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Abstract. We propose a new proxy bidding mechanism to allocate courses
to students given students’ reported preferences. Our mechanism is mo-
tivated by a specific strategic downgrading manipulation observed in the
course allocation mechanism currently used at Harvard Business School
(HBS). The proxy bidding mechanism simplifes students’ decisions by
directly incorporating downgrading into the mechanism.
Our proxy bidding mechanism is Pareto efficient with respect to lexico-
graphic preferences and can be extended to allow for a more expressive
preference language which allows complementarity, substitutability, and
indifference. Simulations suggest that the proxy bidding mechanism is
robust to the manipulations observed in the HBS mechanism and may
yield welfare improvements.

1 Introduction

Course allocation is a combinatorial assignment problem that assigns students
to courses, given students’ preferences over course schedules. Unfortunately, any
strategyproof and efficient mechanism for this problem must be dictatorial ([6]),
with poor outcomes ([3]).3

One course allocation system is the Bidding Points mechanism, in which
students “bid” for courses using an artificial currency ([4] [7]). Although these
mechanisms are commonly used in practice, they require strategic play by stu-
dents and have meager welfare guarantees.

An alternative course allocation mechanism is the draft, in which students
take turns selecting individual courses from those with available seats, follow-
ing in a “draft order.” Such a mechanism is used by Harvard Business School
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For example, under unit-demand (the school choice problem), non-dictatorial strat-
egyproof mechanisms are known (see [1] [5]).



(HBS). The draft mechanism offers strong welfare guarantees under truthful
play, but is easily manipulable: Budish and Cantillon [3] demonstrated that stu-
dents successfully and substantially manipulate the HBS draft, to the benefit of
sophisticated students at the expense of social welfare.4

We reinterpret the HBS draft as a game amongst näıve proxy agents who
act on behalf of students. We develop a proxy bidding mechanism for course
assignment in which students’ proxies pick strategically, unlike in the draft,
obviating the need for certain types of manipulations. Our proxies’ behaviors
are inspired by the desire to have a mechanism play optimal draft strategies on
students’ behalves.

We prove that the proxy bidding mechanism is Pareto efficient when students
have lexicographic preferences over schedules. We present simulations that show
that the proxy bidding mechanism performs favorably relative to the HBS draft
in the presence of the manipulations identified by Budish and Cantillon [3].
Finally, we extend our mechanism to allow a bidding language in which comple-
mentarity, substitutability and indifference can be expressed. For brevity, most
proofs are deferred to the Appendix, which is available on the authors’ websites.

2 The Proxy Bidding Mechanism

Our proxy bidding mechanism provides a course allocation for a problem con-
sisting of a set of courses C, a vector of course capacities (qc)c∈C , a set of players
N , as well as a set of strict ordinal preferences over courses, (≺i)i∈N , specified
by the players.

The mechanism takes as input a set of bidding priorities Bi for each player
i; these will typically be allocated randomly for reasons of fairness. The bid sets
{Bi}i∈N form a partition of a finite global bid set B ⊂ R. The maximum number
of courses a player can be allocated is |Bi|. In principle the choice of bid sets
may be arbitrary, but for our purposes we only consider bids in correspondence
with turns of the HBS draft, choosing

Bi = {−i,−(2N − i),−(2N + i+ 1), . . .}.

The mechanism maintains a set of multi-unit auctions (Ac)c∈C (interpreted as
sets of winning bids, for convenience) for course seats.

Note that agents’ bids are indivisible. We think of the set B as representing a
sequence of course selection opportunities; the set Bi is the set of opportunities in
B at which i may select a course. In this notation the HBS draft is the mechanism
in which students choose courses in the sequence B, with each student i selecting
a course at each opportunity b ∈ Bi.

Our proxy bidding mechanism proceeds in rounds, with players’ bids be-
ing reallocated in response to the current profile of course “prices” (p(Ac))c∈C ,

4 In a separate work, Budish [2] introduces the effective but complex Approximate
Competitive Equilibrium from Equal Incomes mechanism which ameliorates many of
the issues discussed above.



where5

p(Ac) :=

{
0 |Ac| < qc,

minAc |Ac| = qc.

The formal proxy bidding mechanism specification is given in Algorithm 1.
We take this opportunity to explain where our mechanism diverges from the
draft mechanism. The inner loop of our mechanism (lines 9- 29) allows players’
proxies to place the lowest sufficient bid into an auction to avoid overpaying
for a course. In the language of the draft mechanism, overpaying for a course
means selecting that course too early. If we were to replace this inner loop with
a simpler procedure that places the maximum available bid into each successful
course, then we would recover something closer to the draft mechanism.

We now give an example of the proxy bidding mechanism on simple input.
Consider the following input: N = {1, 2, 3}, C = {c1, c2, c3}, qc1 = qc2 = qc3 = 2,

c3 ≺1 c2 ≺1 c1, B1 = {6, 1},
c3 ≺2 c2 ≺2 c1, B2 = {5, 2},
c1 ≺3 c3 ≺3 c2, B3 = {4, 3}.

The mechanism will run as illustrated below.6

Round i State
1 1 Ac1 = {1}, Ac2 = {1}, Ac3 = ∅
2 2 Ac1 = {2, 1}, Ac2 = {2, 1}, Ac3 = ∅
3 3 Ac1 = {2, 1}, Ac2 = {3, 2}, Ac3 = {3}
4 1 Ac1 = {2, 1}, Ac2 = {6, 3}, Ac3 = {3}
5 2 Ac1 = {2, 1}, Ac2 = {6, 5}, Ac3 = {3}
6 3 Ac1 = {3, 2}, Ac2 = {6, 5}, Ac3 = {3}
7 1 Ac1 = {6, 3}, Ac2 = {5, 1}, Ac3 = {3}
8 2 Ac1 = {6, 5}, Ac2 = {2, 1}, Ac3 = {3}
9 3 Ac1 = {6, 5}, Ac2 = {3, 2}, Ac3 = {3}
10 1 Ac1 = {6, 5}, Ac2 = {3, 2}, Ac3 = {3, 1}

In the first round, the price of every course is 0, so player 1 bids for his
two most-preferred courses. Notice that he uses his lowest sufficient bid in both
auctions but that his biding is consistent with his actual bid set. That is, he only
needs to bid 1 to win each course, but could win both courses as he has bids
of 6 and 1 available. In the third round, player 3 sees that his most-preferred
course has a price of 1 and his second most-preferred course has a price of 0;
he therefore bids 3 on each. But then, player 1 no longer has a winning bid in
Ac2 . In the fourth round, player 1 observes that the price of c2 is now 2, so he

5 Our auction procedure has a cleanup step to guarantee that 0 ≤ |Ac| ≤ qc for every
c ∈ C, hence it is only necessary to define the price function on this range.

6 Each row of the right column represents the states of the auctions after player i has
had a chance to update his bids.



bids 6 in Ac2 . The mechanism continues in this fashion until it terminates six
rounds later.7 The final allocation C is given by C1 = {c1, c3}, C2 = {c1, c2},
C3 = {c2, c3}.

Our mechanism preserves some of the draft’s positive properties. In particu-
lar our simultaneous auction is guaranteed to converge and results in a Pareto
efficient allocation.

Proposition 1 (Convergence). Algorithm 1 terminates.

If bids fail to converge there must be a “cycle,” that is, a series of auction
states which is repeated over the course of the mechanism. Since bids are discrete
and unique, there is for any such cycle a highest bid b∗ cast in any stage of the
bid cycle. Moreover, at some point in the cycle the student i ∈ N holding bid b∗

must cast b∗ for some course c which i ranks most highly among all courses i bids
for during the course of the cycle. But since b∗ is maximal among all cast during
the cycle, it cannot be displaced once made in the course-c auction Ac; this
would contradicts the involvement of b∗ in the cycle. Note that this argument
directly uses the fact that the bidding mechanism disallows the withdrawl of
undisplaced bids.

Proposition 2 (Pareto Efficiency). The allocation produced by Algorithm 1
is Pareto efficient with respect to the lexicographic preferences induced by input
preferences (≺i)i∈N .

For any Pareto inefficient allocation, there is (by definition) a sequence of
course trades which consitute a Pareto improvement. Of the students partici-
pating in these trades, one student i∗ buys the course ci∗ he wishes to trade
away with the largest bid bci∗ used to buy a course in the Pareto-improving
trade. But under the bidding mechanism, i∗ should instead have bid bci∗ in
the course for which i seeks to trade. Thus, the outcome of the proxy bidding
mechanism must be Pareto efficient.

3 Welfare Properties

In this section we use simulations to analyze the welfare properties of the proxy
bidding mechanism. Our simulation environment produces correlated preferences
for 1000 students over a set of 110 courses. Each student demands 10 courses and
each course offers 100 seats. This problem is roughly the size of that of Harvard
Business School. Full details of our simulation environment are deferred to the
Appendix.

We use two welfare measures averaged over the population to evaluate as-
signments: average rank, the average preference rank of the courses allocated to
each student; lexicographic rank, the highest-ranked course received. Note that
since we interpret preferences as rank-order lists from 0-th to (|Bi|− 1)-st in the

7 Technically, the auction will not terminate until all players have declined the chance
to change their bids.



Algorithm 1
Input: C, (qc)c∈C , N , (≺i)i∈N , {Bi}i∈N
Output: (Ci)i∈N
1: for c ∈ C do
2: Ac := ∅
3: end for
4:
5: repeat
6: active := false
7: for i ∈ N do
8: B′i = ∅
9: for c in order of ≺i do

10: if Bi ∩Ac = ∅ then
11: b∗ := minb∈Bi\B′i

{b > p(Ac)}
12: if b∗ exists then
13: add b∗ to B′i
14: add minb∈Bi{b > p(Ac)} to Ac

15: if |Ac| > qc then
16: remove minb∈Ac from Ac

17: end if
18: active := true
19: end if
20: else
21: b∗ := Bi ∩Ac

22: b∗∗ := minb∈Bi\B′i
{b ≥ b∗}

23: if b∗∗ exists then
24: add b∗∗ to B′i
25: else
26: remove b∗ from Ac

27: end if
28: end if
29: end for
30: end for
31: until active = false
32:
33: for i ∈ N do
34: Ci := {c | Bi ∩Ac 6= ∅}
35: end for



Fig. 1. A simulation of downgrading in the HBS draft (left) and proxy bidding (right)
mechanisms. The solid and dotted lines respectively represent the average welfare levels
of truthful and downgrading students.

example presented in the previous section, the average rank of the allocation is
2/3 and the lexicographic rank is 0.8

3.1 Comparison with the HBS Draft

First we demonstrate that the HBS draft mechanism is susceptible to strate-
gic play in our environment by simulating the downgrading manipulation high-
lighted by Budish and Cantillon [3], in which (some) students partially reorder
their preferences in correspondence with course popularity levels. In Figure 1,
average rank outcomes are plotted for both the HBS draft and the proxy bidding
mechanism. The dotted and solid line respectively plot the outcome to strategic
and non-strategic students. In Figure 1 (and in Figure 1, below), the horizontal
axis indicates the fraction of students playing the manipulative strategy and the
vertical axis indicates the outcome.

As expected, students who play the downgrading manipulation in the HBS
draft receive substantially lower-ranked courses on average than students who
report their preferences straightforwardly. In the proxy bidding mechanism, how-
ever, the opposite result obtains, demonstrating resilience of the proxy bidding
mechanism to this manipulation. These results hold regardless of the fraction of
strategic students.

Figure 2 plots cross-population welfare statistics in the presence of down-
grading by part of the population. The solid line charts the performance of the
proxy bidding mechanism; the dashed line charts the HBS draft. While both
populations’ welfare decreases as more students manipulate and at any point
the welfare of proxy bidding is lower, the downgrading manipulation only bene-
fits students in the draft, as shown in Figure 1. Once over 30% of students play
downgrading strategies, average welfare in the HBS draft is worse than would
be achieved in the proxy bidding mechanism under truthful play.

8 In the example, one student received his first- and third-most-preferred courses and
two received their first- and second-most-preferred courses. Considering the most-
preferred course to have rank 0, the lexicographic rank is 0 (all students received their
most-preferred courses). The average rank is ((0+2)/2+(0+1)/2+(0+1)/2)/3 = 2/3.



Fig. 2. Simulated average welfare levels of the entire population when part of the
population plays the downgrading strategy. The dotted line is the HBS draft and
the solid line proxy bidding. While at any point on the curve proxy bidding lags the
draft, its resilience to this manipulation, as seen in Figure 1, suggests it will be played
truthfully.

3.2 Strategic Play in the Proxy Bidding Mechanism

Although our proxy bidding mechanism is apparently robust to the downgrading
manipulation, it is not strategyproof.

Consider the following input: N = {1, 2}, C = {c1, c2, c3, c4}, qc1 = qc2 =
qc3 = qc4 = 1,

c4 ≺1 c3 ≺1 c2 ≺1 c1, B1 = {4, 1},
c1 ≺2 c4 ≺2 c3 ≺2 c2, B2 = {3, 2}.

The final allocation will be C given by C1 = {c1, c2}, C2 = {c3, c4}. If player 2
reports the preferences c4 ≺′2 c3 ≺′2 c2 ≺′2 c1, then the final allocation C ′ given
by C ′1 = {c1, c4}, C ′2 = {c2, c3} is obtained. Thus a player with preferences ≺2

receives a more-preferred allocation by reporting ≺′2 than by reporting honestly.

4 Extended preference support

Lexicographic preferences over single courses provide an elegant model and allow
quick computation but are unlikely to represent students’ true preferences. To
partially address this problem, we extend the input space of the proxy bidding
mechanism to allow players to express conditional demand for courses. Specifi-
cally, we introduce ANY, IF, and NOTIF statements, which we illustrate in Figure 3
and define formally in the Appendix.

The ANY statement is an exclusive-or over a set of courses. This feature allows
players to indicate indifference over a set of courses, such as identical sections
of a course, or equally-preferred courses that meet at the same time. Such a
feature seems especially important, as in current bidding systems it is sometimes
possible ex-post for students to obtain a section of every course offered.9 The IF

9 This ironic situation occurs as an outcome of the University of Michigan bidding
points mechanism, which has been studied by Krishna and Unver [4].



Order Modifier Course name

0 Modern Art
1 IF Modern Art Modern Art Criticism
2 NOTIF Modern Art Criticism Renaissance Art
3 ANY {Ancient History, Modern History Classical History}

Fig. 3. A student’s extended preferences. The student’s most-preferred courses are
Modern Art and Modern Art Criticism, but she can only take the latter if she takes
the former. If she does not receive Modern Art Criticism, she would like Renaissance
Art instead. She also must take one art history course but is indifferent between three
choices.

(respectively, NOTIF) statement is a conditional which allows a player to demand
a course c if he holds (respectively, does not hold) a more-preferred course c′.

Our proxy bidding mechanism suitably extends to accommodate this more-
expressive preference language, however the outcome produced may not be Pareto
efficient if ANY statements are used (see the Appendix).

5 Conclusion and Future Work

We have introduced a new proxy bidding mechanism for course allocation which
offers attractive welfare possibilities. It is relatively simple and extends naturally
to allow for a more expressive preference language than is typically used in course
allocation. Although our mechanism is resistant to the strategic manipulations
that have been observed in the HBS draft, a full analysis of strategic play under
the proxy bidding mechanism requires further study.

It seems likely that our approach of replacing agents by proxies who strategize
on the agents’ behalves would find applications in other domains. A general
theory of proxy mechanisms seems appropriate for future work.
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A Properties of the Proxy Bidding Mechanism

For notational efficiency we will say that one timestep has elapsed at each pass

through line 29. We will use the state at timestep t to refer to σt = (A
(t)
c )c∈C at

the t-th pass through line 29.

A.1 Convergence

The first, and essential result about our mechanism is that it does indeed reach
a steady state and halt whenever the input is valid. For an input to be valid, we
require that

1. for every i, i′ ∈ N , Bi ∩Bi′ = ∅,
2. for every i ∈ N , ≺i is a strict preference relation over a subset C′ ⊆ C.

Condition 1 requires that no two players have bids of equal value. Condition 2
requires that every player’s preference relation over courses be strict.

Proposition 1 (Convergence). Algorithm 1 terminates on all valid inputs.

Proof. Since Algorithm 1 is memory free, it suffices to show that there do not
exist timesteps t 6= t′ such that

1. σt = σt′ , and
2. σt+1 6= σt′ .

So we assume the contrary, there there exist t 6= t′ satisfying these conditions.
Without loss of generality, suppose t′ > t, and consider the cycle of states

σt, σt+1, σt+2, . . . , σt′ . (1)

We define the set of bids that are fixed in this cycle as

F =
{
b ∈ B | ∃c ∀t ≤ t1 ≤ t′ s.t. b ∈ A(m)

c

}
. (2)

These bids are purchasing the same course in every state of the cycle. Consider
the largest bid that is not fixed in this cycle, b∗ = maxb∈B\F ; such a bid exists
since σt 6= σt+1. Since b∗ is not fixed, and maximal in B\F , there exists t ≤ t∗ < t′

and courses c, c′ ∈ C such that

b∗ ∈ A(t∗)
c , b∗ ∈ A(t∗+1)

c′ . (3)

Assume without loss of generality b∗ ∈ Bi.
Consider the case where c′ ≺i c. Then (3) is inconsistent with the specification

of Algorithm 1. Since c would come at an earlier iteration of the loop beginning

at line 9, Algorithm 1 would add b∗ to A
(t∗+1)
c at line 14, a contradiction.

Now consider the case where c ≺i c′. Since we have assumed there is a cycle,
there must exist t∗∗ and course c′′ ∈ C such that c′′ ≺i c′ and

b∗ ∈ A(t∗∗)
c′ , b∗ ∈ A(t∗∗+1)

c′′ . (4)

However this is also inconsistent with the specification of Algorithm 1.



A.2 Pareto Efficiency

In order to reason about Pareto efficiency, we impute full preferences over bundles
from the ordinal preferences (≺i)i∈N specified by players. Specifically, we take
the bundle preferences of a player i to be lexicographic with respect to ≺i.

To demonstrate that allocations produced by Algorithm 1 are Pareto efficient,
we introduce the notion of a trade cycle.

Definition 1. An allocation (Ci)i∈N contains a trade cycle (C′,N ′), C′ ⊆ C,
N ′ ⊆ N , with respect to preferences (≺i)i∈N if

1. for every ci ∈ C′, ci ∈ Ci for i ∈ N ′, and
2. the set of players i ∈ N ′ can be ordered as i1, . . . , i|C′| such that for every

ci` ∈ C′, ci` ≺i` ci`+1
.

It will suffice to restrict our attention to trade cycles because of the following
lemma, the proof of which is immediate (and hence is omitted).

Lemma 1. An allocation (Ci)i∈N is Pareto efficient with with respect to the
lexicographic preferences induced by (≺i)i∈N if and only if it does not contain a
trade cycle.

We now proceed with the proof of Pareto efficiency.

Proposition 2 (Pareto Efficiency). The allocation produced by Algorithm 1
is Pareto efficient with respect to the lexicographic preferences induced by input
preferences (≺i)i∈N .

Proof. Suppose the allocation is not Pareto efficient. By Lemma 1, there exists
a trade cycle (C′,N ′). Consider the state of the mechanism, σt, at termination.
For every ci ∈ C′, let

bci := Bi ∩A(t)
ci (5)

be the bid used by player i to purchase course ci. We now define the player with
the maximal bid in the cycle as

i∗ = argmaxi∈N ′ bci (6)

By assumption ci∗ ≺i∗ ci∗+1, hence since ci∗+1 6∈ Ci∗ , it must be the case

that p(A
(t)
ci∗+1

) > bci∗ . But this is impossible, since bci∗ > bci∗+1
≥ p(A

(t)
ci∗+1

), a
contradiction.

B Extended Preference Support

B.1 Preliminaries

Let {Cj} be a partition of C; we refer to the elements of {Cj} as level sets.
A bundle of courses C ⊆ C is feasible with respect to {Cj} if |C ∩ Cj | ≤ 1 for
every j, i.e. if the bundle contains no more than one course from each set in the
partition.



For a partition {Cj}, we write

G({Cj}, EIF, ENOTIF)

for the directed graph on {Cj} with two disjoint edge sets EIF and ENOTIF. We
call such a graph a conditional demand graph10, interpreting directed edges

1. (C ′,C) ∈ EIF as meaning that a course in C is desired only if a course in C ′

is held and
2. (C ′,C) ∈ ENOTIF as meaning that a course in C is desired only if a course in

C ′ is not held.

For notational convenience we define the IF neighborhood and NOTIF neigh-
borhood of a level set C, respectively denoted EC

IF and EC
NOTIF:

EC
IF := {C ′ ∈ {Cj} | (C ′,C) ∈ EIF},

EC
NOTIF := {C ′ ∈ {Cj} | (C ′,C) ∈ ENOTIF}.

We say that a bundle of courses C ⊆ C is feasible with respect to G({Cj}, EIF, ENOTIF)
if it is feasible with respect to {Cj} and furthermore

1. if C ′ ∈ EC
IF and C ∩ C 6= ∅ then C ∩ C ′ 6= ∅,

2. if C ′ ∈ EC
NOTIF and C ∩ C 6= ∅ then C ∩ C ′ = ∅.

B.2 Extended Preferences

Using the concepts defined in the previous section, we now extend players’ pref-
erences to conditional statements over partitions.

Definition 2. An extended preference relation π is a ranking ≺ over {Cj} along
with a conditional demand graph G({Cj}, EIF, ENOTIF) such that if (Cj ,Cj′) ∈ EIF

or (Cj ,Cj′) ∈ ENOTIF then Cj′ ≺ Cj.

An allocation C ⊆ C is feasible with respect to π if it is feasible with respect
to the conditional demand graph underlying π.

From an extended preference relation π, we impute the following weak prefer-
ences, Π, over feasible allocations: a feasible allocation C is preferred to another
feasible allocation C ′ if the most preferred level set not achieved under C ′ is
higher than the most preferred level set not achieved under C. More precisely,
let

D := {Cj | C ∩ Cj 6= ∅} ∩ {Cj | C ′ ∩ Cj 6= ∅} .
Allocation C is preferred to C ′ under Π, denoted CΠC ′, if and only if

max
π
{Cj ∈ {Cj} \D | C ∩ Cj 6= ∅}

is either empty or preferred to

max
π
{Cj ∈ {Cj} \D | C ′ ∩ Cj 6= ∅}

under π.
10 For simplicity, we have required demand for a level set to be conditional on whole

sets. However, this definition and our algorithm easily extend to demand that is
conditional on individual courses.



B.3 Extended Mechanism

In this section we modify Algorithm 1 to compute feasible, efficient allocations
with respect to a profile of extended preference relations (πi)i∈N . We define the
extended proxy bidding mechanism to be Algorithm 1 with the inner loop (lines 9–
29) replaced with the extended bidding procedure detailed in Algorithm 2 below.
The extended algorithm takes as input extended preferences (πi)i∈N instead of
strict preferences (≺i)i∈N .

B.4 Convergence

As for our original mechanism, we must prove that the extended proxy bidding
mechanism actually converges.

Proposition 3 (Convergence). The extended proxy bidding mechanism ter-
minates on all valid inputs.11

Proof. As in the proof of Proposition 1, suppose there is a cycle of states

σt, σt+1, σt+2, . . . , σt′ . (7)

with t+1 6= t < t′. We define the set of bids that are fixed in this cycle as in (2).
Consider the largest bid that is not fixed in this cycle, b∗ = maxb∈B\F ; such a
bid exists since σt 6= σt′ . Assume without loss of generality b∗ ∈ Bi.

Let G({Cj}, EIF, ENOTIF) be the conditional demand graph associated with
πi. We define the following procedure that identifies the most preferred level set
for which b∗ is bid. For each C ∈ {Cj} in descending order of ≺i, there are three
cases:

Case 1: For every t ≤ t1 < t2 ≤ t′ and every c ∈ C

Bi ∩A(t1)
c = Bi ∩A(t2)

c . (8)

Case 2: For every C ′ ∈ EC
IF and every t ≤ t1 ≤ t′ there exists c ∈ C ′ such that

Bi ∩A(t1)
c 6= ∅, (9)

and for every C ′ ∈ EC
NOTIF and every c ∈ C ′ and t ≤ t1 ≤ t′

Bi ∩A(t1)
c = ∅, (10)

and for every c ∈ C and t ≤ t1 ≤ t′

b∗ 6∈ A(t1)
c . (11)

11 The notion of valid input extends straightforwardly to this context.



Algorithm 2 Extended Bidding Procedure

1: for C in order of ≺i do
2: if ∣∣∣∣∣∣∣

⋃
C ′∈EC

IF

(Bi ∩ (∪c∈C ′Ac))

∣∣∣∣∣∣∣ 6=
∣∣∣EC

IF

∣∣∣
or  ⋃

C ′∈EC
NOTIF

(Bi ∩ (∪c∈C ′Ac))

 6= ∅
then

3: b∗ := Bi ∩ (∪c∈CAc)
4: {Ac}c∈C := {Ac \ b∗}c∈C

5: B′i := B′i \ b∗
6: Move to the next iteration
7: end if
8: if Bi ∩ (∪c∈CAc) = ∅ then
9: choose c∗ ∈ argminc∈C p(Ac)

10: b∗ := minb∈Bi\B′i
{b > p(Ac∗)}

11: if b∗ exists then
12: add b∗ to B′i
13: add minb∈Bi{b > p(Ac∗)} to Ac∗

14: if |Ac∗ | > qc∗ then
15: remove minb∈Ac∗ from Ac∗

16: end if
17: active := true
18: end if
19: else if Bi ∩ (∪c∈CAc) 6= ∅ then
20: b∗ := Bi ∩ (∪c∈CAc)
21: b∗∗ := minb∈Bi\B′i

{b ≥ b∗}
22: if b∗∗ exists then
23: add b∗∗ to B′i
24: else
25: remove b∗ from all {Ac}c∈C

26: end if
27: end if
28: end for



Case 3: The first two conditions of case 2 hold, and there exists c ∈ C and
t ≤ t1 ≤ t′ such that

b∗ ∈ A(t1)
c . (12)

Since b∗ ∈ B\F , there must exist a level set C ∈ {Cj} for which Case 3 holds.
Let C ∗ be the most-preferred such level set. Since (12) holds and b∗ ∈ B \ F ,
there must exist t ≤ t∗ ≤ t′ and c∗ ∈ C ∗ such that

b∗ 6∈ A(t∗)
c∗ , b∗ ∈ A(t∗+1)

c∗ . (13)

Since every course more-preferred to C ∗ by player i falls into Case 1, or Case
2, C ∗ does not satisfy the condition of the if -statement in line 2 of Algorithm 2
in any state σt1 for t∗ + 1 ≤ t1 ≤ t′. Since b∗ is maximal in B \ F , it can never
be removed from Ac∗ in line 15. Thus the condition on line 19 will always be
satisfied and the sub-condition on line ?? will never be satisfied. It follows that
b∗ can never be removed from an auction after timestep t∗ + 1, i.e. for every
t1 > t∗ + 1,

b∗ ∈ A(t1)
c∗ ;

this contradicts the fact that (7) is a cycle.

B.5 Pareto Efficiency

In this section we show that if every player only has preferences over level sets
containing single courses (called trivial level sets in the sequel), then the extended
bidding procedure produces Pareto efficient allocations.

We proceed by demonstrating, in analogy to Lemma 1, that the inexistence
of trade cycles in the sense of Definition 1 guarantees Pareto efficiency.

Lemma 2. Assume (πi)i∈N contains no non-trivial level sets. Then if an allo-
cation (Ci)i∈N is not Pareto efficient with with respect to the preference relation
Π induced by (πi)i∈N , it contains a trade cycle.

Proof. Since we have assumed that {Cj} contains no non-trivial level sets, we
abuse notation and write c to represent the unique c ∈ C.

Suppose the allocation profile (Ci)i∈N is not Pareto efficient. Then there
exists a subset of players N ′ ⊆ N and a feasible allocation profile (C ′i)i∈N such
that

∪i∈N ′C ′i = ∪i∈N ′Ci, (14)

and for every i ∈ N , C ′iΠiCi.
Consider the sequence {ci}i∈N ′ where

ci = max
≺i

{c ∈ C ′i}. (15)

Since C ′iΠiCi, it must be that ci 6∈ Ci. Since ci is maximal in C ′i and C ′i is
feasible, it must be that EciIF = ∅ and EciNOTIF ∩ Ci = ∅. Consider player i′ such
that ci′ ∈ Ci. Then, ci′ ≺i ci. It follows that (N ′, {ci}i∈N ′) is a trade cycle.



Proposition 4 (Pareto Efficiency). Assume that (πi)i∈N contains no non-
trivial level sets. Then the extended proxy bidding mechanism produces an allo-
cation which is Pareto efficient with respect to the preferences (Πi)i∈N induced
by (πi)i∈N .

Proof. The argument used in the proof of Proposition 2 demonstrates that no
trade cycle can occur in the final allocation profile returned by the extended
proxy bidding mechanism. Thus by Lemma 2, this mechanism is Pareto efficient.

C Simulation Environment

Our simulated problems consist of 1000 students and 110 courses. Each student
demands 10 courses and each course has 100 available seats.

We generate preferences in the following way:

1. For each course cj ∈ C, sample gj ∼ G(0, 1) independently where G(0, 1) is
the standard Gaussian distribution.

2. For each player i ∈ N and course cj ∈ C, sample vi,j ∼ G(0, 1) independently.
3. For each player i his value for each course cj , his valuation ui,j = wvi,j +

(1− w)gj for a constant w ∈ [0, 1].
4. Compute a rank-order-list by sorting the values ui,j for each player.

By choosing w < 1 we introduce correlation into the preferences by averaging
each student’s individual valuation with the global valuation. For our simulations
we use w = 1/2 when computing the true valuation and true ranking. To compute
“strategic valuations” we recompute the values ui,j with w = 1/3 (making the
valuations more correlated). To produce the strategic ranking we resort the ten
most-preferred courses according to their strategic valuations. Thus students will
reorder their top ten courses to account for their overall popularity.

In our simulations, we begin by producing true rankings for each student.
We then select a set of students from the population at random and have them
report their strategic ranking instead of their true ranking. As we increase the
fraction of students playing strategically, we strictly enlarge the set of students
who are reporting their strategic ranking. This has the effect of reducing the
variance of the simulation results.

The simulation environment is implemented in C#. Running on a low end
desktop, each run of the proxy bidding mechanism completes in about 30 seconds.
We deviate slightly from the mechanism as stated in Algorithm 1 by randomly
shuffling the order we iterate through the students in the main loop (lines 7-30).
We emphasize that we are only shuffling the turns in which proxies get to make
bids, and are not making any change to the set of bids assigned to each player.
The modification does not affect the analysis of our mechanism, however it does
in practice rapidly decrease the number of rounds required for convergence.


