Skip to main content

Dynamic Population Variation Genetic Programming with Kalman Operator for Power System Load Modeling

  • Conference paper
  • 2457 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6443))

Abstract

According to the high accuracy of load model in power system, a novel dynamic population variation genetic programming with Kalman operator for load model in power system is proposed. First, an evolution load model called initial model in power system evolved by dynamic variation population genetic programming is obtained which has higher accuracy than traditional models. Second, parameters in initial model are optimized by Kalman operator for higher accuracy and an optimization model is obtained. Experiments are used to illustrate that evolved model has higher accuracy 4.6~48% than traditional models and It is also proved the performance of evolved model is prior to RBF network. Furthermore, the optimization model has higher accuracy 7.69~81.3% than evolved model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ju, P., Ma, D.Q.: Load modeling in power system. Water-conservancy hydropower Press, Beijing (1995)

    Google Scholar 

  2. Awang, B.J.: The Instability Effect of Constant Power Loads. In: 2004 National Power & Energy Conference (PECon), pp. 175–179. IEEE Press, New York (2004)

    Google Scholar 

  3. Zarco, P., Expośito, A.G.: Power system parameter estimation: a survey. IEEE Trans Power Syst. 15, 16–21 (2000)

    Article  Google Scholar 

  4. Coker, M.L., Kgasoane, H.: Load modeling, IEEE Africon (1999)

    Google Scholar 

  5. Mastorocostas, P.A., Theocharis, J.B., Kiartzis, S.J.: A hybrid fuzzy modeling method for short-time load forecasting. Mathematic and Computers in simulation 51(2), 221–232 (2000)

    Article  Google Scholar 

  6. Wu, Q.H., Wen, J.Y., Nuttall, K.I.: Power System Load Modeling by Evolutionary Computation Based on System Measurements. Electric Machines & Power Systems 31(5), 423–439 (2003)

    Article  Google Scholar 

  7. IEEE Task Force on load representation for dynamic performance, Load representation for dynamic performance analysis. IEEE Trans Power Syst 8(2), 472–482 (1993)

    Google Scholar 

  8. Kóczy, L.T., Tikk, D., Gedeon, T.D.: On Functional Equivalence of Certain Fuzzy Controllers and RBF Type Approximation Schemes. International Journal of Fuzzy Systems 2(3), 164–175 (2000)

    Google Scholar 

  9. Baranyi, P., Kóczy, L.T., Gedeon, T.D.: A Generalized Concept for Fuzzy Rule Interpolation. IEEE Transactions on Fuzzy Systems 12(6), 820–837 (2004)

    Article  Google Scholar 

  10. Yang, Z.G., Che, Y.B., Cheng, K.W.E.: Genetic Algorithm-Based RBF Neural Network for Load Forecasting Model. In: 2007 IEEE Power Engineering Society General Meeting, pp. 1–6. IEEE Press, New York (2007)

    Google Scholar 

  11. Wang, Z.Q., Chen, X.Q., Deng, C.H.: The Power System Load Modeling Based on Recurrent RBF Neural Network. In: The 8th International Power Engineering Conference (IPEC 2007), pp. 910–915. IEEE Press, New York (2007)

    Google Scholar 

  12. Lia, T.M.M., Alexandre, A.M.: Load modeling at electric power distribution substations using dynamic load parameters estimation. Electrical Power and Energy Systems 26, 805–811 (2004)

    Article  Google Scholar 

  13. Gastaldi, M., Lamedica, R., Nardecchia, A.: Short-term forecasting of municipal load through a Kalman filtering based approach. In: 2004 IEEE PES Power Systems Conference and Exposition, pp. 1453–1458. IEEE Press, New York (2004)

    Google Scholar 

  14. AI-Hamadi, H.M., Soliman, S.A.: Short-term electric load forecasting based on Kalman filtering algorithm witl1moving window weather and load model. Electric Power Systems Research 68(1), 47–59 (2004)

    Article  Google Scholar 

  15. Tomassini, M., Vanneschi, L., Cuendet, J.: A new technique for dynamic size populations in genetic programming. In: 2004 IEEE Congress on Evolutionary Computation (CEC 2004), pp. 486–493. IEEE Press, New York (2004)

    Google Scholar 

  16. Kouchakpour, P., Zaknich, A., Branul, T.: Dynamic population variation in genetic programming. Information Sciences 179, 1078–1091 (2009)

    Article  Google Scholar 

  17. Quigley, A.L.C.: An approach to the control of divergence in Kalman filter algorithm. Int.J.Cont. 17, 741–746 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tao, Y., Li, M., Cao, J. (2010). Dynamic Population Variation Genetic Programming with Kalman Operator for Power System Load Modeling. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds) Neural Information Processing. Theory and Algorithms. ICONIP 2010. Lecture Notes in Computer Science, vol 6443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17537-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17537-4_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17536-7

  • Online ISBN: 978-3-642-17537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics