Skip to main content

Wavelet Entropy Measure Based on Matching Pursuit Decomposition and Its Analysis to Heartbeat Intervals

  • Conference paper
Neural Information Processing. Theory and Algorithms (ICONIP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Included in the following conference series:

Abstract

Any natural or biological signal can be seen as a linear combination of meaningful and non-meaningful structures. According to the theory of multiresolution wavelet expansions, one can quantify the degree of information those structures using entropy and then select the most meaningful ones. Herein we propose to use adaptive time and frequency transform (ATFT) to measure wavelet entropy, where one line of approach to ATFT is to use a matching pursuit (MP) framework. The proposed method is tested on a set of heartbeat intervals whose population is composed of healthy and pathological subjects. Our results show that wavelet entropy measure based on MP decomposition can capture significant differences between the analyzed cardiac states that are intrinsically related to the structure of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 2, 674–693 (1989)

    Article  MATH  Google Scholar 

  2. Blanco, S., Figliola, A., Quiroga, R.Q., Rosso, O.A., Serrano, E.: Time-frequency analysis of electroencephalogram series. iii. wavelet packets and information cost function. Phys. Rev. E 57, 932–940 (1998)

    Google Scholar 

  3. Quiroga, R.Q., Rosso, O.A., Başar, E., Schürmann, M.: Wavelet entropy in event-related potentials: a new method shows ordering of eeg oscillations. Biol Cybern 84(4), 291–299 (2001)

    Article  MATH  Google Scholar 

  4. Mallat, S., Zhang, Z.: Adaptive time-frequency transform. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 241–244 (1993)

    Google Scholar 

  5. Mallat, S.G., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  6. Akselrod, S., Gordon, D., Ubel, F.A., Shannon, D.C., Barger, A.C., Cohen, R.J.: Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)

    Article  Google Scholar 

  7. The Criteria Committee of the New York Heart Association. In: Nomenclature and Criteria for Diagnosis of Diseases of the Heart and Great Vessels. 9 (edn.), Boston, Mass, pp. 253–256 (1994)

    Google Scholar 

  8. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), 215–220 (2000)

    Article  Google Scholar 

  9. Berger, R.D., Saul, J.P., Cohen, R.J.: Assessment of atonomic response by broad-band respiration. IEEE Trans. Biomed. Eng. 36(11), 1061–1065 (1989)

    Article  Google Scholar 

  10. Baselli, G., Cerutti, S., Civardi, S., Malliani, A., Pagani, M.: Cardiovascular variability signals: Towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed. Eng. 35(12), 1033–1046 (1988)

    Article  Google Scholar 

  11. Chon, K.H., Mullen, T.J., Cohen, R.J.: A dual-input nonlinear system analysis of autonomic modulation of the heart rate. IEEE Trans. Biomed. Eng. 43(5), 530–544 (1996)

    Article  Google Scholar 

  12. Vetter, R., Celka, P., Vesin, J.M., Thonet, G., Pruvot, E., Fromer, M., Scherrer, U., Bernardi, L.: Subband modeling of the human cardiovascular system: New insights into cardiovascular regulation. Annals of Biomedical Engineering 26, 293–307 (1998)

    Article  Google Scholar 

  13. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  14. Akay, M., Mulder, E.: Examining fetal heart-rate variability using matching pursuit. IEEE Engieering in Medicine and Biology 15, 64–67 (1996)

    Article  Google Scholar 

  15. Umapathy, K., Krishnan, S., Parsa, V., Jamieson, D.G.: Discrimination of pathological voices using a time-frequency approach. IEEE Trans Biomed Eng 52(3), 421–430 (2005)

    Article  Google Scholar 

  16. Thomas, C.: Elements of Information Theory. Wiley-Interscience, Hoboken (2006)

    MATH  Google Scholar 

  17. Hadase, M., Azuma, A., Zen, K., Asada, S., Kawasaki, T., Kamitani, T., Kawasaki, S., Sugihara, H., Matsubara, H.: Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J. 68(4), 343–347 (2004)

    Article  Google Scholar 

  18. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lucena, F., Cavalcante, A., Takeuchi, Y., Barros, A.K., Ohnishi, N. (2010). Wavelet Entropy Measure Based on Matching Pursuit Decomposition and Its Analysis to Heartbeat Intervals. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics