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Abstract. We study Congestion Games with non-increasing cost functions (Cost Sharing Games)
from a complexity perspective and resolve their computational hardness, which has been an open
question. Specifically we prove that when the cost functions have the form f(x) = cr/x (Fair
Cost Allocation) then it is PLS-complete to compute a Pure Nash Equilibrium even in the case
where strategies of the players are paths on a directed network. For cost functions of the form
f(x) = cr(x)/x, where cr(x) is a non-decreasing concave function we also prove PLS-completeness
in undirected networks. Thus we extend the results of [7, 1] to the non-increasing case. For the case
of Matroid Cost Sharing Games, where tractability of Pure Nash Equilibria is known by [1] we give a
greedy polynomial time algorithm that computes a Pure Nash Equilibrium with social cost at most
the potential of the optimal strategy profile. Hence, for this class of games we give a polynomial
time version of the Potential Method introduced in [2] for bounding the Price of Stability.
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1 Introduction

The rapid and overwhelming expansion of the Internet has transformed it into a completely
new economic arena where a large number of self-interested players interact. The lack of central
coordination has rendered classic optimization problems insufficient to capture Internet inter-
actions and has given rise to new game-theoretic models. In this work we study a general such
model, namely Congestion Games with non-increasing cost functions (Cost Sharing Games),
from a complexity perspective and we resolve the computational hardness of computing a Pure
Nash Equilibrium (PNE) in such games, which has been an open problem. The computational
hardness is an important aspect of an equilibrium concept since it indicates whether it is a
reasonable outcome in real world settings.

We start with a motivating example: a group of Internet Service Providers (ISP) wants to create
a new network on a set of nodes (possibly different set for each provider). Each ISP’s goal is that
any two of his nodes are connected by a path. For practical reasons, each provider can build
edges only between two nodes in his set and his clients can use a link only if the ISP helped
build it. Moreover, we assume that ISPs are clever enough and when they decide to build the
same link as others then they all build one link and share the cost. The moment we add this last
specification, the problem faced by an ISP is no longer an optimization problem and the setting
becomes a game which from now on we will call the ISP Network Creation Game. ISP Network
Creation Games can be easily modeled as Cost Sharing Games.

Congestion Games in general has been a widely studied game theoretic model. In Congestion
Games a set of players allocate some set of shared resources. The cost incurred from using a
resource is a function of the number of players that have allocated the resource and the total cost
of a player is the sum of his costs on all the resources he has allocated. A reasonable outcome
of such a setting is a Pure Nash Equilibrium (PNE): a strategy profile such that no player
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can profit from deviating unilaterally. In a seminal paper, Rosenthal [13] gives a proof that
Congestion Games always possess a PNE. To achieve this, he introduces a potential function
and shows that the change in the potential induced by a unilateral move of some player is equal
to the change of that player’s utility. Several aspects of the PNE of Congestion Games have been
studied in the literature.

An interesting research area has been the complexity of computing a PNE in Congestion Games.
In a seminal paper Fabrikant et al. [7] proved that the above problem is PLS-complete even in
the case where the strategies of the players are paths in a directed network. Later, Ackermann
et al. [1] extended the above result to the case of undirected networks with linear cost functions.
However, both results use cost functions on the resources that are non-decreasing (delays) and
do not carry over to Cost Sharing Games. The complexity of computing a PNE in Cost Sharing
Games has been an open question.

Another interesting line of research has been measuring the inefficiency that arises from selfish-
ness. An important concept in that direction (especially in the case of Cost Sharing Games) has
been the Price of Stability (PoS), which is the ratio of the quality (sum of players’ costs) of the
best PNE over the socially optimal outcome ([2]). One major motivation for the PoS is that it
is the socially optimal solution subject to the constraint of unilateral stability. If there was a
third-party that could propose to players a solution to their problem, then the optimal stable
solution he could propose would be the best PNE. This motivation raises an interesting open
question: Given an upper bound on the PoS for a class of games, is there a polynomial-time
algorithm for computing a PNE with cost comparable to that bound?

In this work we make significant progress in both directions described above. We prove the first
PLS-hardness results for Cost Sharing Games. Our results show that the non-increasing case is
not easier than the non-decreasing. Moreover, we give the first polynomial-time algorithm that
computes a PNE with quality equal to the known bound on the PoS for a significant class of
Cost Sharing Games that contains, for example, the ISP Network Creation Game.

Results

– Our first main result is that a greedy approach leads to a polynomial time algorithm that
computes a PNE of any Matroid Cost Sharing Game, with cost equal to the potential of the
socially optimal solution. The quality of such a PNE is no worse than any bound on the PoS
that can be proved via the Potential Method. Hence, for this class we give a polynomial time
equivalent to the Potential Method. Matroid Cost Sharing Games are Cost Sharing Games
where the strategy space of each player is exactly the set of bases of a player-specific matroid.
The existence of algorithms like the one given here has been an interesting open question
[18]. From previous work [5], we know that computing the global potential minimizer is
NP-hard even for Singleton Cost Sharing Games. Also we note here that the same holds for
the minimum social cost PNE. Hence it is surprising that we can achieve such an efficiency
guarantee.

– The above result directly implies the logarithmic bound on the PoS for Matroid Cost Sharing
Games with cost functions of the form f(x) = cr(x)/x, where cr(x) is a nondecreasing concave
function.

– For the case of Singleton Cost Sharing Games our algorithm does not output just a PNE but
a Strong Nash Equilibrium. Hence this extends the results in [6] on the existence of Strong
Nash Equilibria in Cost Sharing Games.

– Our second main result is that computing a PNE in the class of Network Cost Sharing Games
where the cost functions come from the Shapley Cost Sharing Mechanism, f(x) = cr/x (Fair
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Cost Allocation) is PLS-complete. The hardness results are based on a tight PLS-reduction
from MAX CUT. The result is not restrictive to Fair Cost Allocation and holds for almost
any reasonable set of decreasing functions.

– The tightness of our reduction also shows that there exist instances of Network Cost Sharing
Games with Fair Cost Allocation, where best response dynamics will certainly need expo-
nential time to reach a PNE. This gives a negative answer to an interesting open question
proposed in [2] of whether there exist a scheduling of best response moves that lead to a
PNE in polynomially many steps.

– For cost functions of the form f(x) = cr(x)/x, where cr(x) is a nondecreasing concave
function we also prove PLS-completeness for the case of Undirected Network Cost Sharing.
This result is not restricted to the above class of functions but generalizes to any class of
cost functions that contains almost constant functions.

– The new techniques that we introduce can be used to simplify the existing reductions for the
non-decreasing case.

Techniques. To prove our main hardness result we introduce a new class of Congestion Games
called k-Congestable Congestion Games. In a k-Congestable Congestion Game the resources
of any two strategies of a player are disjoint and each resource is contained in some strategy
of at most k players. Thus at most k players can share a resource in any strategy profile. No
assumption on the cost functions is made. These games generalize k-Threshold Games introduced
by Ackermann et al. [1].

We show how to reduce the computation of a PNE in a 2-Congestable Congestion Game with cost
functions that satisfy mild assumptions, to the same problem in a Network Congestion Game
with the same set of cost functions. If the class of cost functions is general enough such that it
contains almost constant functions with arbitrary high cost, then we can reduce 2-Congestable
Congestion Games to Undirected Network Games. We notice that the MAX CUT reduction of
Fabrikant et al [7] constructs a 2-Congestable Congestion Game hence our construction can also
be applied to simplify the PLS-completeness proofs for the non-decreasing case.

Related Work

Complexity of Equilibria. Apart from the results mentioned in the introduction [7, 1], there has
been several works on the relation between PLS and PNE. Skopalik et al [16] proves that even
computing an approximate PNE is PLS complete for Congestion Games. Their techniques can
also be used to prove PLS-completeness of approximate equilibria in Bottleneck Games (player
cost is maximum of cost of allocated resources) as noted independently by Syrgkanis [17] and
Harks et al [9].

For Cost Sharing Games Chekuri et al [5] prove that it is NP-hard to compute the global
potential minimizer for Multicast Games with Fair Cost Allocation. Hansen et al [8] give an
exponential sequence of best response moves for the case of Metric Facility Location Games and
provide a polynomial time algorithm for computing approximate equilibria in that class.

On the positive side, Ieong et al. [10] give a dynamic programming algorithm for computing
the optimal PNE in the class of Symmetric Singleton Games with arbitrary cost functions.
Moreover, Ackermann et al [1] introduce Matroid Congestion Games as a class of games where
best response dynamics converge in polynomially many steps.

Quality of Equilibria. Cost Sharing Games in the form studied in this work were introduced
by Anshelevich et al. [2]. One of their main results is that the PoS is O(log(n)) (where n is
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the number of players) for Cost Sharing Games where the cost functions have the form f(x) =
cr(x)/x, where cr(x) is a nondecreasing concave function. Their proof introduces the Potential
Method, a way of bounding the PoS by showing that the global minimizer of Rosenthal’s potential
(which is a PNE) has cost close to the optimal.

Several other works have dealt with Cost Sharing Games from the perspective of bounding the
inefficiency that arises from selfishness. Chekuri et al [5] study Multicast and Facility Location
Games when players arrive sequentially and then perform best response. They prove that the
quality of the resulting PNE is at most O(

√
n log2 n)OPT . Later Charikar et al. [4] improve this

bound to O(log3 n)OPT and also make progress for the case when best response and sequential
arriving is interleaved. Epstein et al [6] study the quality of Strong Nash Equilibria of Cost
Sharing Games with Fair Cost Allocation. Strong Nash Equilibria allow for group moves of
players, therefore they are a solution concept robust to collusion. However, they do not always
exist in Cost Sharing Games. When they exist Epstein et al [6] show that their worst case
quality matches the PoS bound of Hn. Balcan et al [3] study Cost Sharing Games with Fair
Cost Allocation under the perspective of Learning Agents. They prove that if players perform
best response but at each step with a small fixed probability chose their strategy in a nearly
optimal outcome, then the expected quality of the resulting PNE is O(log(n) log(n|F |))OPT ,
where |F | is the number of resources.

2 Definitions and Notation

We will now give the formal definitions and notation for all the models that we cope with.

Definition 1. A Congestion Game, denoted by 〈N,F, (Si)i∈N , (rf )f∈F 〉, consists of: A set
of N players and a set of facilities F . For each player i a set of strategies Si ⊆ 2F . For each
facility f a cost function rf (x).

The cost of a player i at strategy profile s is Ci(si, s−i) =
∑

f∈si rf (nf (s)), where nf (s) (con-
gestion) is the number of players using facility f in strategy profile s.

Given a strategy profile s, we define the Social Cost of s as: SC(s) =
∑

i∈[N ]Ci(s) and the

potential of s as: Φ(s) =
∑

f∈F
∑nf (s)

k=1 rf (k).

Definition 2. A Cost Sharing Game is a Congestion Game where the facility cost functions
rf (x) are non-increasing. Any Cost Sharing Game may also be augmented by the property of
Fair Cost Allocation which means that the cost functions have the specific form of rf (x) =

cf
x .

Definition 3. A Network Cost Sharing Game is a Cost Sharing Game, where the strategy
space of each player i is the set of all possible paths between two nodes (si, ti) on a directed
network G = (V,E). If we assume an undirected network then we have the class of Undirected
Network Cost Sharing Games. If all players share a common sink then we have the case of
a Multicast Cost Sharing Game either on a directed or undirected network.

Definition 4. A Matroid Cost Sharing Game is a Cost Sharing Game, where for each
player i ∈ [N ], Si is the set of bases of a matroid Mi = (F, li), where li is the set of independent
sets [15]. Additionally we denote by rk(G) = maxi∈[N ]rk(Mi) the rank of the game G, where
rk(Mi) is the rank of matroid rk(Mi).
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Definition 5. A Singleton Cost Sharing Game is a Cost Sharing Game, where for each
player i ∈ [N ], Si consists of singleton sets. For this class of games we will use an equivalent
model that consists of: n jobs and m machines and an arbitrary bipartite graph G on nodes
[n] ∪ [m]. The jobs are the players of the game and their strategies is to choose one of the
machines they are connected to in G.
We denote with Mj the set of neighbors of job j, i.e. the set of possible machines job j can
choose from. We denote with Ni the set of neighbors of machine i, i.e. the set of jobs machine
i can be picked by.

3 Computing a Good Pure Nash Equilibrium

Matroid Cost Sharing Games is a subclass of Matroid Congestion Games, hence by Ackermann
et al. [1] we have that best response dynamics converge to a PNE in at most n2m rk(G) steps.
Thus one polynomial algorithm that gives a PNE starts from an arbitrary configuration and
performs best response in each step.

However, one interesting question is whether we can find a good quality PNE, for example the
one that globally minimizes the potential function or at least a PNE with good social cost
characteristics. Chekuri et al. [5] give a negative answer for the first question through an NP-
hardness result which in our notation implies the following theorem:

Theorem 1 ([5]). Computing the global potential minimizer for the class of Singleton Cost
Sharing Games with cost functions of the form f(x) = 1/x is NP-hard.

The proof is based on a gap introducing reduction by Lund and Yannakakis [12]. We remark
here that this reduction can also be used to prove that computing the socially optimal PNE is
NP-hard. For completeness purposes we give the proof in the Appendix.

However, these hardness results do not exclude the possibility of computing a PNE with social
cost comparable with the bound on the PoS produced by the Potential Method. Specifically the
Potential Method works as follows: Suppose that for any profile s: SC(s) ≤ Φ(s) ≤ αSC(s).
Then if we find the global potential minimizer ŝ and denoting with s∗ the optimal, we get that:
SC(ŝ) ≤ Φ(ŝ) ≤ Φ(s∗) ≤ αSC(s∗), hence the PoS is at most α. Now we know that computing
the global potential or social cost minimizer is NP-hard, however if we manage to find a PNE ŝ′

such that: SC(ŝ′) ≤ Φ(s∗), then we would have: SC(ŝ′) ≤ αSC(s) and we would get the same
upper bound. This is the guarantee that we will achieve for the algorithms that follow.

3.1 Singleton Cost Sharing Games

In this section we present the polynomial time algorithm that computes a good PNE for the
class of Singleton Cost Sharing Games. We start from Singleton Cost Sharing Games to give a
clear intuition for the case of Matroid Cost Sharing Games that will be a generalization of the
results presented in this section.

Singleton Cost Sharing Games can also be viewed as a Multicast Cost Sharing Game on a
directed network. Given an instance of our model we create a multicast game as follows: Set a
common sink t. Create a machine node vi for each machine i and connect it with t with an edge
of cost ri. Create one source node sj for each job j. Then for each j ∈ Ni create an edge of cost
0 from source node sj to machine node vi.
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It could also be viewed as a Multicast Cost Sharing Game on an undirected network. Instead of
setting the edge costs of edges (sj , vi) to 0 we set it to some huge number q. This number has
no strategic consequence on the game: (1) players will use only one such edge because otherwise
they would incur a huge cost, (2) all strategies of the players will have this additive cost of q
and therefore players will choose only according to the cost on the final edge (vi, t). However,
the Price of Anarchy and PoS bounds do not carry over in this case.

In the special case of Fair Cost Allocation, the social cost is the sum of the costs of the machines
used and the optimization problem of computing a strategy profile with minimum social cost is
a problem equivalent to SET COVER.

Algorithm 1 Poly-time algorithm for good PNE
Require: An instance of G = 〈G = ([n] ∪ [m], E), (ri)i∈[m]〉

G1 = G
for t = 1 to m do

Let dti = |N t
i | be the degree of machine i in Gt

Let it = argmini∈[m] ri(d
t
i)

For all j ∈ N t
it set sj = it

Remove nodes N t
it ∪ it from Gt to obtain Gt+1

end for
return Strategy profile s

Our algorithm works as follows: Each time pick the machine that incurs the minimum player
cost if it is assigned all the possible unassigned jobs and assign to that machine all possible jobs.
We iterate until all jobs are assigned. A pseudocode of this is depicted in Algorithm 1.

Theorem 2. Algorithm 1 outputs a PNE of G = 〈G = ([n] ∪ [m], E), (ri)i∈[m]〉

Proof. Suppose in the end of the algorithm, some job j wants to move from his current machine i
to some i′. Assume j was assigned to i at time step t0, i.e. i = it0 . Since i was assigned at time step
t0 it was not connected to any machine it for t < t0. Thus i

′ must correspond to some machine
it1 for t1 > t0. Since j was not assigned to i′ it means that at t0, the degree of i′ dropped by at
least 1. Moreover, at each subsequent time step the degree of machine i′ can only drop. Thus
dt1i′ ≤ dt0i′ − 1. Moreover, since i was selected at t0 it means that: ri(d

t0
i ) ≤ ri′(d

t0
i′ ) ≤ ri′(d

t1
i′ +1),

where the last inequality holds from the fact that dt0i′ ≥ dt1i′ +1 and ri are non-increasing functions.
Now we just need to observe that in the end of the algorithm ni = dt0i and ni′ = dt1i′ . Combining
with the previous inequality we get: ri(ni) ≤ ri′(ni′ +1). Thus player j does not want to switch
to i′ which is a contradiction. ut

For the case of Fair Cost Allocation, Algorithm (1) is exactly the greedy Hn-approximation for
SET COVER. Hence we immediately get a good efficiency guarantee. In addition it is interesting
to notice that the tight example for the Hn-approximation given in Example 2.5 of [19] for the
greedy approximation algorithm for SET COVER is the identical analogue of the tight example
for the PoS given in [2].

Theorem 3. For any instance of Singleton Cost Sharing Games, Algorithm (1) computes a
PNE that is as good as the potential of the optimal allocation.

Sketch of Proof. We work with a price scheme. Consider a machine i in the optimum solution
and assume d players are assigned to it in OPT. Order these players in the order that the
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algorithm assigns them to some other machine. When the j-th player was assigned to another
machine i′ we know that at least d− j + 1 players can still be assigned to i. Since we assign all
possible players to i′ and we choose the machine with the smallest possible player cost we know
that j-th player pays a cost of at most ri(d − j + 1) for being assigned to i′. Iterating this for
all j and for all machines in the optimum solution we get the desired result. ut

We note here that the above algorithm actually computes a Strong Nash Equilibrium. The proof
is simple and is given in the appendix. For Matroid Cost Sharing Games such a guarantee cannot
be achieved since the example of [6] that possesses no Strong Nash Equilibrium can be easily
transformed into a Matroid Game.

3.2 Matroid Cost Sharing Games

In this section we present a generalization of Algorithm (1) that computes a good PNE for the
class of Matroid Cost Sharing Games.

Algorithm 2 Poly-time algorithm for good PNE in Matroid Cost sharing Games
Require: An instance of 〈N,F, (Si)i∈[N ], (rf )f∈F 〉

∀i ∈ [N ] : s0i = ∅; ∀f ∈ F : N0
f = {i ∈ [N ] | f ∈ li}, d0f = |N0

f |
t = 0
while ∃f ∈ F : dtf > 0 do

f t = argminf∈F rf (d
t
f )

∀i ∈ N t
ft set sti = st−1

i ∪ {f t}
t = t+ 1
N t

f = {i ∈ [N ] | st−1
i ∪ {f} ∈ li}, dtf = |N t

f |
end while
return Strategy profile s

The algorithm works as follows: At each point we keep a temporary strategy for each player,
starting from the empty strategy. At each iteration t we compute for each resource to how many
players’ strategy it could be added (dtf ). Then we choose the resource that has minimum player

cost if added to the strategy of all possible players (minf∈F rf (d
t
f )) and we perform this addition.

This happens until no player’s strategy can be further augmented.

Assuming that checking whether some set is in li takes polynomial time in the size of the input,
then it is clear that the above algorithm runs in polynomial time since the while loop is executed
at most n · rk(G) times and during each time step we go over all the resources. For example the
above property is true for the case where the strategy space of each player is the set of spanning
trees on a set of nodes, like the ISP Network Creation Game.

The following theorem shows that Algorithm (2) behaves in the same way as in the case of
Singleton Cost Sharing Games (the proof is given in the Appendix).

Theorem 4. For any Matroid Cost Sharing Game, Algorithm (2) computes a PNE with social
cost at most the potential of the optimal allocation.

Sketch of Proof. To prove that the resulting allocation is a PNE we use extensively the matroid
property that a base is minimum if and only if there is no (1,1) exchange of a facility that results
to a better strategy. Then we argue that no profitable (1,1) exchange can exist in a player’s
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strategy due to the way the algorithm works. To prove the efficiency guarantee we construct
for every player a 1-1 mapping of the facilities in the algorithm’s allocation and those in the
optimal allocation with the following property: whenever a facility is assigned to the player then
its mapping in the optimal allocation is also still an option at that time step. In this way we are
able to simulate the same logic that we used in the proof of Theorem 3. ut

4 Intractability of Cost Sharing Games

In this section we provide the PLS-hardness results. For a more detailed exposition of the class
PLS and definitions and properties of PLS reductions the reader is redirected to the initial
papers on PLS [11, 14] and to previous work on PLS hardness of congestion games [7, 1].

4.1 General Cost Sharing Games

We will prove that finding a PNE in the class of Cost Sharing Games is PLS-complete via a
reduction from MAX CUT under the flip neighborhood.

Definition 6. We say that a class of functions has the property P1 if for arbitrary a > 0 it
contains a function f(x) such that f(1) = f(2) + a.

Theorem 5. Computing a PNE for the class of Cost Sharing Games with a class of cost func-
tions that has property P1 is PLS-complete.

Proof. Assume an instance of MAX CUT on weighted graph G = (V,E, (we)e∈E). Assume that
(i, j) /∈ E ⇒ wij = 0. We will create an instance of a Cost Sharing Game 〈N,F, (Si)i∈[N ], (rf )f∈F 〉
such that from every PNE of the game we can construct in polynomial time a local maximum
cut of the MAX CUT instance.

For each node i ∈ V we add a player Pi ∈ [N ]. We assume an ordering of the players P1, . . . , PN .
For each unordered pair of players {i, j} (i < j) we add two facilities f1

ij and f2
ij in the set F ,

each with cost function rij , such that rij(1) = rij(2)+wij , which can be achieved due to the P1

property.

sAi = {f2
ji | j ∈ {1 . . . i− 1}} ∪ {f1

ij | j ∈ {i+ 1 . . . N}}
sBi = {f1

ji | j ∈ {1 . . . i− 1}} ∪ {f2
ij | j ∈ {i+ 1 . . . N}}

In other words for each pair of players {i, j} if player i has facility f1
ij in his sAi strategy then

player j has facility f2
ij in his sAj strategy and correspondingly for the B strategies.

Now given any strategy profile s we consider the following partition of the initial graph: If player
Pi ∈ N is playing sAi then place node i in partition VA(s) and to partition VB(s) otherwise. For
every node i ∈ V denote with wi =

∑
j∈V wij , w(i, VA) =

∑
j∈VA

wij , w(i, VB) =
∑

j∈VB
wij .

Given any strategy profile s the cost of player Pi for playing each strategy is:

Ci(s
A
i , s−i) =

∑
j∈VA(s)

rij(1) +
∑

j∈VB(s)

rij(2) = w(i, VA(s)) +
∑
j 6=i

rij(2)

Ci(s
B
i , s−i) =

∑
j∈VA(s)

rij(2) +
∑

j∈VB(s)

rij(1) = w(i, VB(s)) +
∑
j 6=i

rij(2)
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Fig. 1. Example of a reduction from MAX CUT on three node graph to computing a PNE in Cost Sharing Games.

Thus if s is a PNE and Pi is playing sAi then: Ci(s
A
i , s−i) ≤ Ci(s

B
i , s−i) =⇒ w(i, VA(s)) ≤

w(i, VB(s)). Hence, switching node i from partition VA(s) to VB(s) will not increase the weight of
the cut. Similarly if Pi is playing sBi we get the opposite inequality. Therefore, for any PNE s the
corresponding partition (VA(s), VB(s)) is a local maximum of the initial MAX CUT instance. ut

An example of the above reduction is depicted in Fig. 1.

Corollary 1. Computing a PNE for the class of Cost Sharing Games with Fair Cost Allocation
is PLS-complete.

Proof. We just need to show that the class of cost functions f(x) = cr/x for arbitrary cr has
property P1. It is easy to see that for arbitrary a > 0 if we set cr = 2a then we get the desired
property that f(1) = f(2) + a. ut

4.2 Extending to Network Games

We will introduce k-Congestable Games. We will then notice that the game instance created in
the MAX CUT reduction belongs to the class of 2-Congestable Cost Sharing Games with Fair
Cost Allocation. We will then show how from any instance of a 2-Congestable Game we can
create a Network Congestion Game that preserves the PNE.

Definition 7. A k-Congestable Congestion Game is a Congestion Game where: (1) Any facility
is used by at most k players. (2) The facilities on the different strategies of a player are disjoint.
There is no restriction on the cost functions.

Definition 8. A class of cost functions has property P2 if for arbitrary H > 0 it contains a
function f(x) such that mink∈[1..N ] f(k) > H and any member of the class has bounded maximum
in a finite integer range [1..N ].

Theorem 6. Given an instance of a 2-Congestable Congestion Game with cost functions from
a class with property P2, we can create an instance of a Network Congestion Game on a directed
network, where any PNE of the latter corresponds to a PNE of the former and the conversion
can be computed in polynomial time. Moreover, the reduced game contains the same set of cost
functions as the initial. (proof in appendix)
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Sketch of Proof. First we create gadgets that force two players to share an edge in the network.
We add one such gadget in our construction for each facility in the initial game and the shared
edge has exactly the same cost function as the initial. Then we interconnect these gadgets with
external edges. The interconnection and the costs of the external edges is such that for each
player the only undominated paths in the network are those that correspond to strategies in the
initial game. ut

Corollary 2. Computing a PNE in the class of Network Cost-Sharing Games with Fair Cost
Allocation is PLS complete.

Proof. The Cost Sharing Game with Fair Cost Allocation constructed in the MAX CUT reduc-
tion is a 2-Congestable Cost Sharing Game. Moreover, functions of the form f(x) = cr/x have
property P2, since given some H we can satisfy the desired property by setting cr = NH. ut

In Fig. 4 of the appendix we depict the reduction described above for the game created in
the MAX CUT reduction in Fig. 1. Now we show for which classes of functions we can have
PLS-completeness in undirected networks too.

Definition 9. A class of functions has property P3 if for any a, ε > 0 it contains a function
f(x) such that f(1) = a and maxk∈[1..N ] f(k)−mink∈[1..N ] f(k) ≤ ε.

Theorem 7. Given an instance of a 2-Congestable Congestion Game with cost functions from
a class that has properties P2 and P3, we can create an instance of an Undirected Network
Congestion Game, where any PNE of the latter corresponds to a PNE of the former and the
conversion can be computed in polynomial time. Moreover, the reduced game contains the same
set of cost functions as the initial. (proof in appendix)

Corollary 3. Computing a PNE in the class of Undirected Network Cost-Sharing Games with
functions of the form f(x) = cr(x)/x, where cr(x) is a non-decreasing concave function, is
PLS-complete.

Proof. We need to show that the above class of functions has properties P1, P2 and P3. Since
it contains all functions of the form f(x) = cr/x, we know from previous discussion that it has
properties P1 and P2. For property P3 we assume that cr(x) = cx1−δ. By setting c = a we have
that f(1) = a. Now we need maxk∈[1..N ] f(k)−mink∈[1..N ] f(k) ≤ ε. Since the cost functions are
decreasing the above translates to f(1) ≤ f(N) + ε. If ε ≥ a − a

N then setting δ = 1 yields the

desired property. Otherwise, we have a ≤ a
Nδ + ε ⇒ δ ≤ log( a

a−ε
)

log(N) . Since ε < a − a
N , 0 < δ < 1,

hence cr(x) is an increasing concave function. ut

4.3 Tightness of PLS-reductions

It is easy to observe that all the PLS reductions used in the previous sections are tight reductions
as defined in [14]. From the initial works on PLS [11, 14] we know that tight reductions do not
decrease the distance of an initial solution from a local optimum through local improvement
steps. Moreover, we know that there exist instances of MAX CUT with initial configurations
that have exponential distance from any local maximum. This directly implies that there exist
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instances of the class of games for which we prove PLS-completeness, with strategy profiles such
that any sequence of best response moves needs exponential time to reach a PNE.

Moreover, the tightness of our reductions shows that for the class of games we cope with it is
PSPACE-complete to compute a PNE that is reachable from a specific initial strategy profile
through best response moves.

5 Discussion and Further Results

Another interesting fact that might be useful in other reductions is the following:

Theorem 8. Computing a PNE in General Congestion Games where all players have two
strategies and each facility is used by at most two players can be reduced to computing a PNE
of a 2-Congestable Congestion Game. If the initial game contains a cost function rf (x) then the
reduced game might contain cost functions of the form rf (x+ k) for arbitrary k.

Last, we observe that our reductions from 2-congestable games also show how one can conclude
PLS completeness of Undirected Network Congestion Games with linear cost functions, directly
from the MAX CUT reduction of [7] without even introducing 2-threshold congestion games. It
is easy to observe that the Congestion Game created in the reduction of [7] is a 2-Congestable
Game and linear functions is a class that satisfies properties P1, P2 and P3.

Acknowledgements. I would like to deeply thank Eva Tardos for the many fruitful and in-
sightful discussions on the subject. I would also like to thank the reviewers for the helpful
comments.
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A Computing a Good PNE

Theorem 9. It is NP-hard to compute the PNE that minimizes the Social Cost even in the
class of Singleton Cost Sharing Games with cost functions of the form f(x) = 1/x.

Proof. We give a reduction from 3SAT. A variation of a theorem by Lund and Yannakakis [12]
is the following:

Theorem 10. Given a 3SAT formula φ, an instance of the unweighted set cover problem can
be constructed in polynomial time, such that:

– All sets have equal size (denoted by s).
– If φ is satisfiable (yes-instance), then there is a solution to the set cover instance that uses

X = n/s sets (n is the number of elements), and each element is covered by exactly one set
in this solution.

– If φ is not satisfiable (no-instance), then the size of any solution to the set cover instance is
at least aX, where a > 1 is some constant.

The reduction is as follows: First construct the instance of Set Cover that corresponds to formula
φ of 3SAT as indicated by Theorem 10. From this construct the corresponding instance of our
game, using the connection between Set Cover and our game used so far.

If φ is satisfiable then by theorem (10) we know that there exists a strategy profile where
exactly X = n/s machines are used, each machine is connected with exactly s jobs and all jobs
are connected with only one machine currently used by some other player. Hence this strategy
profile is clearly a PNE and has social cost X.

Now if φ is not satisfiable then by theorem (10) any solution to the Set Cover instance must
have cost at least aX. Hence, any strategy profile of the corresponding instance and hence any
PNE must have social cost at least aX. Hence, if we could find the PNE with the optimal social
cost, we could decide whether formula φ is satisfiable. ut

Proof (Proof of Theorem 3). We work with a price scheme. We introduce the following notation:
If s is an assignment then Ni(s) is the set of jobs assigned to machine i in s, ni(s) = |Ni(s)| and
M(s) is the set of machines used in s. If the contexts are clear then we might sometimes drop
the s from the above notations. The cost of an arbitrary allocation is:∑

j∈[n]

rsj (nsj (s)) =
∑

i∈M(s)

ni(s)ri(ni(s)) (1)

12



Thus, each used machine in s accounts for a cost of ni(s)ri(ni(s)). Therefore, if we distribute
that cost equally among all jobs in Ni(s) then the cost per job is ri(ni(s)).

Let a be the allocation output by the algorithm and o the optimal. During the algorithm each
time we pick a machine and assign Ni(a) to it we charge each job in Ni(a) with the price per job
for machine i, which is ri(ni(a)). In the end the total charge of the elements will be exactly the
cost of allocation a. In the above definition we also use the fact that each machine is allocated
jobs only once and each job is allocated to exactly one machine.

Now, consider an arbitrary machine i ∈ M(o). Let d = ni(o), Ni(o) = {jd, . . . , j1} and assume
wlog that the jobs in Ni(o) are ordered in the order assigned by the algorithm (again the worst
case is when all jobs are assigned in different time steps). Consider the time step t when job
jk was assigned by the algorithm. We know that dti ≥ k and therefore ri(d

t
i) ≤ ri(k). Since the

algorithm chooses the machine i′ with the smallest ri′(d
t
i′) we get that job jk was charged at

most ri(k). Thus the total charge of the jobs in Ni(o) is at most
∑d

k=1 ri(k). Summing over all
machines in M(o) and since all jobs are assigned to exactly one machine in the optimal solution,

we get that the total charge given to the jobs by the algorithm is: Φ(o) =
∑

i∈M(o)

∑ni(o)
k=1 ri(k).

The above completes the proof. ut

Theorem 11. Algorithm 1 outputs a Strong Nash Equilibrium of the game G = 〈G = ([n] ∪
[m], E), (ri)i∈[m]〉

Proof. We will prove it by induction on the time step that a player was assigned. We will prove
that if no player that is assigned to a machine at any time t′ ≤ t wants to change strategy no
matter who he colludes with, then no player who is assigned at iteration t + 1 wants to make
any group deviation.

Base Case: Consider a player assigned at time step 1. Suppose that he colludes with a group
of players and switches from i1 to some other machine ik. In the best case he will collude with
all the d1

ik
players that can be assigned to ik and they will move there. But from the way the

algorithm works we know that ri1(ni1) = ri1(d
1
i1) ≤ rik(d

1
ik
). Hence, this player has no incentive

to collude and change strategy.

Inductive Step: Consider a player p assigned at time step t + 1. Suppose that he colludes with
a group of players and switches from it+1 to some other machine ik. We know that k > t + 1
since such a player does not have the option to move to a machine ik with k < t+ 1. Now from
the induction hypothesis no player assigned earlier has incentive to make a coalitional move.
Hence, the only players that p can collude with are those assigned at time step t + 1 and later
on. In the best case he will collude with all the at most dt+1

ik
players and switch to ik. But from

the algorithm we know that rit+1(nit+1) = rit+1(dt+1
it+1) ≤ rik(d

t+1
ik

). Hence, p has no incentive
deviate. ut

Proof (Proof of Theorem 4). We will first prove that the strategy profile is a PNE:

Lemma 1. Algorithm 2 outputs a PNE

Proof. First we just need to notice that the algorithm outputs a valid strategy profile. In other
words the strategies for each player are bases of their matroids. Assume that some players
strategy is not a base. Therefore there must exist some facility f that if added to his strategy
will lead to a set still in li. However, this means that at the last iteration of the while loop dtf > 0
which is a contradiction. Lets assume that the strategy profile s output by Algorithm (2) is not
a PNE. Hence, there must exist some player i with profitable deviating strategy.

13



From the properties of matroids [15] we know that given a matroid M = (F, l) with weights
F 7→ N, a basis B ∈ l is a minimum weight basis of M if and only if there exists no basis B∗ ∈ l
with |B \B∗| = 1 and w(B∗) < w(B).

This property leads to the fact since s is not a PNE player i can decrease his cost by switching
one facility f∗ in his strategy with a facility f that he does not use. Let t∗ be the iteration at
which f∗ was added to player i’s strategy. Since f is not in player i’s strategy it means that
it was considered in a later iteration t > t∗. If it was considered previous to t∗ and it was not
added to player i’s strategy then it means that an (f, f∗) switch is not valid since all resources
that prevented f from being added to player i’s strategy are still there after the exchange.

Hence, at time step t∗ it holds: rf∗(dt
∗
f∗) ≤ rf (d

t∗
f ). Moreover, since f was never placed in player

i’s strategy but was accounted during computation of dt
∗
f , it means that in the final strategy

profile nf (s) ≤ dt
∗
f − 1 =⇒ dt

∗
f ≥ nf (s) + 1. Moreover, it is clear that nf∗(s) = dt

∗
f∗ . Hence:

rf∗(nf∗(s)) = rf∗(dt
∗
f∗) ≤ rf (d

t∗
f ) ≤ rf (nf (s) + 1) (2)

where the last inequality follows from the fact that rf are non-increasing delay functions. The
last inequality show that (f, f∗) is not a profitable deviation for player i and hence we have a
contradiction. ut

Now we give the quality guarantee of the strategy profile:

Lemma 2. Algorithm 2 outputs a strategy profile with social cost at most the potential of the
optimal profile

Proof. Again we work with the price scheme. Some notation again: If s is a strategy profile
then Nf (s) is the set of players that use facility f in s, nf (s) = |Nf (s)| and F (s) is the set of
facilities used in s. If the contexts are clear then we might sometimes drop the s from the above
notations. The cost of an arbitrary allocation is:∑

i∈[N ]

∑
f∈si

rf (nf (s)) =
∑

i∈F (s)

nf (s)rf (nf (s)) (3)

Thus, each used facility in s accounts for a cost of nf (s)rf (nf (s)). Therefore, if we distribute
that cost equally among all players in Nf (s) then the cost per player on a facility is rf (nf (s)).

Let a be the strategy profile output by the algorithm and o the optimal. During the algorithm
each time we pick a facility and allocate it to Nf (a) we charge each player in Nf (a) with the
price per player for facility f , which is rf (nf (a)). In the end the total charge of the players will
be exactly the cost of allocation a.

In the above definition we also use the fact that each facility is allocated to players only once
and the cost of a player is the sum of his costs on the facilities he uses.

Let ai, oi be the strategies of player i in the algorithm’s output and in the optimal. We will
create a 1 − 1 mapping µ from ai to oi such that when a facility f ∈ ai is added to player i’s
strategy then the option of adding f∗ = µ(f) was also available.

To create the above mapping we will heavily use the matroid property of the strategies of player
i. Let ai = {f1, f2, . . . , fr} and oi = {f∗

1 , . . . , f
∗
r }, where r is the rank of player i’s matroid.

Now, assume the time step that fr was added to player i’s strategy. From the augmentation
property of matroids we know that adding a strategy from oi was also an option. Wlog we can
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call that strategy f∗
r . Now, let’s argue about the time step that fr−1 was added to ai. From

the properties of matroids we know that if a set is in the matroid then every subset is also.
Thus, or−1

i = {f∗
1 , . . . , f

∗
r−1} ∈ l. At the moment fr−1 was added to ai we know that the current

set for player i was ar−2
i = {f1, . . . , fr−2}. Since |or−1

i | > |ar−2
i |, there must exist some facility

in f∗ ∈ or−1
i such that ar−1

i ∪ f∗ ∈ l. Wlog we can call that facility f∗
r−1. Continuing in the

same manner we see that we can create the 1 − 1 mapping that we described in the previous
paragraph.

We say that a player i is excluded from facility f∗ if µ−1(f∗) is allocated to him. Now consider
an arbitrary facility f ∈ F (o). Let d = nf (o), Nf (o) = {id, . . . , i1} and assume wlog that the
players in Nf (o) are ordered in the order at which the algorithm excludes them from f .

Consider the time step t when player ik was excluded from f by the algorithm. We know that
dtf ≥ k and therefore rf (d

t
f ) ≤ ri(k). Since the algorithm chooses the facility f ′ with the smallest

rf ′(dtf ′) we get that player ik was charged at most rf (k). Thus the total charge of the players in

Nf (o) is at most
∑d

k=1 rf (k). Summing over all facilities in F (o), and because the mapping that
we created was a bijection, we get that the total charge given to the players by the algorithm

is: Φ(o) =
∑

f∈F (o)

∑nf (o)
k=1 rf (k). ut

The above two lemmata give the theorem. ut

B Intractability of Cost sharing Games

Proof (Proof of Theorem 6). Wlog we may assume that a k-Congestable Congestion Game is of

the following form: Each strategy skii of player i consists of a facility f
ki,kj
ij for each other player

j and some strategy kj of j and of a facility fki
i . We assume an ordering on the players and

whenever we denote a facility f
ki,kj
ij we assume i < j.

If the initial description of the Congestion Game is not of the above form then we can simply
introduce new facilities with zero cost so as to bring it in the above form. Hence we only need
to work on the above restricted form.

Each resource f
ki,kj
ij is represented in the Network Congestion Game by the gadget depicted in

Fig. 2, which is the same as the one used in [1] for reducing threshold games to network games.

Players are forced, in equilibrium, to exit from the designated edges because of the structure of
the rest of the game as will be seen later on. We will denote a gadget associated with facility

f
ki,kj
ij , with G

ki,kj
ij .

For non shared facilities fki
i the gadget Gki

i that will represent them has a single input and single

output and contains a single edge fki
i that has the same cost function as facility fki

i (sometimes

we might overload notation and denote the above gadget with Gki,ki
ii .

Now we need to describe how to interconnect the gadgets and how to set the start and end
nodes of each player.

Each player i has a separate start and end node (si, ti).

The facilities are placed as follows (Fig. 3): We order the player [1..N ]. We place facilities in
cells of a lower triangular matrix of size N −1×N −1. Each cell (i, j), i < j contains all gadgets

G
ki,kj
ij for any ki, kj , each cell (i, i) contains all gadgets Gki

i and all cells (i, j), i > j are empty.

We connect the i output of gadget G
ki,kj
ij with the i input of gadget Gki

i,j+1. Moreover:
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fij

Player i enters

Player j enters

Player i exits

Player j exits

Fig. 2. Gadget for representing a shared facility f
ki,kj

ij

– If i + 1 < j we connect the j output of G
ki,kj
ij to the j input of gadget G

ki+1,kj
i+1,j , where ki+1

is the strategy of player i+ 1 with which strategy kj of j overlaps.

– If i+ 1 = j we connect the j output of G
ki,kj
ij to the input of G

kj
j .

Moreover, we connect the output of each gadget Gki
i to the i input of gadget G

ki,ki+1

i,i+1 , where
ki+1 is the strategy of player i+ 1 with which strategy ki overlaps.

All the connecting edges of the form ei = (G
ki,kj
i,j , G

ki,kj+1

i,j+1 ) have cost 0. All the connecting edges

of the form ej = (G
ki,kj
i,j , G

ki+1,kj
i+1,j ) have cost functions rj that satisfy the property:

min
i∈[N ]

rj(i) ≥ max
i∈[N ]

rj−1 +D

where D is some huge constant larger than any cost that could be incurred in the initial k-
Congestable Game.

Last we describe how to connect the start and end node for each player i. We connect each si
to the i inputs of all gadgets Gki,k1

1,i with an edge of cost 0. Moreover, we connect the i output

of all gadgets Gki,kN
i,N to the end node ti.

A pictorial representation of the above construction is depicted in Fig. 3.

Now we see that each player i enters in column 1 and has to exit from column i. Thus he has
to follow exactly i − 1 edges ej to reach that column no matter how he travels. However, the
property that the edges ej satisfy ensures that each player ej prefers to travel on his row j than
on any other row (the rows above him he does not have the option due to the direction of the
edges and the rows below him contain edges that will give him and additive cost larger than any
cost incurred by the gadget edges.

Thus the only undominated options of player i any path of the form:

si → Gk1,ki
1,i → Gk2,ki

2,i → . . . → Gki,ki
i,i → G

ki,ki+1

i,i+1 → . . . → Gki,kN
i,N → ti

Each such option corresponds to strategy skii of the initial 2-Congestable Congestion Game.
Denote with Ci(s) the cost of a player on the network game in strategy profile s. When s
contains no undominated strategy we denote with s̃ the corresponding strategy profile in the
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Fig. 3. Network Game instance.

initial 2-Congestable Game. Also denote with C̃i(s̃) the cost of a player i in the 2-Congestable
Game. For any undominated strategy profile s we observe the following property:

∀ki ∈ Si : Ci(s
ki
i , s−i) = C̃i(s̃

ki
i , s̃−i) + (i− 1)ri(1)

Since the additive term of (i−1)ri(1) is the same in all of player i’s strategies it has no strategic
consequences.

Hence, we conclude that if s is a PNE in the Network Game then s̃ is a PNE in the initial game.

ut

Proof (Proof of Theorem 7). We make a small alteration to the construction in the proof of
Theorem 6. Instead of zero cost the vertical edges have all cost function v(x) such that v(1) = H1

and v(N) = HN , where H1,HN is a number much greater than any cost imposed by the
horizontal edges or the facility edges and H1 = HN + ε, where ε is a very small number.
Moreover, we add a cost of g(x), such that mink∈[N ] g(k) = H2 >> H1,HN to all the edges
that connect the starting nodes with the whole structure. Having done this we remove the
directedness of the edges.

No player wants to visit the starting node of another player since he would incur delay at leastH2

which is much greater than any cost on his canonical paths. Now we examine whether a player
would want to deviate from his canonical path, which to travel horizontal until the diagonal and
then vertically.

If some player goes up at some point during the horizontal part then he has to pay at least two
HN more than his canonical path and the gain he gets from using a less costly horizontal edge
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Fig. 4. Reduction from General Cost Sharing to Network Cost Sharing.

cannot compensate for that. If a player goes down at a point other than the diagonal then he
has to use some horizontal edge that is more costly than his own. The only gain he might get
from not going down at the diagonal would be a small ε, which cannot compensate for the much
larger cost of the horizontal edge. Last, suppose that some player deviates during his vertical
part. By doing that he can only gain at most ε from sharing a vertical edge with some other
player, but he has to pay at least two more horizontal edges which have cost much more than
ε. Hence, no matter what the rest of the players do, a player has incentive to use his canonical
path. ut

C Further Results

Proof (Proof of Theorem 8). We observe that the only difference between this class and 2-
Congestable Games is that the facilities of two different strategies of a player are not disjoint.
However,since each player i has only 2 strategies, the facilities in the intersection will always
be used by that player. Moreover, the cost incurred on those facilities will have no strategic
meaning for the choice of the player. Hence, we can simply do the following two modifications
and still preserve the PNE:

– For each player i, remove the intersection of the two strategies from each one making the
strategies disjoint.

– For any facility f let kf = |{i ∈ N | f ∈ s1i ∩ s2i }|. Update the costs of all the facilities to
r′f (nf ) = rf (nf + kf ).
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Now if r′f (nf ) still remains in the class of cost functions considered initially then the 2-Congestable
Game is also in the same class of games in terms of cost functions. For example this is true for
linear functions. ut
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