Skip to main content

Analysis of an Iterated Local Search Algorithm for Vertex Coloring

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Abstract

Hybridizations of evolutionary algorithms and local search are among the best-performing algorithms for vertex coloring. However, the theoretical knowledge about these algorithms is very limited and it is agreed that a solid theoretical foundation is needed. We consider an iterated local search algorithm that iteratively tries to improve a coloring by applying mutation followed by local search. We investigate the capabilities and the limitations of this approach using bounds on the expected number of iterations until an optimal or near-optimal coloring is found. This is done for two different mutation operators and for different graph classes: bipartite graphs, sparse random graphs, and planar graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wegener, I.: Complexity Theory—Exploring the Limits of Efficient Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  2. Khot, S.: Improved inapproximability results for MaxClique, chromatic number and approximate graph coloring. In: Proc. of FOCS 2001, pp. 600–609. IEEE, Los Alamitos (2001)

    Google Scholar 

  3. Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers and Operations Research 33(9), 2547–2562 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wegener, I.: Towards a theory of randomized search heuristics. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 125–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. De Jong, K.: Evolutionary Computation—a unified approach. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  6. Culberson, J.C., Luo, F.: Exploring the k-colorable landscape with iterated greedy. DIMACS Series, vol. 26, pp. 245–284. AMS, Providence (1995)

    MATH  Google Scholar 

  7. Paquete, L., Stützle, T.: An experimental investigation of iterated local search for coloring graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 122–131. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Chiarandini, M., Stützle, T.: An application of iterated local search to graph coloring. In: Proc. of the Computational Symposium on Graph Coloring and its Generalizations, pp. 112–125 (2002)

    Google Scholar 

  9. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  11. Oliveto, P.S., He, J., Yao, X.: Time complexity of evolutionary algorithms for combinatorial optimization: A decade of results. Int’l Journal of Automation and Computing 4(3), 281–293 (2007)

    Article  Google Scholar 

  12. Sudholt, D.: Local search in evolutionary algorithms: the impact of the local search frequency. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 359–368. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Sudholt, D.: The impact of parametrization in memetic evolutionary algorithms. Theoretical Computer Science 410(26), 2511–2528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sudholt, D.: Hybridizing evolutionary algorithms with variable-depth search to overcome local optima. Algorithmica (to appear, 2010)

    Google Scholar 

  15. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience, Hoboken (1995)

    MATH  Google Scholar 

  16. Brockhoff, D.: Randomisierte Suchheuristiken für das Graphfärbungsproblem. Master’s thesis, Universität Dortmund (2005)

    Google Scholar 

  17. Fischer, S., Wegener, I.: The one-dimensional Ising model: Mutation versus recombination. Theoretical Computer Science 344(2-3), 208–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proc. of GECCO 2005, pp. 1161–1167. ACM Press, New York (2005)

    Google Scholar 

  19. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7(1), 55–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kosowski, A., Kuszner, Ł.: Self-stabilizing algorithms for graph coloring with improved performance guarantees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1150–1159. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87(5), 251–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Barenboim, L., Elkin, M.: Distributed (δ + 1)-coloring in linear (in δ) time. In: Proc. of STOC 2009, pp. 111–120. ACM Press, New York (2009)

    Google Scholar 

  23. Zaker, M.: Inequalities for the Grundy chromatic number of graphs. Discrete Applied Mathematics 155(18), 2567–2572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Balogh, J., Hartke, S., Liu, Q., Yu, G.: On the first-fit chromatic number of graphs. SIAM Journal of Discrete Mathematics 22, 887–900 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  26. Witt, C.: Greedy local search and vertex cover in sparse random graphs. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532, pp. 410–419. Springer, Heidelberg (2009)

    Google Scholar 

  27. Witt, C.: Personal communication

    Google Scholar 

  28. Diestel, R.: Graph Theory. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sudholt, D., Zarges, C. (2010). Analysis of an Iterated Local Search Algorithm for Vertex Coloring. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics