
ar
X

iv
:1

00
4.

21
15

v2
 [

m
at

h.
C

O
]

 1
4

A
pr

 2
01

0

A Faster Algorithm for the

Maximum Even Factor Problem

Maxim A. Babenko ⋆

Moscow State University

Abstract. Given a digraph G = (V G,AG), an even factor M ⊆ AG is
a subset of arcs that decomposes into a collection of node-disjoint paths
and even cycles. Even factors in digraphs were introduced by Geleen and
Cunningham and generalize path matchings in undirected graphs.

Finding an even factor of maximum cardinality in a general digraph is
known to be NP-hard but for the class of odd-cycle symmetric digraphs
the problem is polynomially solvable. So far, the only combinatorial al-
gorithm known for this task is due to Pap; it has the running time of
O(n4) (hereinafter n stands for the number of nodes in G).

In this paper we present a novel sparse recovery technique and devise
an O(n3 log n)-time algorithm for finding a maximum cardinality even
factor in an odd-cycle symmetric digraph.

1 Introduction

In [4] Cunningham and Geleen introduced the notion of independent path match-
ings and investigated their connection to the separation algorithms for the
matchable set polytope, which was previously studied by Balas and Pulley-
blank [1]. Finding an independent path matching of maximum size was rec-
ognized as an intriguing example of a graph-theoretic optimization problem that
is difficult to tackle by the purely combinatorial means. Two algorithms were
given by Cunningham and Geleen: one relies on the ellipsoid method [4], and
the other is based on deterministic evaluations of the Tutte matrix [5]. Later,
a rather complicated combinatorial algorithm was proposed by Spille and Weis-
mantel [13].

The notion of an even factor was introduced as a further generalization of
path matchings in a manuscript of Cunningham and Geleen [6] (see also [3]).
An even factor is a set of arcs that decomposes into a node-disjoint collection
of simple paths and simple cycles of even lengths. Since cycles of length 2 are
allowed, it is not difficult to see that finding a maximum matching in an undi-
rected graph G reduces to computing a maximum even factor in the digraph
obtained from G by replacing each edge with a pair of oppositely directed arcs.
On the other hand, no reduction from even factors to non-bipartite matchings
is known.

⋆ Email: max@adde.math.msu.su. Supported by RFBR grant 09-01-00709-a.

http://arxiv.org/abs/1004.2115v2

Finding a maximum cardinality even factor is known to be NP-hard in general
digraphs [3]. For the class of weakly symmetric digraphs a min-max relation was
established by Cunningham and Geleen [6] and by Pap and Szegő [12]. Later
it was noted by Pap [10] that these arguments hold for a slightly broader class
of odd-cycle symmetric digraphs. Takazawa and Kobayashi [16] pointed out a
relation between even factors and jump systems and showed that the requirement
for a digraph to be odd-cycle symmetric is natural, in a sense.

The question of finding a combinatorial solution to the maximum even factor
problem in an odd-cycle symmetric digraph stood open for quite a while until
Pap gave a direct O(n4)-time algorithm [10,11]. His method can be slightly sped
up to O(n2(m + n logn)), as explained in Section 3. (Hereinafter n stands for
the number of nodes in G and m denotes the number of arcs.) To compare: the
classical algorithm of Micali and Vazirani for finding a maximum non-bipartite
matching, which is a special case of the maximum even factor problem, runs in
O(mn1/2) time [9]. It is tempting to design a faster algorithm for the maximum
even factor problem by applying the ideas developed for matchings (e.g. blocking
augmentation [7]). There are, however, certain complications making even the
bound of O(mn) nontrivial.

To explain the nature of these difficulties let us briefly review Pap’s approach
(a more detailed exposition will be given in Section 3). It resembles Edmonds’
non-bipartite matching algorithm and executes a series of iterations each trying
to increase the size of the current even factor M by one. At each such itera-
tion, a search for an augmenting path P is performed. If no such path is found
then M is maximum. Otherwise, the algorithm tries to apply P to M . If no odd
cycle appears after the augmentation then the iteration completes. Otherwise, a
certain contracting reduction is applied to G and M .

Hence, each iteration consists of phases and the number of nodes in the cur-
rent digraph decreases with each phase. Totally there are O(n) iterations and
O(n) phases during each iteration, which is quite similar to the usual blossom-
shrinking method. The difference is that during a phase the reduction may com-
pletely change the alternating reachability structure so the next phase is forced
to start looking for P from scratch. (Compare this with Edmonds’ algorithm
were a blossom contraction changes the alternating forest in a predicable and
consistent way thus allowing this forest to be reused over the phases.)

In this paper we present a novel O(n3 log n)-time algorithm for solving the
maximum even factor problem. It is based on Pap’s method but grows the al-
ternating forest in a more careful fashion. When a contraction is made in the
current digraph the forest gets destroyed. However, we are able to restore it by
running a sparse recovery procedure that carries out a reachability search in
a specially crafted digraph with O(n) arcs in O(n logn) time (where the logn
factor comes from manipulations with data structures).

Our method seems applicable to a large variety of related problems. In par-
ticular, the O(mn3)-time algorithm of Takazawa [14] solves the weighted even
factor problem in O(mn3) time and also involves recomputing the alternating
forest from scratch on each phase.

Similar effects of reachability failure are known to occur in the maximum
C4-free 2-factor problem [11]. Also, adding matroidal structures leads to the
maximum independent even factor problem, which is solvable by the methods
similar to the discussed above, see [8]. All these problems can benefit from the
sparse recovery technique. Due to the lack of space we omit the details on these
extensions.

2 Preliminaries

We employ some standard graph-theoretic notation throughout the paper. For
an undirected graph G, we denote its sets of nodes and edges by V G and EG,
respectively. For a directed graph, we speak of arcs rather than edges and denote
the arc set of G by AG. A similar notation is used for paths, trees, and etc. We
allow parallel edges and arcs but not loops. As long as this leads to no confusion,
an arc from u to v is denoted by (u, v).

A path or a cycle is called even (respectively odd) if is consists of an even
(respectively odd) number of arcs or edges. For a digraphG a path-cycle matching
is a subset of arcs M that is a union of node-disjoint simple paths and cycles in
G. When M contains no odd cycle it is called an even factor. The size of M is
its cardinality and the maximum even factor problem prompts for constructing
an even factor of maximum size.

An arc (u, v) in a digraph G is called symmetric if (v, u) is also present in G.
Following the terminology from [10], we call G odd-cycle symmetric (respectively
weakly symmetric) if for each odd (respectively any) cycle C all the arcs of C are
symmetric. As already noted in Section 1, the maximum even factor problem is
NP-hard in general but is tractable for odd-cycle symmetric digraphs.

Maximizing the size of an even factor M in a digraph G is equivalent to
minimizing its deficiency def(G,M) := |V G| − |M |. The minimum deficiency of
an even factor in G is called the deficiency of G and is denoted by def(G).

For a digraphG and U ⊆ V G, the set of arcs entering (respectively leaving) U
is denoted by δinG (U) and δoutG (U). Also, we write γG(U) to denote the set of arcs
with both endpoints in U and G[U] to denote the subgraph of G induced by U ,
i.e. G[U] = (U, γG(U)). When, the digraph is clear from the context it is omitted
from notation.

To contract a set U ⊆ V G in a digraph G means to replace nodes in U by a
single complex node. The arcs in γ(V G − U) are not affected, arcs in γ(U) are
dropped, and the arcs in δin(U) (respectively δout(U)) are redirected so as to
enter (respectively leave) the complex node. The resulting graph is denoted by
G/U . We identify the arcs in G/U with their pre-images in G. Note that G/U
may contain multiple parallel arcs but not loops. If G′ is obtained from G by an
arbitrary series of contractions then G′ = G/U1/ . . . /Uk for a certain family of
disjoint subsets U1, . . . , Uk ⊆ V G (called the maximum contracted sets).

Algorithm 1 Simple-Augment(G,M)

1: Search for an augmenting path P in
−→
G(M)

2: if P does not exist then
3: return null

4: else if P exists and is feasible then

5: return M △ A(P)
6: else {P exists but is not feasible}
7: Put Mi ⇐ M △ A(Pi) for i = 0, . . . , k + 1
8: Find an index i such that Mi is an even factor while Mi+1 is not
9: Find the unique odd cycle C in Mi+1

10: G′ ⇐ G/C, M ′ ⇐ Mi/C

11: M
′

⇐ Simple-Augment(G′,M ′)

12: if M
′

= null then {M ′ is maximum in G′}
13: return null

14: else {M ′ is augmented in G′ to a larger even factor M
′

}

15: Undo the contractions and transform M
′

to an even factor M+ in G
16: return M+

17: end if

18: end if

3 Pap’s Algorithm

Consider an odd-cycle symmetric digraph G. The algorithm for finding a maxi-
mum even factor in G follows the standard scheme of cardinality augmentation.
Namely, we initially start with the empty even factor M and execute a series of
iterations each aiming to increase |M | by one. Iterations call Simple-Augment

routine that, given an odd-cycle symmetric digraph G and an even factor M in
G either returns a larger even factor M+ or null indicating that the maximum
size is reached.

3.1 Augmentations

Let us temporarily allow odd cycles and focus on path-cycle matchings in G. The
latter are easily characterized as follows. Construct two disjoint copies of V G:
V 1 :=

{
v1 | v ∈ V G

}
and V 2 :=

{
v2 | v ∈ V G

}
. For each arc a = (u, v) ∈ AG

add the edge {u1, v2} (corresponding to a). Denote the resulting undirected

bipartite graph by G̃.

Clearly, a path-cycle matching M in G is characterized by the following
properties: for each node v ∈ V G, M has at most one arc entering v and also at
most one arc leaving v. Translating this to G̃ one readily sees that M generates
a matching M̃ in G̃. Moreover, this correspondence between matchings in G̃ and
path-cycle matchings in G is one-to-one. A node u1 (respectively u2) in G̃ not

covered by M̃ is called a source (a sink, respectively).

(a) (b)

Fig. 1. Preparing for a contraction. Subfigure (a): the arcs of M are bold and
the grayed arcs correspond to path Pi+1. Subfigure (b): path Pi is applied, the
arcs of Mi are bold, and the grayed arcs indicate the remaining part of Pi+1.

Given a digraph G and a path-cycle matching M in G we turn G̃ into a

digraph
−→
G(M) by directing the edges

{
u1, v2

}
corresponding to arcs (u, v) ∈ M

from v2 to u1 and the other edges from u1 to v2.

Definition 1 A simple path in
−→
G(M) starting in a source node is called alter-

nating. An alternating path ending in a sink node is called augmenting.

For an alternating path P let A(P) denote the set of arcs in G corresponding to

the arcs of P in
−→
G(M). Hereinafter A△B denotes the symmetric difference of

sets A and B. The next statements are well-known.

Claim 1 If
−→
G(M) admits no augmenting path then M is a path-cycle matching

of maximum size.

Claim 2 If P is an augmenting (respectively an even alternating) path in
−→
G(M) then M ′ := M △ A(P) is path-cycle matching obeying |M ′| = |M | + 1
(respectively |M ′| = |M |).

The augmentation procedure (see Algorithm 1) constructs
−→
G (M) and

searches for an augmenting path P there. In case no such path exists, the
current even factor M is maximum by Claim 1 (even in the broader class of
path-cycle matchings), hence the algorithm terminates. Next, consider the case

when
−→
G(M) contains an augmenting path P . Claim 2 indicates how a larger

path-cycle matching M ′ can be formed from M , however M ′ may contain an
odd cycle. The next definition focuses on this issue.

Definition 2 Let P be an augmenting or an even alternating path. Then P is
called feasible if M ′ := M △ A(P) is again an even factor.

If P is feasible then Simple-Augment exits with the updated even factor
M △A(P). Consider the contrary, i.e. P is not feasible. Clearly, P is odd, say it

a+

u

(a)

a−

v

(b)

a+

a−

u

v

(c)

Fig. 2. Some cases appearing in Lemma 1. Digraph G and even factor N (bold
arcs) are depicted.

consists of 2k + 1 arcs. Construct a series of even alternating paths P0, . . . , Pk

where Pi is formed by taking the first 2i arcs of P (0 ≤ i ≤ k). Also, put
Pk+1 := P and Mi := M △A(Pi) (0 ≤ i ≤ k + 1).

Then there exists an index i (0 ≤ i ≤ k) such that Pi is feasible while
Pi+1 is not feasible. In other words, Mi is an even factor obeying def(G,Mi) =
def(G,M) and Mi+1 contains an odd cycle. Since Mi and Mi+1 differ by at
most two arcs, it can be easily showed that an odd cycle in Mi+1, call it C,
is unique (see [10]). Moreover, Mi fits C, that is, |Mi ∩ AC| = |V C| − 1 and
δout(V C) ∩Mi = ∅. See Fig. 1 for an example.

It turns out that when an even factor fits an odd cycle then a certain
optimality-preserving contraction is possible. As long as no confusion is pos-
sible, for a digraph H and a cycle K we abbreviate H/V K to H/K. Also, for
X ⊆ AH we write X/K to denote X \ γH(V K).

Claim 3 (Pap [10]) Let K be an odd cycle in H and N be an even factor that
fits K. Put H ′ := H/K and N ′ := N/K. Then H ′ is an odd-cycle symmetric
digraph and N ′ is an even factor in H ′. Moreover, if N ′ is maximum in H ′ then
N is maximum in H.

Note that M is maximum in G if and only if Mi is maximum in G. Simple-
Augment contracts C in G. Let G′ := G/C and M ′ := Mi/C denote the
resulting digraph and the even factor. To check if M ′ is maximum in G′ a recur-
sive call Simple-Augment(G′,M ′) is made. If null is returned then M ′ is a
maximum even factor in G′, which implies by Claim 3 that the initial even fac-
tor M was maximum in G. In this case Simple-Augment terminates returning
null.

Suppose that the recursive call was able to augment M ′ to a larger even

factor M
′

in G′. The algorithm transforms M
′

to an even factor in G with the
help of the following statement from [10] (see Fig. 2 for examples):

Lemma 1. Let K be an odd cycle in an odd-cycle symmetric digraph H. Put
H ′ := H/K and let N ′ be an even factor in H ′. Then there exists an even
factor N in H obeying def(H,N) = def(H ′, N ′).

3.2 Complexity

There are O(n) iterations each consisting of O(n) phases. To bound the com-
plexity of a single phase note that it takes O(m) time to find an augmenting
path P (if the latter exists). We may construct all the path-cycle matchings
M0, . . . ,Mk+1 and decompose each of them into node-disjoint paths and cycles
in O(n2) time. Hence, finding the index i and the cycle C takes O(n2) time. Con-
tracting C in G takes O(m) time. (We have already spent O(m) time looking
for P , so it is feasible to spend another O(m) time to construct the new digraph
G′ = G/C explicitly.) An obvious bookkeeping allows to undo all the contrac-
tions performed during the iteration and transform the final even factor in the
contracted digraph an even factor the initial digraph in O(m) time. Totally, the
algorithm runs in O(n4) time.

The above bound can be slightly improved as follows. Note that the algorithm
needs an arbitrary index i such that Mi is an even factor and Mi+1 is not, i.e.
i is not required to be minimum. Hence, we may carry out a binary search over
the range [0, k + 1]. At each step we keep a pair of indices (l, r) such that Ml is
an even factor while Mr is not. Replacing the current segment [l, r] by a twice
smaller one takes O(n) time and requires constructing and testing a single path-
cycle matching Mt where t := ⌊(l + r)/2⌋. This way, the O(n2) term reduces
to O(n log n) and the total running time of becomes O(n2(m + n logn)). The
ultimate goal of this paper is to get rid of the O(m) term.

4 A Faster Algorithm

4.1 Augmentations

The bottleneck of Simple-Augment are the augmenting path computations.
To obtain an improvement we need better understanding of how these paths are
calculated. Similarly to the usual path-finding algorithms we maintain a directed
out-forest F rooted at the source nodes. The nodes belonging to this forest are
called F-reachable. At each step a new arc (u, v) leaving an F -reachable node u
is scanned and either gets added to F (thus making v F -reachable) or skipped
because v is already F -reachable. This process continues until a sink node is
reached or no unscanned arcs remain in the digraph.

Definition 3 Let G be a digraph and M be an even factor in G. An alternating

forest F for M is a directed out-forest in
−→
G(M) such that: (i) the roots of F

are all the source nodes in
−→
G(M); (ii) every path from a root of F to a leaf of

F is even.

The intuition behind the suggested improvement is to grow F carefully and avoid
exploring infeasible alternating paths.

Definition 4 An alternating forest F is called feasible if every even alternating
or augmenting path in F is feasible. An alternating forest F is called complete

if it contains no sink node and for each arc (u, v) in
−→
G(M) if u is F-reachable

then so is v.

We replace Simple-Augment by a more sophisticated recursive Fast-

Augment procedure. It takes an odd-cycle symmetric digraph G, an even fac-
tor M in G, and an additional flag named sparsify. The procedure returns a
digraph G obtained from G by a number of contractions and an even factor M
in G. Additionally, it may return an alternating forest F for M in G. Exactly
one of the following two cases applies:

(1) def(G,M) = def(G,M)− 1 and F is undefined;

(2) def(G,M) = def(G,M), M is maximum in G, M is maximum in G, and
F is a proper complete alternating forest for M in G.

Assuming the above properties are true, let us explain how Fast-Augment

can be used to perform a single augmenting iteration. Given a current even
factor M in G the algorithm calls Fast-Augment(G,M,true) and examines
the result. If def(G,M) = def(G,M) then by (2) M is a maximum even factor
in G, the algorithm stops. (Note that the forest F , which is also returned by
Fast-Augment, is not used here. This forest is needed due to the recursive
nature of Fast-Augment.) Otherwise def(G,M) = def(G,M) − 1 by (1); this
case will be referred to as a breakthrough. Applying Lemma 1, M is transformed
to an even factor M+ in G such that def(G,M+) = def(G,M) = def(G,M)−1.
This completes the current iteration.

Clearly, the algorithm constructs a maximum even factor correctly provided
that Fast-Augment obeys the contract. Let us focus on the latter procedure. It
starts growing a feasible alternating forest F rooted at the source nodes (line 1).
During the course of the execution, Fast-Augment scans the arcs of G in a
certain order. For each node u in G we keep the list L(u) of all unscanned arcs
leaving u. The following invariant is maintained:

(3) if a = (u, v) is a scanned arc then either a ∈ M or both u1 and v2 are
F -reachable.

Consider an F -reachable node u1. To enumerate the arcs leaving u1 in
−→
G(M)

we fetch an unscanned arc a = (u, v) from L(u). If a ∈ M or v2 is F -reachable
then a is skipped and another arc is fetched. (In the former case a does not

generate an arc leaving u1 in
−→
G(M), in the latter case v2 is already F -reachable

so a can be made scanned according to (3).)

Otherwise, consider the arc a1 := (u1, v2) in
−→
G(M) and let P0 denote the

even alteranting feasible path from a root of F to u1. Note that each node x2 in
−→
G(M) (for x ∈ V G) is either a sink or has the unique arc leaving it. A single step
occurs when v2 is a sink (lines 10–13). The algorithm constructs an augmenting
path P1 = P0 ◦ a1 leading to v2. (Here L1 ◦ L2 stands for the concatenation of
L1 and L2.) If P1 is feasible, the current even factor gets augmented according
to Claim 2 and Fast-Augment terminates. Otherwise, forest growing stops and
the algorithm proceeds to line 22 to deal with a contraction.

A double step is executed when v2 is not a sink (lines 15–20). To keep the
leafs of F on even distances from roots, F it must be extended by adding pairs

Algorithm 2 Fast-Augment(G,M, sparsify)

1: Initialize forest F
2: for all unscanned arcs a = (u, v) such that u1 ∈ V F do

3: Mark a as scanned
4: if a ∈ M or v2 ∈ V F then

5: continue for {to line 2}
6: end if

7: a1 ⇐ (u1, v2)
8: Let P0 be the even alternating path to u1 in F {P0 is feasible}
9: if v2 is a sink then {single step}
10: P1 ⇐ P0 ◦ a1 {P1 is augmenting}
11: if P1 is feasible then

12: return (G,M △ A(P1),null)
13: end if

14: else {double step}
15: Let a2 = (v2, w1) be the unique arc leaving v2 {w1 /∈ VF}
16: P1 ⇐ P0 ◦ a1 ◦ a2 {P1 is even alternating}
17: if P1 is feasible then

18: Add nodes v2 and w1 and arcs a1, a2 to F
19: continue for {to line 2}
20: end if

21: end if

22: M0 ⇐ M △A(P0), M1 ⇐ M △A(P1)
23: Find a unique odd cycle C in M1

24: G′ ⇐ G/C, M ′ ⇐ M0/C
25: if sparsify = false then

26: return Fast-Augment(G′,M ′, false)
27: end if

28: Construct the digraph H ′

29: (H
′

,M
′

,F) ⇐ Fast-Augment(H ′,M ′, false)

30: Compare V H
′

and V G: let Z1, . . . , Zk be the maximum contracted sets and
z1, . . . , zk be the corresponding complex nodes in H

′

31: G
′

⇐ G/Z1/ . . . /Zk

32: if def(G
′

,M
′

) < def(G′,M ′) then

33: return (G
′

,M
′

,null)
34: end if

35: Unscan the arcs in G
′

that belong to M and the arcs that enter z1, . . . , zk
36: G ⇐ G

′

, M ⇐ M
′

, F ⇐ F
37: end for

38: return (G,M,F)

of arcs. Namely, there is a unique arc leaving v2 in
−→
G(M), say a2 = (v2, w1)

(evidently (w, v) ∈ M). Moreover, w1 is not a source node and (v2, w1) is the
only arc entering w1. Hence, w1 is not F -reachable. If P1 := P0◦a1◦a2 is feasible
then a1 and a2 are added to F thus making v2 and w1 F -reachable. Otherwise,
a contraction is necessary.

Now we explain how the algorithm deals with contractions at line 22. One
has an even alternating feasible path P0 and an infeasible augmenting or even
alternating path P1 (obtained by extending P0 by one or two arcs). Put M0 :=
M △ A(P0) and M1 := M △ A(P1). Let C denote the unique odd cycle in M1.
Put G′ := G/C, M ′ := M0/C. If sparsify = false then Fast-Augment acts
similar to Simple-Augment, namely, it makes a recursive call passing G′ and
M ′ as an input and, hence, restarting the whole path computation.

Next, suppose sparsify = true. In this case the algorithm tries to recover
some proper alternating forest for the contracted digraph G′ and the updated
even factor M ′. To accomplish this, a sparse digraph H ′ is constructed and
Fast-Augment is recursively called for it (with sparsify = false). The latter
nested call may obtain a breakthrough, that is, find an even factor of smaller
deficiency. In this case, the outer call terminates immediately. Otherwise, the
nested call returns a complete proper alternating forest F for an even factor

M
′

in a digraph H
′

(obtained from H ′ by contractions). This forest is used by
the outer call to continue the path-searching process. It turns out that almost
all of the arcs that were earlier fetched by the outer call need no additional
processing and may remain scanned w.r.t. the new, recovered forest. This way,
the algorithm amortizes arc scans during the outer call.

More formally, the algorithm constructs H ′ as follows. First, take the node
set of G, add all the arcs of M and all the arcs (u, v) ∈ AG such that (u1, v2) is
present in F . Denote the resulting digraph by H . We need to ensure that H is
odd-cycle symmetric: if some arc (u, v) in already added to H and the reverse
arc (v, u) exists in G then add (v, u) to H . Next, put H ′ := H/C. Note that H ′

is a sparse spanning subgraph of G′ (i.e. V H ′ = V G′, |AH ′| = O(n)) and M ′ is
an even factor in H ′.

The algorithm makes a recursive call Fast-Augment(H ′,M ′, false). Let

H
′

and M
′

be the resulting digraph and the even factor, respectively. Compare

the node sets of H
′

and H . Clearly, H
′

is obtained from H by a number of
contractions (G/C being one of them). Let Z1, . . . , Zk be the maximum disjoint

subsets of G such that H
′

= G/Z1/ . . . /Zk. Also, let z1, . . . , zk be the composite

nodes in H
′

corresponding to Z1, . . . , Zk. The algorithm applies these contrac-

tions to G and constructs the digraph G
′

:= G/Z1/ . . . /Zk. Clearly M
′

is an

even factor in both G
′

and H
′

. If def(H
′

,M
′

) < def(H ′,M ′) = def(G,M), then

one has a breakthrough, Fast-Augment terminates yielding G
′

and M
′

.

Otherwise, the recursive call in line 29 also returns a proper complete forest F

for H
′

and M
′

. Recall that some arcs in G are marked as scanned. Since we
identify the arcs of G

′

with their pre-images in G, one may speak of scanned

arcs of G
′

. The algorithm “unscans” certain arcs a = (u, v) ∈ AG
′

by adding
them back to their corresponding lists L(u) to ensure (3). Namely, the arcs that

belong to M and are present in G
′

and the arcs that enter any of the complex

nodes z1, . . . , zk in G
′

are unscanned. After this, the algorithm puts G := G
′

,

M := M
′

, F := F and proceeds with growing F (using the adjusted set of
scanned arcs).

Finally, if Fast-Augment has scanned all the arcs of G and is unable to
reach a sink, the resulting forest F is both proper and complete. In particular,
by (3) no augmenting path for M exists. By Claim 3 this implies the maximality
ofM in G. The algorithm returns the current digraph G, the current (maximum)
even factor M , and also the forest F , which certifies the maximality of M .

The correctness of Fast-Augment is evident except for the case when it
tries to recover F and alters the set of scanned arcs. One has to prove that (3)
holds for the updated forest and the updated set of the scanned arcs. The proof
of this statement is given in Section A.

4.2 Complexity

We employ arc lists to represent digraphs. When a subset U in a digraph Γ is
contracted we enumerate all arcs incident to U and update the lists accordingly.
If a pair of parallel arcs appears after contraction, these arcs are merged, so all
our digraphs remain simple. The above contraction of U takes O(|V Γ |·|U |) time.
During Fast-Augment the sum of sizes of the contracted subsets telescopes to
O(n), so graph contractions take O(n2) time in total. The usual bookkeeping
allows to undo contractions and recover a maximum even factor in the original
digraph in O(m) time.

Consider an invocation Fast-Augment(Γ,N, false) and let us bound its
complexity (including the recursive calls). The outer loop of the algorithm
(lines 2–37) enumerates the unscanned arcs. Since sparsify = false, each arc can
be scanned at most once, so the bound of O(|AΓ |) for the number of arc scans
follows. Using the appropriate data structures to represent even factors the reach-
ability checks in lines 11 and 17 can be carried out in O(log |V Γ |) time (see Sec-
tion B for more details). Constructing M0, M1, and C takes O(|V Γ |) time. This
way, Fast-Augment(Γ,N, false) takes O((k+1) |AΓ | log |V Γ |) time, where k
denotes the number of graph contractions performed during the invocation.

Next, we focus on Fast-Augment(Γ,N,true) call. Now one may need to
perform more than |AΓ | arc scans since forest recovery may produce new un-
scanned arcs (line 35). Note that forest recovery totally occurs O(|V Γ |) times
(since each such occurrence leads to a contraction). During each recovery M

generates O(|V Γ |) unscanned arcs or, in total, O(|V Γ |2) such arcs for the du-
ration of Fast-Augment. Also, each node zi generates O(|V Γ |) unscanned
arcs (recall that we merge parallel arcs and keep the current digraph sim-
ple). The total number of these nodes processed during Fast-Augment is
O(|V Γ |) (since each such node corresponds to a contraction). Totally these

nodes produce O(|V Γ |2) unscanned arcs. Hence, the total number of arc scans

is O(|AΓ |+ |V Γ |2) = O(|V Γ |2).

Each feasibility check costs O(log |V Γ |) time, or O(|V Γ |2 log |V Γ |) in total.
Finally, we must account for the time spent in the recursive invocations during
Fast-Augment(Γ,N,true). Each such invocation deals with a sparse digraph
and hence takes O((k + 1) |V Γ | log |V Γ |) time (where, as earlier, k denotes the
number of contractions performed by the recursive invocation). Since the to-

tal number of contractions is O(|V Γ |), the sum over all recursive invocations

telescopes to O(|V Γ |2 log |V Γ |).
The total time bound for Fast-Augment(Γ,N,true) (including the recur-

sive calls) is also O(|V Γ |2 log |V Γ |). Therefore a maximum even factor in an
odd-cycle symmetric digraph can be found in O(n3 logn) time, as claimed.

References

1. E. Balas and W. Pulleyblank. The perfectly matchable subgraph polytope of an
arbitrary graph. Combinatorica, 9:321–337, 1989.

2. T. Cormen, C. Stein, R. Rivest, and C. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2001.

3. W. H. Cunningham. Matching, matroids, and extensions. Mathematical Program-

ming, 91(3):515–542, 2002.
4. W. H. Cunningham and J. F. Geelen. The optimal path-matching problem. Com-

binatorica, 17:315–337, 1997.
5. W. H. Cunningham and J. F. Geelen. Combinatorial algorithms for path-matching,

2000. Manuscript.
6. W. H. Cunningham and J. F. Geelen. Vertex-disjoint dipaths and even dicircuits,

2001. Manuscript.
7. J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in

bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.
8. S. Iwata and K. Takazawa. The independent even factor problem. In Proceeinds of

the 18th Annual ACM-SIAM Symposium on Discrete algorithms, pages 1171–1180,
2007.

9. S. Micali and V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum
matching in general graphs. Proc. 45st IEEE Symp. Foundations of Computer

Science, pages 248–255, 1980.
10. G. Pap. A combinatorial algorithm to find a maximum even factor. In IPCO,

pages 66–80, 2005.
11. G. Pap. Combinatorial algorithms for matchings, even factors and square-free

2-factors. Math. Program., 110(1):57–69, 2007.
12. G. Pap and L. Szegö. On the maximum even factor in weakly symmetric graphs.

J. Comb. Theory Ser. B, 91(2):201–213, 2004.
13. B. Spille and R. Weismantel. A generalization of Edmonds’ matching and matroid

intersection algorithms. In Proceedings of the 9th International IPCO Conference

on Integer Programming and Combinatorial Optimization, pages 9–20, 2002.
14. K. Takazawa. A weighted even factor algorithm. Mathematical Programming:

Series A and B, 115(2):223–237, 2008.
15. R. Tarjan. Data structures and network algorithms. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 1983.
16. K. Takazawa Y. Kobayashi. Even factors, jump systems, and discrete convexity.

J. Comb. Theory Ser. B, 99(1), 2009.

Appendix

A Correctness

In order to establish the correctness of the algorithm one needs to prove that
once the forest F gets recovered at line 36 of Fast-Augment the set of scanned
arc obeys property (3). The latter is equivalent to the following:

Lemma 2. Consider line 36 in Algorithm 2 and let a = (u, v) be an arbitrary

arc of G
′

. Then either a is unscanned or a ∈ M
′

or both u1 and v2 are F-
reachable.

First, we shall need a more convenient characterization of reachable nodes.
Consider a digraph Γ and a node v ∈ V Γ . Construct a new odd-cycle symmetric
digraph Γ ∗ v from Γ by adding a new node v′ and an arc (v, v′).

Lemma 3. For each Γ and v either def(Γ ∗ v) = def(Γ) or def(Γ ∗ v) =
def(Γ) + 1.

Proof.
Each even factor N in Γ is also an even factor in Γ ∗ v, hence def(Γ ∗ v) ≤

def(Γ)+1. Also, for an even factor N∗ in Γ ∗v put N := N∗ \{(v, v′)}. Then, N
is an even factor in Γ obeying |N | ≥ |N∗| − 1. This implies def(Γ) ≤ def(Γ ∗ v),
as required. �

Lemma 4. Let N be a maximum even factor in Γ and T be a feasible alter-
nating forest for N . If v1 is T -reachable then def(Γ ∗ v) = def(Γ).

Proof.
Consider the even alternating path P from a root of T to v1. Since T is

feasible, N ′ := N △A(P) is an even factor in Γ and no arc of N ′ leaves v′. Now
N∗ := N ′ ∪ {(v, v′)} is an even factor in Γ ∗ v. Therefore, def(Γ ∗ v) ≤ def(Γ ∗
v,N∗) = def(Γ,N) = def(Γ) implying def(Γ ∗ v) = def(Γ) by Lemma 3. �

Lemma 5. Let N be a maximum even factor in Γ and T be a complete alter-
nating forest for N . If v1 is not T -reachable then def(Γ ∗ v) = def(Γ) + 1 and
N is a maximum even factor in Γ ∗ v.

Proof.
The alternating forest T ∗ obtained from T by adding a new root node (v′)1

is complete for Γ ∗ v and N . Hence, N is maximum in both Γ and Γ ∗ v and
def(Γ ∗ v) = def(Γ). �

Consider a node v ∈ V G. If v ∈ V G− (Z1∪ . . .∪Zk) then we say that v survives

the contractions. These nodes are both present in G and G
′

.

Lemma 6. Suppose that a node v ∈ V G survives the contractions and v1 is
F-reachable. Then v1 is F-reachable. Also, the nodes z11 , . . . , z

1
k are F-reachable.

Proof.
The transformation of H to H

′

and of M to M
′

may be viewed as follows:

(4)
(H,M) (H,M0) (H ′,M ′) (H

′

,M
′

)
= = = =

(Γ 0, N0) → (Γ 0, N0
0) → (Γ 1, N1) → (Γ 1, N1

0) → . . . → (Γ s, Ns)

Here Γ 0, . . . , Γ s are odd-cycle symmetric digraphs, N i, N i
0 are even factors in Γ i

obeying
∣∣N i

∣∣ =
∣∣N i

0

∣∣. Each N i
0 fits some odd cycle Ci in Γ i and Γ i+1 = Γ i/Ci,

N i+1 = N i
0/C

i.
Recall that the nested call to Fast-Augment in line 29 did not result into a

breakthrough, so M
′

is maximum in H
′

and F is a complete alternating forest.
Let us prove the first claim of the lemma. Consider a node v surviving the

contractions such that v1 is F -reachable in G. Suppose towards a contradiction

that v1 is not F -reachable in H
′

. By Lemma 5, M
′

= Ns is a maximum even

factor in H
′

∗ v = Γ s ∗ v. Then, by Claim 3, Ns−1

0 is a maximum even factor in
Γ s−1 ∗ v and hence so is Ns−1 (by the equality of sizes). Proceeding this way
in the backward direction we conclude that N i is a maximum even factor in
Γ i ∗ v for all i = 0, . . . s. In particular, N0 = M is maximum in Γ 0 = H . Since
(v, v′) /∈ M , M is also maximum in H and def(H ∗ v,M) = def(H,M) + 1. This
contradicts Lemma 4 and the fact that v1 is F -reachable.

For the second claim, fix a node v = zi and suppose that v1 is not F -

reachable in H
′

. Consider the sequence of transformations (4) and suppose that
v was created as a complex node in Γ j while contracting an odd cycle Cj−1 in
Γ j−1. As indicated above, N j is a maximum even factor in Γ j ∗ v. The latter,
however, is false since N j−1

0 fits Cj−1 and, therefore, N j has no arcs leaving v
(cf. Fig. 1(b) for an example). Hence, N j can be enlarged to N j ∪ {(v, v′)} — a
contradiction. �

Lemma 7. Suppose that a node v ∈ V G survives the contractions and v2 is
F-reachable. Then v2 is F-reachable.

Proof.
The node v2 cannot be a source, hence it is reached by some arc (u1, v2)

in F , where u1 is F -reachable and a = (u, v) /∈ M . Let a0 = (u0, v) be the image

of a under contractions. Note that a ∈ AH and a0 ∈ AH
′

. By Lemma 6, u1
0 is

F -reachable. Therefore, if a0 /∈ M
′

then the completeness of F implies that v2

is F -reachable. It remains to consider the case a0 ∈ M
′

. The node u1
0 is not a

source (since a0 ∈ M
′

leaves u0) but is F -reachable. In the auxiliary bipartite
digraph u1

0 is entered by exactly one arc, namely (v2, u1
0). Hence, v

2 must be
F -reachable, as required. �

Finally, we present the desired correctness proof.

Proof of Lemma 2.
Consider an arc a = (u, v) ∈ AG

′

. If a is not scanned then we are done.
Otherwise let a0 = (u0, v0) denote its pre-image in G. Here u = u0 if u0 survives
the contractions or u = zi if u0 ∈ Zi. Also, since all arcs entering the complex
nodes z1, . . . , zk are unscanned (line 35), v0 survives the contractions and hence
v = v0. Since the algorithm only decreases the set of scanned arcs, a0 must also
be scanned in G. Clearly a0 /∈ M since all the arcs that belong to M and are

present in G
′

were as unscanned. Therefore, both u0 and v0 = v are F -reachable
in G by the invariant (3). Applying Lemma 6 to u0 and Lemma 7 to v0 we see
that both u and v must be F -reachable. The proof is now complete. �

B Feasibility Checks

This section explains how path feasibility checks, which are performed by Fast-

Augment at lines 11 and 17, can be made efficient. That is, given an even
factor N and a feasible even alternating path P0 we need to verify that an even
alternating or an augmenting path P1 (obtained from P0 by appending one or
two arcs) is feasible. We make use of a certain data structure D that maintains
an even factor M △A(P0) as a collection of node-disjoint paths and cycles. The
following operations are supported by D:

– Insert(u, v): assuming that u is the end node of some path Pu in D and v
is the start node of some path Pv in D, add the arc (u, v) thus linking Pu

and Pv or, in case Pu = Pv, turning this path into a cycle;
– Remove(u, v): assuming that a = (u, v) is an arc belonging to some path or

cycle in D, remove a thus splitting the path into two parts or turning the
cycle into a path.

– Is-Odd-Cycle(u, v): assuming that a = (u, v) is an arc belonging to some
path or cycle in D, check if a belongs to an odd cycle.

We make use of balanced search trees additionally augmented with Split and
Concatenate operations (e.g. red-black trees, see [2,15]) to represent paths and
cycles in D. This way, Insert, Remove, and Is-Odd-Cycle take O(log |V Γ |)
time each. Now checking if P1 for feasibility is done by calling Insert(u, v) and,
in case of a double step, Remove(w, v), and finally making Is-Odd-Cycle(u, v)
request. If the latter indicates that P1 is not feasible, the changes in D are rolled
back.

During a Fast-Augment(Γ,N, false) call we grow F in a depth-first fash-
ion and maintain the structure D corresponding to the current F -reachable
node u1 (i.e. D keeps the decomposition of N △ A(P) where P is the path
in F from a root to u1). When F gets extended by arcs (u1, v2) and (v2, w1),
w1 becomes the new current node and D is updated accordingly by the above
Insert(u, v) and Remove(w, v) calls. When the algorithm backtracks from
w1 to u1, changes in D are reverted. This way, each feasibility check costs
O(log |V Γ |) time

Next, consider a Fast-Augment(Γ,N,true) call. The above time bound
of O(log |V Γ |) per check is only valid if we grow F from scratch. However, the
algorithm also reuses the forest that is returned by the nested Fast-Augment

call in line 29. This incurs an overhead of O(|V Γ | log |V Γ |) per forest recovery
(this additional time is needed to traverse the arcs that are present in the recov-
ered forest F and update D accordingly). There are O(|V Γ |) forest recoveries

during the call so the total overhead is O(|V Γ |2 log |V Γ |) time. This does not
affect the time bound of Fast-Augment(Γ,N,true).

	A Faster Algorithm for the Maximum Even Factor Problem
	 Maxim A. Babenko

