 2n vertices that is equivalent to the original vertex cover instance. The
optimal cost for this instance is at most its number of arcs, which is O(n2),

so the hypothesized algorithm has runtime 2o(
√
OPT ) = 2o(n). This runtime is

subexponential, contradicting the ETH.

3 Betweenness tournament

3.1 Algorithm

We now introduce some new notation for the betweenness problem. We let
(

n
k

)

(for example) denote the standard binomial coefficient and
(

V
k

)

denote the set of
subsets of set V of size k. For any ordering σ let Ranking(σ) denote the ranking
naturally associated with σ.

Let v 7→ p denote the ordering over {v} which maps v to p. For set Q of
vertices and ordering σ with domain including Q let Q 7→ σ denote the ordering
over Q which maps u ∈ Q to σ(u), i.e. the restriction of σ to Q. For orderings
σ1 and σ2 with disjoint domains let σ1 σ2 denote the natural combined ordering
over Domain(σ1) ∪ Domain(σ2). For example of our notations, Q 7→ σ v 7→ p
denotes the ordering over Q ∪ {v} that maps v to p and u ∈ Q to σ(u).

A ranking 3-CSP consists of a ground set V of vertices and a constraint
system c, where c is a function from rankings of 3 vertices to [0, 1]. For brevity we
henceforth abuse notation and and write c(Ranking(σ)) by c(σ). The objective of
a ranking CSP is to find an ordering σ (w.l.o.g. a ranking) minimizing C(σ) =
∑

S∈(Domain(σ)
k ) c(S 7→ σ). We will only ever deal with one constraint system

c at a time, so we leave the dependence of C on c implicit in our notations.
Abusing notation we sometimes refer to S ⊆ V as a constraint, when we really



Algorithm 2 Our algorithm for BetweennessTour. The runtime is

nO(1)2O(
√
OPT/n).

Input: Vertex set V

1: Use the Algorithm from Theorem 10 to construct a set of rankings Π
2: Let πgood be the ranking from Π with lowest cost
3: for each π1 ∈ Π do

4: if C(π1) ≤ 2C(πgood) then
5: Set r(v) = α1

√

C(π1)/n+α2b(π
1, v, π1(v))/n for all v ∈ V , where α1 and α2

are absolute constants.
6: Use dynamic programming (see Lemma 9) to find the optimal ranking π2 with

|π2(v)− π1(v)| ≤ r(v) for all v.
7: end if

8: end for

9: Return the best of the π2 rankings.

are referring to c(S 7→ ·). Clearly one can model BetweennessTour as a
ranking 3-CSP.

Let b(σ, v, p) =
∑

Q:··· c(Q 7→ σ v 7→ p), where the sum is over sets Q ⊆
Domain(σ)\{v} of size 2. Note that this definition is valid regardless of whether
or not v is in Domain(σ). The only requirement is that the range of σ excluding
σ(v) must not contain p. This ensures that the argument to c(·) is an ordering
(injective).

Our algorithm and analysis for BetweennessTour are analogous to our
results for FAST with two major differences. Firstly no kernel for betweenness
tournament is known, which hurts the runtime somewhat. Secondly we use a
more complicated approach to get the preliminary constant-factor approxima-
tion ranking π1. We use the known PTAS Karpinski and Schudy [2009] with an
appropriate error parameter to get a 2-approximation. Our analysis requires not
only that π1 be of cost comparable to π∗ but also that it be close in Kendall-
Tau distance. Fortunately the analysis of the PTAS from Karpinski and Schudy
[2009] supports the following theorem.

Theorem 10 (Karpinski and Schudy [2009]). There exists a polynomial-
time algorithm for BetweennessTour that produces a set Π of O(1) rank-
ings. With constant probability one of the rankings π ∈ Π satisfies d(π, π∗) =
O(OPT/n) and has cost at most 2C(π∗), where π∗ is some optimal ranking.

3.2 Analysis

The following two lemmas are given in Karpinski and Schudy [2009] in more
generality. We give simplified proofs here for readability.

Lemma 11 (Karpinski and Schudy [2009]). For any rankings π and π′ over
vertex set V , vertex v ∈ V and p ∈ R we have

|b(π, v, p)− b(π′, v, p)| ≤ 3(n− 1)
√

d(π, π′).



Proof. Fix π, π′, v, and p. As in the proof of Lemma 6, consider the sets of
vertices L = { u ∈ V \ {v} : π(u) < p < π′(u) } and R = { u ∈ V \ {v} :
π′(u) < p < π(u) }. From the definition of b we see that a constraint {u, u′, v}
contributes identically to b(π, v, p) and b(π′, v, p) unless either:

1. {u, u′} and (L ∪R) have a non-empty intersection (or)
2. 11 (π(u) < π(u′)) 6= 11 (π′(u) < π′(u′)).

In the proof of Lemma 6 we showed that |L| = |R| ≤
√

d(π, π′). We can
therefore bound

|b(π, v, p)− b(π′, v, p)| ≤ (2
√

d(π, π′))(n− 2) + d(π, π′). (2)

Clearly d(π, π′) ≤ n(n−1)/2, hence d(π, π′) = (
√

d(π, π′))2 ≤
√

d(π, π′)
√

n(n−1)
2 ≤

(n−2)
√

d(π, π′) for sufficiently large n. Substituting this inequality into the sec-
ond term of (2) proves the Lemma.

Lemma 12 (Karpinski and Schudy [2009]). Let π be a ranking of V , |V | =
n, v ∈ V be a vertex and p, p′ ∈ R. Let B be the set of vertices (excluding v)

between p and p′ in π. Then b(π, v, p) + b(π, v, p′) ≥ (n−2)|B|
2 .

Proof. By definition

b(π, v, p) + b(π, v, p′) =
∑

Q:···
[c(Q 7→ π v 7→ p) + c(Q 7→ π v 7→ p′)] (3)

where the sum is over sets Q ⊆ V \ {v} of 2 vertices. Observe that betweenness
tournament has a special property: the quantity in brackets in (3) is at least 1
for every Q that has at least one vertex between p and p′ in π. There are at least
|B|(n− 2)/2 such sets.

Lemma 13. During the iteration of Algorithm 2 that considers the ranking with
d(π1, π∗) = O(OPT/n) and C(π1) ≤ 2C(π∗) guaranteed by Theorem 10 we have
|π∗(v)− π1(v)| ≤ r(v) for all v ∈ V .

Proof. By Lemma 11 and Theorem 10 we have

|b(π∗, v, j + 1/2)− b(π1, v, j + 1/2)| = O(n
√

OPT/n) (4)

for any j ∈ Z.
Fix v ∈ V . We conclude

|π∗(v)− π1(v)|n− 2

2

≤ b(π1, v, π1(v) + 1/2) + b(π1, v, π∗(v) + 1/2) (Lemma 12)

≤ b(π∗, v, π∗(v) + 1/2) +O(
√
nOPT ) + b(π1, v, π1(v) + 1/2) (By (4))

≤ b(π∗, v, π1(v) + 1/2) +O(
√
nOPT ) + b(π1, v, π1(v) + 1/2) (Optimality of π∗)

≤ O(
√
nOPT ) + 2b(π1, v, π1(v) + 1/2) (By (4))

= r(v)
n − 2

2
(Definition of r(v)).



Lemma 14. In Algorithm 2 we have maxj∈Z |{ v ∈ V : |π1(v) − j| ≤ r(v) }| =
O(

√

C(π1)/n).

Proof. We proceed analogously to the proof of Lemma 8. Fix j. Let R = { v ∈ V :
|π1(v)− j| ≤ r(v) }, whose cardinality we are trying to bound. We say v ∈ V is
pricey if b(π1, v, π1(v))/n >

√

2C(π1)/n. Clearly 3C(π1) =
∑

v b(π
1, v, π1(v)) ≥

(number pricey)n
√

2C(π1)/n hence the number of pricey vertices is at most

3C(π1)/(
√

2nC(π1)) = O(
√

C(π1)/n). All non-pricey vertices in R have |π1(v)−
j| = O(

√

C(π1)/n), so O(
√

C(π1)/n) non-pricey vertices are in R. We conclude

|R| = O(
√

C(π1)/n).

Lemma 15. There is a dynamic program for betweenness that finds the opti-
mal ranking π2 with |π2(v) − π1(v)| ≤ r(v) for all v, with space and runtime
O(|V |32ψ) where ψ = maxj |{ v ∈ V : |π1(v)− j| ≤ r(v) }|. A divide and con-
quer variant uses |V |O(ψ) time and |V |O(1) space.

Proof. As in the proof of Lemma 9 we say that a set S ⊆ V is valid if it contains
all vertices v with π1(v) ≤ |S| − r(v) and no vertex v with π1(v) > |S| + r(v).
Observe that for any s ∈ Z the valid sets of size s are identical except for the
presence or absence of at most ψ vertices. Therefore there are at most n2ψ valid
sets.

We say that a ranking π of valid set S is valid if { v : π(v) ≤ j } is a valid
set for all 0 ≤ j ≤ |S|. It is easy to see that a ranking π is valid if and only if
satisfies |π(v)− π1(v)| ≤ r(v) for all v.

The dynamic program based on C(·) that worked for FAST does not ap-
pear to directly generalize to BetweennessTour. We consider an alternate
approach. For any ranking π over S let C′(π) denote the portion of the cost
shared by all orderings with prefix π. That is, the cost of all constraints with at
most 1 vertex outside S. One can easily see the following optimal substructure
property: prefixes of an optimal (w.r.t. C′) valid ranking are optimal (w.r.t. C′)
valid rankings themselves.

For any valid set S let κ(S) denote the C′ cost of the optimal (w.r.t. C′)
valid ranking of S. The recurrence relation is

κ(S) = min
v∈S:S\{v} is valid



C′(S \ {v}) +
∑

u∈S\{v}

∑

q∈V \S
c(u 7→ 1 v 7→ 2 q 7→ 3)



 .

Proof (of Theorem 4). Lemmas 15 and 14, plus the test of the “if” in Algorithm
2, allow us to bound the runtime and space requirements of the dynamic program

used by Algorithm 2 by nO(1)2O(
√
C(πgood)/n), which is of the correct order since

C(πgood) ≤ 2C(π∗). The “for” loop is over a constant number of options and
hence does not impact the runtime.

For correctness we focus on the iteration of Algorithm 2 that considers the
π1 ∈ Π with d(π1, π∗) = O(

√

C(π∗)/n) and C(π1) ≤ 2C(π∗) as guaranteed
by Theorem 10. Theorem 10 ensures C(π1) ≤ 2C(π∗) ≤ 2C(πgood) and hence
the “if” is passed. By Lemma 13 π∗ is among the orders the dynamic program
considers.
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