Skip to main content

Sparse and Low-Rank Estimation of Time-Varying Markov Networks with Alternating Direction Method of Multipliers

  • Conference paper
Book cover Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

Abstract

Several authors have recently proposed sparse estimation techniques for time-varying Markov networks, in which both graph structures and model parameters may change with time. In this study, we extend a previous approach with a low-rank assumption on the matrix of parameter sequence, utilizing a recent technique of nuclear norm regularization. This can potentially improve the estimation performance particularly in such cases that the local smoothness assumed in previous studies do not really hold. Then, we derive a simple algorithm based on the alternating direction method of multipliers (ADMM) which can effectively utilize the separable structure of our convex minimization problem. With an artificially-generated dataset, its superior performance in structure learning is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, O., et al.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. JMLR 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and distributed computation: Numerical methods. Prentice-Hall, Inc., Englewood Cliffs (1989)

    MATH  Google Scholar 

  3. Besag, J.: Statistical analysis of non-lattice data. J R Stat Soc Series D 24(3), 179–195 (1975)

    Google Scholar 

  4. Besag, J.: Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika 64, 616–618 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J.-F., et al.: A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckstein, J., Bertsekas, D.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 5, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM Reports 09-31, UCLA (2009)

    Google Scholar 

  8. Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: Proceedings American Control Conference, pp. 3273–3278 (2004)

    Google Scholar 

  9. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Transactions on Image Processing (preprint) (2010), http://arxiv.org/abs/1001.2244

  10. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Höfling, H., Tibshirani, R.: Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. JMLR 10, 883–906 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hyvärinen, A.: Consistency of pseudolikelihood estimation of fully visible Boltzmann machines. Neural Comput. 18(10), 2283–2292 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolar, M., et al.: Estimating time-varying networks. Annals of Applied Statistics 4(1), 94–123 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lee, S.-I., et al.: Efficient structure learning of Markov networks using L1-regularization. In: NIPS 2006 (2006)

    Google Scholar 

  15. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  16. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    MATH  Google Scholar 

  17. Toh, K., Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, National Univ. of Singapore (Preprint 2009)

    Google Scholar 

  18. Wainwright, M.J., et al.: High-dimensional graphical model selection using ℓ1-regularized logistic regression. In: NIPS (2006)

    Google Scholar 

  19. Xuan, X., Murphy, K.: Modeling changing dependency structure in multivariate time series. In: ICML 2007, pp. 1055–1062 (2007)

    Google Scholar 

  20. Yuan, X.M.: Alternating direction methods for sparse covariance selection, (2009), http://www.optimization-online.org/DB_FILE/2009/09/2390.pdf (Preprint)

  21. Zhou, S., et al.: Time varying undirected graphs. Machine Learning (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirayama, Ji., Hyvärinen, A., Ishii, S. (2010). Sparse and Low-Rank Estimation of Time-Varying Markov Networks with Alternating Direction Method of Multipliers. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics