Skip to main content

An Optimal Algorithm for Single Maximum Coverage Location on Trees and Related Problems

  • Conference paper
Algorithms and Computation (ISAAC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6506))

Included in the following conference series:

  • 1138 Accesses

Abstract

The single maximum coverage location problem is as follows. We are given an edge-weighted tree with customers located at the nodes. Each node u is associated with a demand w(u) and a radius r(u). The goal is to find, for some facility, a node x such that the total demand of customers u whose distance to x is at most r(u) is maximized.

We give a simple O(nlogn) algorithm for this problem which improves upon the previously fastest algorithms. We complement this result by an Ω(nlogn) lower bound showing that our algorithm is optimal.

We observe that our algorithm leads also to improved time bounds for several other location problems such as indirect covering subtree and certain competitive location problems. Finally, we outline how our algorithm can be extended to a large class of distance-based location problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Amram, A.M., Galil, Z.: Topological lower bounds on algebraic random access machines. SIAM Journal on Computing 31(3), 722–761 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benkoczi, R., Bhattacharya, B.K.: A new template for solving p-median problems for trees in sub-quadratic time. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 271–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Goldman, A.J.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)

    Article  MathSciNet  Google Scholar 

  4. Hakimi, S.L.: On locating new facilities in a competitive environment. European Journal of Operational Research 12, 29–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Handler, G.Y.: Minimax location of a facility in an undirected tree graph. Transportation Science 7, 287–293 (1973)

    Article  MathSciNet  Google Scholar 

  6. Kang, A.N.C., Ault, D.A.: Some properties of a free centroid of a free tree. Information Processing Letters 4, 18–20 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, T.U., Lowe, T.J., Tamir, A., Ward, J.E.: On the location of a tree-shaped facility. Networks 28(3), 167–175 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lazar, A., Tamir, A.: Improved algorithms for some competitive location centroid problems on paths, trees and graphs. Tech. rep., Tel Aviv University (submitted, 2010)

    Google Scholar 

  9. Megiddo, N., Zemel, E., Hakimi, S.: The maximum coverage location problem. SIAM Journal on Algebraic and Discrete Methods 4(2), 253–261 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Noltemeier, H., Spoerhase, J., Wirth, H.C.: Multiple voting location and single voting location on trees. European Journal of Operational Research 181(2), 654–667 (2007), http://dx.doi.org/10.1016/j.ejor.2006.06.039

    Article  MathSciNet  MATH  Google Scholar 

  11. Spoerhase, J., Wirth, H.C.: An O(n (logn)2/loglog n) algorithm for the single maximum coverage location or the (1,X p )-medianoid problem on trees. Information Processing Letters 109(8), 391–394 (2009), http://dx.doi.org/10.1016/j.ipl.2008.12.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Spoerhase, J., Wirth, H.C.: Optimally computing all solutions of Stackelberg with parametric prices and of general monotonous gain functions on a tree. Journal of Discrete Algorithms 7(2), 256–266 (2009), http://dx.doi.org/10.1016/j.jda.2009.02.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Spoerhase, J., Wirth, H.C.: (r,p)-centroid problems on paths and trees. Theoretical Computer Science 410(47-49), 5128–5137 (2009), http://dx.doi.org/10.1016/j.tcs.2009.08.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Spoerhase, J., Wirth, H.C.: Relaxed voting and competitive location under monotonous gain functions on trees. Discrete Applied Mathematics 158, 361–373 (2010), http://dx.doi.org/10.1016/j.dam.2009.05.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Tamir, A.: An O(pn 2) algorithm for the p-median and related problems on tree graphs. Operations Research Letters 19, 59–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spoerhase, J. (2010). An Optimal Algorithm for Single Maximum Coverage Location on Trees and Related Problems. In: Cheong, O., Chwa, KY., Park, K. (eds) Algorithms and Computation. ISAAC 2010. Lecture Notes in Computer Science, vol 6506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17517-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17517-6_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17516-9

  • Online ISBN: 978-3-642-17517-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics