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Abstract. In this paper we quantify the potential social-welfare loss due to the existence of limited
liability in the principal-agent problem. The worst-case welfare loss is defined as the largest possible
ratio between the social welfare when the agent chooses the effort that is optimal for the system
and that of the sub-game perfect equilibrium of the game. Our main result establishes that under
the monotone likelihood-ratio property and a limited liability constraint, the worst-case welfare loss
(also known as the Price of Anarchy) is exactly equal to the number of efforts available.

1. Introduction

We analyze the classical principal-agent problem as put forward by Grossman and Hart (1983)
for the case in which the agent is risk neutral and subject to limited liability. In this situation,
a principal hires an agent to perform an action that makes him exert costly effort. The action
influences the distribution of the output and cannot be observed by the principal. To provide an
incentive so the agent performs an action with high effort,1 the principal has to pay the agent more
when the realization of the output suggests that the effort chosen by the agent was higher. This,
together with limited liability, imposes a gap between the marginal cost of effort experienced by
the principal and the social marginal cost. Thus, the equilibrium contract will not maximize social
welfare, meaning that a first-best outcome cannot be attained; instead, the constrained contract
will be second-best.2

The environment we analyze is of practical importance in number of settings and has been the
workhorse to understand many interesting economic phenomena where incentives play a crucial role
such as the theory of insurance under moral hazard (Spence and Zeckhauser, 1971), the theory of
managerial firms (Alchian and Demsetz, 1972; Jensen and Meckling, 1979), optimal sharecropping
contracts between landowners and tenants (Stiglitz, 1974), the efficiency wages theory (Shapiro
and Stiglitz, 1984), financial contracting (Holmström and Tirole, 1997), and job design and multi-
tasking (Holmström and Milgrom, 1991).

Instead of extending the principal-agent model with limited liability and providing a new appli-
cation for it, this paper attempts to quantify the welfare loss implied by it. The reason for this
is threefold. First, the nature of the informational problem in moral hazard models make them
difficult to be estimated empirically and thus, empirically, the welfare loss are hard to quantify.
Second, the main consequences of moral hazard are by now well understood and deeply rooted
in the economics of information literature, thus the moral-hazard paradigm is ripe for a deeper

Date: Oct 2010.
1We will use the terms actions and efforts interchangeably.
2When the participation constraint, rather than the limited-liability constraint, binds, providing incentives is

costless since the agent cares only about the expected compensation and the participation constraint binds on his
expected payoff.
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analysis of the quantitative, rather qualitative, consequences of it. Third, if we, as economists,
believe that the qualitative predictions of moral hazard are of practical importance, then we should
be able to provide a measure of the potential welfare loss that may occur when moral hazard is not
carefully dealt with in real life situations.

In order to quantify the maximum social-welfare loss due to the existence of moral hazard and
limited liability, we rely on the concept of worst-case welfare loss, which quantifies the efficiency
of a system when its players play a non-cooperative game versus choosing a socially-optimal so-
lution. The idea of using worst-case analysis to study non-cooperative games was introduced by
Koutsoupias and Papadimitriou (1999), and it is commonly referred to as the Price of Anarchy in
the computer science literature (Nisan et al., 2007). The use of the Price of Anarchy as a metric
of the welfare loss is widely applied in economics to problems such as in the study of competition
and efficiency in congested markets (Acemoglu and Ozdaglar, 2007), games with serial, average
and incremental cost sharing (Moulin, 2008), price and capacity competition (Acemoglu et al.,
2009), and VCG mechanisms (Moulin, 2009). In our setting, the worst-case welfare loss is defined
as the largest possible ratio between the social welfare of a socially-optimal solution—the sum of
the principal’s and agent’s payoffs when the first-best effort is chosen—and that of the sub-game
perfect equilibrium in which the principal offers the agent a contract and then the agent chooses
effort. The worst ratio is with respect to the parameters that define an instance of the problem.
The goal of this article is to evaluate the worst-case welfare loss with respect to the outcome vector,
the vector of agent’s costs of effort, and the probability distribution of outcomes for each level of
effort.

The main result, shown in Theorem 2, establishes that under the monotone likelihood-ratio
property, the worst-case welfare loss is exactly equal to the number of efforts available. In other
words, for any instance of the problem the worst-case welfare loss cannot exceed the number of
efforts available and there are instances where that loss is achieved.

We also study the worst-case welfare loss in an extension where there are multiple independent
tasks, but the effort choice is restricted to two efforts only. Surprisingly, we find that the worst-case
welfare loss again equals 2, the number of efforts in each task, independently of how many tasks
the agent has to work on.

Most of our results arise from a characterization of the optimal wages that we provide. Working
with the geometry of both the primal and the dual linear programs, we uncover the structure of
the ‘important’ efforts, which we call relevant, and use them to bound the welfare of the solution to
the principal-agent model with respect to that arising when the agent chooses the socially-optimal
effort.

In terms of the economic interpretation of our results, we believe that we can relate the upper
bound on the welfare loss with the agent’s discretion, understood as the number of available actions
to choose from. When there are just two possible actions available per task, we can think of the
job as having little discretion relative to another job where a manager can freely choose one out
of E possible actions. When the job requires the choice between two different actions the worst-
case welfare loss is 2, while when the jobs demands the choice of one level of effort among E
possibilities, the worst-case welfare loss is E. That is, the worst-case welfare loss increases with the
agent’s discretion, and therefore moral hazard should be dealt with more carefully in jobs where
the agent’s discretion is higher.

Our result suggests that the principal-agent paradigm that studies the consequences of moral
hazard for the efficiency of contracting and organizational design is sound. The potential conse-
quence of not dealing with a moral-hazard problem may have a non-negligible impact in the welfare
of the system. Furthermore, it suggests that the incentive problem created by moral hazard is a
natural source of economies of scope; that is, it is better to have one agent working in several
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different tasks than several agents working in one task each (see, Balmaceda 2010 for more details
on this).

The papers closest to this one are Babaioff et al. (2006, 2009). They introduce a combinatorial
agency problem with multiple agents performing two-effort-two-outcome tasks. The authors studied
the combinatorial structure of dependencies between agents’ actions, and analyzed the worst-case
welfare loss for a number of different classes of action dependencies. They show that this loss
may be unbounded for technologies that exhibit complementarities between agents, while it can be
bounded by a small constant for technologies that exhibit substitutabilities between agents. Our
model, instead, deals with a single agent and its complexity lies in handling more sophisticated
tasks, rather than the interaction between agents. The goal of this article is to evaluate the worst-
case welfare loss with respect to the outcome vector, the vector of agent’s costs of effort, and the
probability distribution of outcomes for each level of effort.

The rest of the paper is organized as follows. In Section 2, we introduce the model with its
main assumptions. Section 3 presents the main technical results. We start with the study of the
two-effort-two-outcome case for an illustration of our techniques, continue with the general case,
and conclude with an example that shows that the worst-case bound is attained. In Section 4, we
extend our results in several directions, while in Section 5, we study the two-effort-two-outcome
model with multiple tasks. Section 6 concludes with some remarks and future directions of study.
The proofs that are not central to the discussion can be found in the appendix.

2. The Principal-Agent Model

2.1. The Basic Setup. We consider the basic principal-agent model with E ≥ 2 effort levels and
S ≥ 2 outcomes (Grossman and Hart, 1983).3 The agent chooses an effort e ∈ E , {1, . . . , E},
incurring a personal nonnegative cost of ce. Efforts are sorted in increasing order with respect to
costs; that is, ce ≤ cf if and only if e ≤ f . Thus, a higher effort demands more work from the agent.

The task’s outcome depends on a random state of nature s ∈ S , {1, . . . , S} whose distribution
in turn depends on the effort level chosen by the agent. Each state has an associated nonnegative
dollar amount that represents the principal’s revenue. We denote the vector of outcomes indexed
by state by y = {y1, . . . , yS}. Without loss of generality, the outcomes are sorted in increasing
order: ys ≤ yt if and only if s ≤ t; hence, the principal’s revenues are higher under states with
a larger index. Finally, we let πs

e be the common-knowledge probability of state s ∈ S when the
agent chooses effort e ∈ E . The probability mass function of the outcome under effort e is given by
πe =

{

π1
e , . . . , π

S
e

}

.
Because the agent’s chosen effort e cannot be observed the principal, he can write a wage contract

that depends only on the outcome y. The principal makes a take-it-or-leave-it offer to the agent
that specifies a state-dependent wage schedule w = {w1, . . . , wS}. The contract is subject to a
limited liability (LL) constraint specifying that the wage must be nonnegative in every possible
state. The agent decides whether to accept or reject the offer, and if accepted, then he chooses
an effort level before learning the realized state. The rational agent should accept the contract
if it satisfies the individual rationality (IR) constraint specifying that the contract must yield an
expected utility to the agent greater than or equal to that of choosing the outside option. After
accepting a contract specifying a wage schedule w, the risk-neutral agent has to choose an effort
e ∈ E . He does so by maximizing his expected payoff πew − ce; that is, the difference between the
expected wage and the cost of the effort chosen.

3Later on, in Section 4, we relax some of the assumptions presented below.
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The principal’s problem consists on choosing a wage schedule w and an effort intensity e for the
agent that solve the following problem:

uP , max
e∈E,w

πe(y − w)(1)

s.t. πew − ce ≥ 0 (IR)(2)

e ∈ arg max
f∈E

{πfw − cf} (IC)(3)

w ≥ 0 . (LL)(4)

The objective measures the difference between the principal’s expected revenue and payment, hence
computing his expected profit. Constraints (IR) and (LL) were described earlier. The incentive
compatibility (IC) constraints guarantee that the agent will choose the principal’s desired effort
since he does not find it profitable to deviate from e.

Equivalently, one can formulate the principal’s problem as

uP = max
e∈E

{πey − ze} ,

where ze is the minimum expected payment incurred by the principal so that the agent accepts
the contract and picks effort e. We denote by uP

e , πey − ze the principal’s maximum expected
utility when effort e is implemented, and by EP the set of optimal efforts for the principal. Hence,
uP = maxe∈E{u

P
e } and EP = arg maxe∈E{u

P
e }.

Exploiting that the set of efforts is finite, we can write the IC constraint (3) explicitly to obtain
the minimum payment linear program corresponding to effort e, which we denote by MPLP(e):

ze = min
w∈RS

πew(5)

s.t. πew − ce ≥ 0(6)

πew − ce ≥ πfw − cf ∀f ∈ E \ e(7)

w ≥ 0 .(8)

Notice that this problem is independent of the output y.
We say that the principal implements effort e ∈ E when the wage schedule w is consistent with

the agent choosing effort e. For a fixed effort e, (2), (3), and (4) characterize the polyhedron of
feasible wages that implement e. The principal will choose a wage schedule belonging to that set
that achieves ze by minimizing the expected payment πew. We are only interested in efforts that
are attainable under some wage schedule, which we refer to as feasible efforts. An effort is feasible
if the polyhedron corresponding to it is nonempty.

The Monotone Likelihood-Ratio Property. We assume that the probability distributions πe satisfy
the well-known monotone likelihood-ratio property (MLRP). That is, {πe}e∈E verifies

πs
e

πs
f

≥
πt

e

πt
f

for all states s < t and efforts e < f.

The assumption of MLRP is pervasive in the literature of economics of information, and in particular
in the principal-agent literature. It ensures that the higher the observed level of output, the more
likely it is to come from a distribution associated with a higher effort level.

An important property of MLRP is that distributions that satisfy it also satisfy first order
stochastic dominance (FOSD). For instance, Rothschild and Stiglitz (1970) proved that

s
∑

s′=1

πs′

e ≥
s
∑

s′=1

πs′

f for all states s and efforts e < f.
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A simple consequence of this that plays an important role in our derivations is that probabilities
for the highest outcome S are sorted in increasing order with respect to efforts; i.e., πS

e ≤ πS
f for

e ≤ f . Note that in the case of two outcomes, MLRP and FOSD are equivalent.

Worst-Case Welfare Loss. The goal of a social planner is to choose the effort level e that maximizes
the social welfare uSW

e , πey − ce, defined as the sum of the utility of the principal πey − ze and
that of the agent ze − ce. The social planner is not concerned about wages, since risk neutrality
ensures that wages are a pure transfer of wealth between the principal and the agent. Thus, the
optimal social welfare is given by

uSO , max
e∈E

{uSW
e } .

We denote the set of first-best efficient efforts by ESO , arg maxe∈E{u
SW
e }. For analytical tractabil-

ity, we will assume that the harder the agent works, the higher the social welfare in the system.
In the two-outcome case, this assumption can be removed. In the general case, we conjecture that
our results continue to hold without it.

Assumption 1. The sequence of prevailing social welfare under increasing efforts is non-decreasing;
i.e., uSW

e ≤ uSW
f for all efforts e ≤ f .

For a given instance of the problem, we quantify the inefficiency of an effort e using the ratio of
the social welfare under the socially-optimal effort to that under e. The main goal of the paper is
to compute the worst-case welfare loss for arbitrary instances of the problem. This is defined as the
smallest upper bound on the efficiency of a second-best optimal effort, which is commonly referred
to as the Price of Anarchy in the computer science literature4 (Nisan et al., 2007). Therefore, the
worst-case welfare loss is defined as

ρ , sup
π,y,c

uSO

mine∈EP uSW
e

,(9)

where the supremum is taken over all valid instances as described at the beginning of this section.
Of course, the previous ratio for an arbitrary instance of the problem is at least one because the
social welfare of an optimal solution cannot be smaller than that of an equilibrium, guaranteeing
that ρ ≥ 1. The main result of our article states that, under MLRP and Assumption 1, the
worst-case welfare loss is exactly E.

2.2. Preliminaries. Observe that the principal’s problem can be reformulated in a way that is
more amenable to understand its properties, which will be useful to prove our worst-case bounds.
The dual of MPLP(e), displayed in (5)-(8), is given by

max
p∈RE

∑

f 6=e

(cf − ce)pf − cepe(10)

s.t.
∑

f 6=e

(πs
f − πs

e)pf − πs
epe ≤ πs

e ∀s ∈ S,(11)

p ≤ 0 .

Here, pe is the dual variable for the IR constraint (6), while pf is the dual variable for the IC
constraint (7) for effort f 6= e. Notice that the null vector 0 is dual-feasible, and hence the dual
problem is always feasible. Furthermore, since we only consider feasible efforts the primal is also
feasible and by strong duality we have that the solution to the dual program is ze. Notice that
summing constraints (11) over s ∈ S and using the fact that

∑

s∈S πs
f = 1 for all f ∈ E , we get

that pe ≥ −1. We now state some useful simple results.

4Actually, the price of anarchy for a maximization problem such as the one we work with in this article is often
defined as the inverse of the ratio in (9). We do it in this way so ratios and welfare losses point in the same direction.
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Lemma 1. The social welfare is at least the principal’s utility; i.e., uSW
e ≥ uP

e for all efforts e ∈ E.
Equivalently, the agent’s utility is always positive.

Proof. Notice that since ze solves MPLP(e), we have that ze ≥ ce for all e ∈ E . Thus, πey − ze ≤
πey − ce. �

The next result stresses the importance of the agent’s limited liability in the model. It is a
well-known result that we state for the sake of completeness. Without the LL constraint (4), it is
optimal for the principal to implement the socially-optimal effort and he captures the full social
surplus, leaving no utility to the agent. As a consequence, the worst-case welfare loss is 1 meaning
that, albeit unfair to the agent, the contract is efficient.

Lemma 2. If the principal and the agent are risk-neutral and there is no limited liability constraint,
the minimum expected payment ze incurred by the principal when inducing a feasible effort e is ce.
In other words,

ce = min
w∈RS

{πew s.t. (6) and (7)} .

Proof. Since the effort e is feasible there exists a vector w satisfying (6) and (7). Assume for a
contradiction that (6) is not tight and consider w′ = w−1ε, where 1 is the all-ones vector. Clearly
w′ still satisfies (7) so we can select ε so that the objective function is smaller and (6) is still
feasible. �

3. Bounding the Welfare Loss

3.1. The Case of Two Efforts and Two Outcomes. In this section we look at the case with
2 efforts (such as shirk and work) and 2 states (such as fail and success), and show that the
worst-case welfare loss is at most 2. This simple case is a useful exercise to gain intuition and
improve the understanding of the general case. First, we provide a geometric characterization of
the minimum-cost wage schedule implementing a given effort level, and compute the associated
expected payments. Then, we proceed to bound the worst-case welfare loss.

Consider MPLP(2), corresponding to the agent working hard. The feasible set of wages is defined
by the IR, IC and LL constraints. The IC constraint (7) ensures that the agent prefers effort 2
over 1, which can also be written as

w2 − w1 ≥
c2 − c1

π2
2 − π2

1

.

Notice that both the numerator and denominator are nonnegative. Hence, the boundary of this
constraint is given by a 45◦ line, as shown by Figure 1 which plots the feasible regions for the two
efforts. The IC constraint for e = 1 is the same with the inequality reversed. An implication of
FOSD is that the IR constraint for effort 1 is steeper than that for effort 2.

It will be useful to introduce the point w1,2, defined as the intersection point between the IC
constraint and the IR constraints for both efforts. This point is given by

w1,2 =

(

c1π
2
2 − c2π

2
1

π2
2 − π2

1

,
c1π

2
2 − c2π

2
1

π2
2 − π2

1

+
c2 − c1

π2
2 − π2

1

)

.

The second component of this vector is nonnegative and larger than the first component because
c2 ≥ c1, π2

2 ≥ π2
1 , and π1

1 ≥ π1
2.

If w1,2 lies in the first quadrant, as in Figure 1a, the situation is very similar to the case without
liability constraints discussed earlier. Indeed, the wages w1,2 are optimal because they satisfy all
constraints and minimize the objective of MPLP. This implies that the optimal expected payment
is equal to the effort’s cost, and because of Assumption 1 the principal chooses e = 2 leaving the
agent with zero surplus. The case of greater interest is when w1,2 lies in the second quadrant, as
in Figure 1b. This occurs either when the cost of working hard is too high, or the probability of a



THE COST OF MORAL HAZARD AND LIMITED LIABILITY IN THE PRINCIPAL-AGENT PROBLEM 7

w
1

w
2

π
2
w ≥ c

2

π
1 w

 ≥
 c

1

π 2
w
 -
 c 2

 =
  π

1
w
 -
 c 1

w
1,2

(a) w1,2 in the first quadrant.

w
1

w
2

π
2
w ≥ c

2

π
1 w

 ≥
 c

1

π 2
w
 -
 c 2

 =
  π

1
w
 -
 c 1

w
1,2

(b) w1,2 in the second quadrant.

Figure 1: Feasible regions of MPLP(e) for e ∈ {1, 2} (light and dark shade, respectively), according
to the location of w1,2. Optimal solutions are denoted with a bold point or segment, depending on
whether they are unique or not. Arrows indicate the negative gradient of the objective function.

good outcome when working hard is too low. In this case, the incentive compatible wage schedule
that induces participation at the lowest cost for the principal does not satisfy the limited liability
constraint. Thus, the optimal solution, attained at the intersection of the IC constraint and the
vertical axis, is

w2 =

(

0,
c2 − c1

π2
2 − π2

1

)

.

The minimum expected payment for effort 2 is z2 = π2
2(c2 − c1)/(π

2
2 − π2

1), which is strictly larger
than c2 because the IR constraint is not binding, leaving the agent with a positive rent. The analysis
for effort 1 is simpler. Under the assumption of nonnegative costs, any point that is nonnegative
and for which the IR constraint is binding is optimal and attains the value c1. Thus, the minimum
expected payment equals the effort’s cost, and the agent obtains zero surplus.5

The previous analysis will enable us to bound the worst-case welfare loss. Under Assumption 1,
effort 2 is socially-optimal: uSO = uSW

2 ≥ uSW
1 . If the second-best optimal effort is 2, the worst-case

welfare loss is 1. So we consider that it is second-best optimal to induce effort 1; i.e, uP
1 ≥ uP

2 .
Since the principal prefers effort 1, it must be that z2 > c2. Hence, w1,2 must lie in the second
quadrant, and z2 = (c2 − c1)π

2
2/(π

2
2 − π2

1). Then, we have that

(12) uSW
1 ≥ uP

1 ≥ uP
2 = π2y − z2 = uSW

2 + c2 − π2
2

c2 − c1

π2
2 − π2

1

= uSW
2 + c1 − π2

1

c2 − c1

π2
2 − π2

1

≥ uSW
2 + c1 − π2

1

(π2 − π1)y

π2
2 − π2

1

≥ uSW
2 + c1 − π1y = uSW

2 − uSW
1 ,

where the inequalities follow, respectively, from Lemma 1, the principal’s choice of e = 1, Assump-
tion 1, and FOSD. Reshuffling terms, we have that uSW

2 ≤ 2uSW
1 from where the optimal social

welfare cannot be better than twice the social welfare under the effort chosen by the principal. We
conclude that the worst-case welfare loss is at most the number of efforts.

5This might not be the case if the limited liability constraint requires w
2
≥ ℓ, where ℓ is large. This will be

discussed later.
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3.2. The General Case. We now consider the general case of an arbitrary finite number of efforts
and outcomes. Here, we need to study the primal and the dual of the MPLP simultaneously. As in
the previous case, we first attempt to characterize the minimum expected payments for each effort
level, and then prove that the worst-case welfare loss is bounded by E.

We saw earlier that in the case of 2 efforts both of them play a role in the worst-case bound.
However, in the general case only some efforts will be relevant. There are some other efforts, referred
to as dominated, that although feasible will not participate in the analysis. Relevant efforts are
always preferred to dominated efforts and thus the principal will choose just from among them.
This is equivalent to discarding dominated efforts from any instance and does not affect the utilities
of other efforts and the efficiency metric.

Theorem 1 characterizes the relevant efforts. We do this by observing that effort E is always
relevant. From this first relevant effort, we obtain a sequence inductively observing that for any
relevant effort, in the optimal solution to MPLP only the IC constraint of another relevant effort
is binding. Afterwards, we prove that the principal’s utility when a dominated effort is chosen is
always dominated by that of a relevant effort, hence the name ‘relevant.’ As before, we define the
wage vector we,f as the intersection of IC constraints (7) for efforts e and f with the S axis. Hence,

we,f =
(

0, . . . , 0, (ce − cf )/(πS
e − πS

f )
)

, which is a nonnegative vector. As a consequence of the risk
neutrality of the agent, the optimal wages in Theorem 1 reward the agent only when the realized
outcome is the highest.

Theorem 1. There exists a subsequence of relevant efforts, denoted by R = {er}
R
r=1 ⊆ E with

eR = E, such that the minimum expected payments for the principal are

ze1
= ce1

, and zer = πS
er

cer − cer−1

πS
er

− πS
er−1

≥ cer for r = 2, . . . , R.

Moreover, the optimal wage wer corresponding to effort er is wer ,er−1
if r > 1 and (0, . . . , 0, ce1

/πS
e1

)
if r = 1.

For a dominated effort f /∈ R, let r(f) , min{e ∈ R : e > f} be the smallest relevant effort
greater than f . The next corollary shows that relevant efforts are sorted with respect to the agent’s
utility ze − ce, and that dominated efforts violate this order.

Corollary 1. Relevant efforts are sorted in non-decreasing order with respect to the agent’s utility
ze − ce; that is, zer − cer ≤ zer+1

− cer+1
for all 1 ≤ r < R. Moreover, the agent’s utility for any

dominated effort f /∈ R is dominated by that of the smallest relevant effort greater than f ; that is,
zf − cf ≥ zr(f) − cr(f).

Relevance is central to the analysis of the principal-agent problem. Because the utility of the
agent increases with his effort intensity, the principal has no incentive to implement any effort higher
than eSO, defined as the smallest of the socially-optimal efforts. Indeed, for any effort f > eSO,
Corollary 1 implies that

uP

eSO − uP
f = uSO − uSW

f + (zf − cf ) − (zeSO − ceSO) ≥ 0.

Hence, efforts higher than eSO provide a suboptimal utility to the principal and can be disregarded.
Furthermore, combining Assumption 1 and Corollary 1, we obtain that there is always a relevant
effort that is optimal for the principal.

Proposition 1. There is always a relevant effort that is optimal for the principal; i.e., EP∩R 6= ∅.

Proof. We prove this claim by contradiction by supposing that no relevant effort is optimal for the
principal. Let f be an optimal dominated effort, and consider the first next relevant effort r(f).
Using Corollary 1,

0 < uP

f − uP

r(f) = (πf − πr(f))y + zr(f) − zf ≤ (πf − πr(f))y + cr(f) − cf = uSW
f − uSW

r(f),
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which is a contradiction because Assumption 1 implies that f cannot have a larger social welfare
than r(f). �

Notice that the previous proposition together with Theorem 1 imply that the equilibrium of
the principal-agent problem can be computed in O(E2 + ES) time, instead of solving E linear
programs. The quadratic term comes from finding the relevant efforts while the second term comes
from evaluating the principal’s utilities for all relevant efforts.

We are now in position to prove the main result.

Theorem 2. Assume that MLRP and Assumption 1 hold. The worst-case welfare loss for the
risk-neutral principal-agent problem with limited liability is at most E.

Proof. Under Assumption 1, it is optimal for the system that the agent chooses effort E, so uSO =
uSW

E . Furthermore, by Proposition 1 the optimal strategy for the principal is to implement a
relevant effort e ∈ R. Note that if we remove all efforts lower than e, a consequence of Theorem 1
is that uP

f does not change for any effort f > e and uP
e may only increase. This is because after

removing the lower efforts, ze is reduced to ce if they were not already equal. Notice also that a
dominated effort cannot become relevant after removing the efforts lower than e. Therefore, this
new instance has the same the worst-case welfare loss. Thus, we do not lose any generality if we
consider that it is optimal for the principal to implement effort 1; i.e., uP

1 ≥ uP
e for all e ∈ E .

To lower bound the total welfare of the lowest effort, uSW
1 , we proceed as in (12), working

exclusively with relevant efforts. To simplify notation, in the remainder of this proof we drop the
r subscript and assume that all efforts are relevant. Lemma 1 and Theorem 1 imply that for any
effort e > 1,

uSW
1 ≥ uP

1 ≥ uP
e = πey − ze = uSW

e + ce − πS
e

ce − ce−1

πS
e − πS

e−1

= uSW
e + ce−1 − πS

e−1

ce − ce−1

πS
e − πS

e−1

.

Since uSW
e ≥ uSW

e−1 implies that ce − ce−1 ≤ πey − πe−1y, the last expression is bounded by

(13) uSW
e + ce−1 −

πS
e−1

πS
e − πS

e−1

(πe − πe−1)y ≥ uSW
e + ce−1 − πe−1y = uSW

e − uSW
e−1 ,

where the inequality in (13) follows from MLRP because πe−1π
S
e ≥ πeπ

S
e−1. Summing over e > 1

and rearranging terms we conclude that EuSW
1 ≥ uSW

E . �

This result shows that when the agent is covered against unfair situations in which he has to
pay money to the principal even after having invested the effort, the fact that the principal induces
the agent to implement the effort of his choice instead of a socially-optimal one is costly for the
system. Indeed, the welfare loss due to limited liability and the impossibility of observing the effort
exerted by the agent is bounded by the number of efforts. As a consequence, the social welfare of
subgame perfect equilibrium is guaranteed to be at least 1/E of the socially-optimal welfare. If
we are willing to accept the number of efforts as a metric of the complexity of a principal-agent
relationship, then the cost of coordination in the system is bigger for more complex relationships.

3.3. A Tight Instance. To wrap-up this section we construct a family of instances with 2 out-
comes and E efforts whose worst-case welfare loss is arbitrarily close to the bound of E.

Fixing 0 < ε < 1, we let the probabilities of the outcomes associated to each effort be πe =
(

1 − εE−e, εE−e
)

for e ∈ E . The probability distributions are such that effort E guarantees a
successful outcome with probability one, while the lower efforts intensities generate a failed outcome
with high probability. Clearly, these distributions verify that π2

1 ≤ . . . ≤ π2
E, and thus they satisfy

MLRP. (Recall that in the case of two outcomes MLRP and FOSD are equivalent.)
Furthermore, we let cE = ε−E , and then set the remaining efforts so that the agent’s utility

is ze − ce = e − 1 for all e ∈ E . Since we need all efforts to be relevant, we have that ze =
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Figure 2: Example with 2 outcomes and 5 efforts. The 5 lines in each plot represent the 5 efforts.

Plot (a) shows that the social welfare for effort e converges to e as ε → 0+, and that they are sorted
in increasing order. Plot (b) shows that the principal’s utilities converge to 1 for all efforts, and
that they are sorted in decreasing order. Plot (c) plots the welfare loss uSO/uSW

e , which converges
to 5/e. Since the principal chooses e = 1, the worst-case welfare loss is 5.

(ce − ce−1)π
S
e /(πS

e −πS
e−1). We obtain ce−1 = ceε− (e− 1) (1 − ε) for e = 2, . . . , E. Notice that this

implies that w2
e+1 − w2

e = 1/εE−e, where we =
(

0, (ce − ce−1)/(π
2
e − π2

e−1)
)

is the optimal solution

to MPLP(e). Finally, let the output be y = (0, w2
E + 1). One can prove inductively that the social

utility is uSW
e = e +

∑E−e
i=1 εi, and that principal’s utility is uP

e =
∑E−e

i=0 εi, for e ∈ E . Hence,
the instance fulfills Assumption 1 because uSW

1 ≤ . . . ≤ uSW
E and the principal’s utilities satisfy

uP
1 ≥ . . . ≥ uP

E , so it is optimal for the principal to implement effort 1.

The welfare loss corresponding to this instance is given by uSW
E /uSW

1 = E/(1 +
∑E−1

i=1 εi), which
converges to E as ε → 0+. Therefore, Theorem 2 is tight because we found a series of instances
converging to a matching upper bound. To summarize, we plot both utilities and their ratios in
Figure 2.

4. Robustness

In this section we look at the robustness of our results. We show that our results generalize to:
first, arbitrary (potentially negative) costs for any effort, and an outside option with nonzero utility;
second, more general limited liability constraints and the effect of guaranteeing a minimum output
(in this context, we provide more accurate bounds that depend on some other characteristics of
the instance); third, the case of two efforts and an arbitrary number of outputs without the MLRP
assumption; fourth, the case of two outcomes when we dispense of Assumption 1 (in this case, the
sequence of social welfare utilities is unimodal, and any effort violating that order is infeasible);
and fifth, the case in which we adapt the worst-case bounds provided earlier to the utility of the
principal rather than social welfare.

4.1. Arbitrary Costs and Reservation Utility. In some situations the agent may extract utility
when performing a low effort. For example, exerting a low effort may give the agent more time
to perform other activities to his personal benefit. Hence, in this section we consider that efforts
may have negative personal costs for the agent. Note also that this extension will be of use when
the utility of the outside option is nonzero. In this more general situation, we still get a worst-case
welfare loss exactly equal to the number of efforts.
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In the characterization of relevant efforts and their optimal wage schedules given by Theorem 1,
the expected payment for the lowest relevant effort becomes ze1

= max{ce1
, 0}. The rest of the

proof is identical except for the inductive step. When we construct the solution for a new relevant
effort in MPLP and decrease the wage corresponding to the state S, we may now reach either the
IR constraint (6), an IC constraint (7), or the LL constraint (8). The latter prevents the expected
payment from being negative. Since all the remaining results hold, our worst-case bound also does.

According to the IR constraint (6), the agent accepts the contract if the expected utility is greater
than or equal to the utility of the outside option, which we denote by u. So far we considered that
u = 0. To allow it to take arbitrary values, we set c′e = ce + u for all e ∈ E , and obtain an instance
with zero reservation utility and costs shifted by u. Since we argued that our worst-case bound
holds for negative costs, it also holds for arbitrary utilities for the outside option. Finally, the
bound is tight even if we set the value of u arbitrarily because in the instance of Section 3.3 all
costs diverge to infinity.

4.2. Arbitrary Minimum Wages and Minimum Outputs. Employment law, union contracts
or an agent with bigger negotiating power may demand that the wage be at least a minimum wage
ℓ ∈ R, regardless of the state of the system. In this case, the principal solves

uP(ℓ) = max
e∈E,w

{πe(y − w) s.t. (2), (3), and w ≥ ℓ1} ,

where the LL constraint now has a lower bound of ℓ instead of 0. If we denote the principal’s
maximum expected utility when effort e is implemented under a minimum wage of ℓ by uP

e (ℓ), the

set of optimal efforts for the principal is EP(ℓ) , arg maxe∈E{u
P
e (ℓ)}.

A consequence of setting a minimum wage is that the payment to the agent might be greater than
the output of the firm for some realizations of the state. Under these wage restrictions, the principal
might not find it advantageous to engage in the activity because labor could be too expensive. To
avoid this we introduce an IR constraint for the principal that consists in assuming that y ≥ υ1,
where υ ∈ R denotes the minimum output. In other words, we only consider instances in which the
firm’s output cannot be too small so there is a guarantee for sufficient revenues. In the following
proposition, we prove that the worst-case welfare loss is still E, as long as the minimum wage is
less than or equal to the minimum output.

Proposition 2. If the minimum wage ℓ is smaller than or equal to the minimum output of the
principal υ, the worst-case welfare loss is exactly E. Otherwise, it is unbounded.

Proof. To prove the first part, assume that we are given an instance I = (π, y, c) that satisfies the
restrictions given by ℓ and υ. Applying the change of variables w′ = w − ℓ1, one obtains a new
instance I ′ = (π, y − ℓ1, c − ℓ1) in which both outputs and costs are reduced by ℓ. Since, negative
costs do not modify the worst-case welfare loss, all the previous results hold because the outputs
of the modified instance are nonnegative.

We prove the second part for υ = 0 and an arbitrary ℓ. Using the previous change of variables,
we can adapt this example to any υ < ℓ. The following is an instance with 2 efforts and 2 states
and arbitrarily-bad welfare loss. Let π1 = (1/2, 1/2), c1 = ℓ, π2 = (1/3, 2/3), c2 = 7ℓ/6, and
y = (ℓ/6, 7ℓ/4). Clearly, in the bad state we have that y1 < ℓ. Solving the problem, we have
uSW

1 = uP
1 = −ℓ/24, uSW

2 = ℓ/18, and uP
2 = −4ℓ/9. Since the principal would get a negative utility

under both efforts, he does not find it advantageous to sign a contract with the agent and uses his
outside option. Hence, the social welfare is 0 while the socially-optimal outcome is that the agent
does the task exerting effort 2, making the welfare loss equal to infinity. �

The following proposition analyzes the impact of parameters ℓ and v in the worst-case welfare
loss by making the functional dependence explicit. In addition, we parametrize the welfare loss
with the difference between the highest and smallest social welfare. When that difference is large
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the bound is close to E as before. Interestingly, smaller differences guarantee smaller losses. The
latter is relevant because the variability of the output in practical applications is not unbounded
and is reasonably easy to estimate. Hence, the following formula allows us to establish a more
practical measure of the loss in the principal-agent problem.

Theorem 3. If we parametrize the worst-case welfare loss ρ with ℓ, υ and the maximum difference
of social utility M , max |uSW

E − uSW
1 |, then

ρ(ℓ, υ,M) =
ME + (E − 1)(υ − ℓ)

M + (E − 1)(υ − ℓ)
.

Proof. We restrict ourselves to instances satisfying |uSW
E − uSW

1 | ≤ M . Applying the change of
variables used in the proof of Proposition 2, we restrict our consideration to instances that satisfy
y ≥ υ′1, where υ′ , υ − ℓ. In order to obtain the upper bound for the worst-case welfare loss,
we repeat the steps of the proof of Theorem 2, except for (13) where from y ≥ υ′1, the fact that
πe1 = 1, and the bounded difference of social utilities we have

uSW
1 ≥ uSW

e + ce−1 − πS
e−1

πe − πe−1

πS
e − πS

e−1

y = uSW
e − uSW

e−1 +
πe−1π

S
e − πeπ

S
e−1

πS
e − πS

e−1

y

≥ uSW
e − uSW

e−1 + υ′ ≥ uSW
e − uSW

e−1 +
υ′

M
(uSW

E − uSW
1 ) .

Summing over e > 1 we conclude that uSW
1 (E + (E − 1)υ′/M) ≥ uSW

E (1 + (E − 1)υ′/M), obtaining
the bound. To show that this bound is tight consider the same instance of Section 3.3, but with
ze − ce = (e − 1)M/(E − 1), and y = (υ′, υ′ + w2

E + M/(E − 1)). Social utilities are now uSW
e =

υ′ + M
(

e +
∑E−e

f=1 εf
)

/(E − 1) for e = 1, . . . , E − 1. Notice that the difference of social utilities is
upper bounded by M , and converges to this upper bound as ε → 0. Then, the worst-case welfare
loss for this family of instances is

lim
ε→0+

uSW
E

uSW
1

= lim
ε→0

E + E−1
M

υ′ − εE−1

1 + E−1
M

υ′ +
∑E−1

f=1 εf
=

ME + (E − 1)υ′

M + (E − 1)υ′
. �

4.3. Relaxing MRLP. We now consider the case of 2 efforts and an arbitrary number of states,
and show that the main result holds without MRLP. Surprisingly, the optimality conditions of
the problem that characterizes the optimal wages suffice. Although with MRLP optimal contracts
only paid positive wages for the highest output, this could happen for other states without MRLP.
Indeed, the positive wage corresponds to the state that has the highest likelihood ratio, as formalized
by the next proposition.

Proposition 3. In the case with two non-identical efforts, the minimum expected payment when
the principal induces the highest effort is

z2 = max

{

c2, (c2 − c1)
πσ

2

πσ
2 − πσ

1

}

,

where σ , arg maxs∈S πs
2/π

s
1 is the state that achieves the highest likelihood ratio.

Proof. Consider the dual of MPLP(2). Without MRLP, constraints associated to s < S are not
redundant. Instead, we will show that all constraints are dominated by the one associated to σ,
and that the dual problem is bounded. Recalling that the dual constraints (11) can be written
as (1 − πs

1/π
s
2)p1 + p2 + 1 ≥ 0 for s ∈ S, observe that these constraints can be represented by

lines across point −I2 that are normal to vector (1 − πs
1/π

s
2, 1). Then, by definition, the constraint

corresponding to σ dominates those of the other states.
To prove that the dual problem is bounded, we proceed by contradiction. Recall that the

objective function is (c1 − c2)p1 − c2p2, which has negative coefficients. The unboundedness implies
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that πs
2 ≤ πs

1 for all s ∈ S because otherwise a feasible direction cannot exist since p ≤ 0. Hence, π1

and π2 must coincide because they are probability vectors, which contradicts the fact that efforts
are non-identical. Finally, the feasible region is a triangle with vertices {0,−I2,−I1π

σ
2 /(πσ

2 − πσ
1 )}.

Evaluating the objective in all extreme points and using strong duality, we obtain the optimal
expected payment. �

Repeating the steps of Theorem 2, with the exception that the optimal contract now pays a
positive wage when the realized state is σ, we obtain that the upper bound for the worst-case
welfare loss is 2.

4.4. Relaxing the Monotonicity of Social Welfare with Respect to Effort Intensity. It is
important to note that Assumption 1 was not used to characterize the minimum expected payments
of the principal in Theorem 1 and Corollary 1. Although the assumption was used in Proposition 1,
in fact, the proposition also holds under the following weaker assumption.

Assumption 2. The sequence of prevailing social welfare {uSW
e }E

e=1 is unimodal.

To prove that unimodality is sufficient, first recall that Corollary 1 implied that the principal has
no incentive to implement any effort higher than the smallest socially-optimal effort eSO. Hence,
without loss of generality the analysis can be restricted to efforts {1, . . . , eSO}. Because the subse-
quence satisfies Assumption 1, Proposition 1 follows literally without modification, from where we
conclude that all results in Section 3.2 hold and the worst-case welfare loss is at most E.

In the case of two outcomes and an arbitrary number of efforts, it turns out that the sequence
{uSW

e }E
e=1 is always unimodal. Indeed, take any two consecutive feasible efforts e and e + 1, such

that uSW
e ≤ uSW

e+1. To conclude that the sequence is unimodal, we will show that effort e− 1 verifies

uSW
e−1 ≤ uSW

e . The condition uSW
e ≤ uSW

e+1 can be expressed as

ce+1 − ce

πS
e+1 − πS

e

≤ (−1, 1)y .

Because effort e is feasible we must have that we,e−1 ≤ we+1,e. Otherwise, the polyhedron of wage
schedules that implement effort e would be empty. The last inequality can be written as

ce − ce−1

πS
e − πS

e−1

≤
ce+1 − ce

πS
e+1 − πS

e

.

Putting the two inequalities together, we obtain that uSW
e−1 ≤ uSW

e , and thus Assumption 2 holds.
Thus, in the case of two outcomes, only the FOSD assumption is needed to upper bound the
worst-case welfare loss by E .

4.5. A Different Worst-Case Bound. We finish this section by considering an alternative worst-
case bound that takes the point of view of the principal. Specifically, we focus on the impact of
the limited liability constraint in the principal’s utility. We denote the optimal principal’s utility
when the agent is not subject to the LL constraint (4) by uPnoLL. With this, the worst-case bound
from the perspective of the principal is the ratio of the principal’s optimal utility when the limited-
liability constraint is enforced to the principal’s optimal utility when it is not present. In other
words, we compute r = supπ,y,c{u

PnoLL/uP}. We will show that under MLRP, the worst-case utility
loss is bounded by the the number of efforts, and that this bound is essentially tight.

Theorem 4. Suppose that MLRP and Assumption 1 hold. Then, in the risk-neutral principal-agent
problem with limited liability, r = E.

Proof. According to Lemma 2, uPnoLL = uSO; hence, r is more easily expressed as supπ,y,c{u
SO/uP}.

From Lemma 1 we know that uSW
e ≥ uP

e for all efforts e ∈ E . Thus r ≤ ρ = E. Now, let R = {er}
R
r=1

be the sequence of relevant efforts. By Proposition 1 we have that zer1
= cer1

, and then uP
er1

= uSW
er1

.

Hence, following the proof of Theorem 2, we conclude that r ≤ E. �
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The interpretation of this bound is that enforcing limited liability may be costly to the principal,
but only to a certain extent, as discussed earlier for the main result. The previous proof provides
another interpretation of the same ratio: it can be seen as the social welfare with and without
limited liability constraints, and in that case the same conclusion applies to the system instead of
to the principal.

5. Multiple Tasks

Most principal-agent relationships are more complex that the one considered so far in the sense
that an agent usually performs different tasks, each endowed with different actions. Thus, it
is common to think of job complexity in terms of the number of tasks rather than number of
actions available. In this section, we consider a principal-agent relationship with multiple tasks.
In particular, we adopt the model proposed by Laux (2001) in which there are two effort levels for
each task.

The principal is endowed with N identical and stochastically independent tasks. Each task has
two possible outcomes, either success or failure. The corresponding payoffs for the principal are y
if the task is successful, and y in the case of failure, with y > y. The agent can exert two efforts,
either high or low. The high effort entails a cost ch for the agent, while the cost of the low effort
is cl. Since a higher effort demands more work, ch > cl. Finally, we denote by ph the probability of
success when effort is high, and by pl the probability of success when effort is low. MRLP implies
that ph > pl (the higher the effort, the greater the likelihood of success).

The principal hires an agent to perform the N tasks. Since tasks are identical, the principal offers
a compensation that depends only on the number of tasks that end up being successful, denoted by
s ∈ S = {0, . . . , N}; the identity of each task is irrelevant. Hence, the agent is paid a wage ws when
s tasks turn out to be successful. The total revenue for the principal is thus ys = sy + (N − s)y for
s ∈ S. In view of the tasks’ symmetric nature, the agent is indifferent between tasks and he is only
concerned about the total number of tasks in which he exerts high effort. We define the aggregated
effort e ∈ E = {0, . . . , N} as the number of tasks in which the agent works hard. Notice that, for
notational simplicity, we adopt indices that start at zero for both efforts and states. We assume
that effort costs are additive, and linear in the number of tasks. Hence, the aggregate costs for the
agent are ce = ech + (N − e)cl for e ∈ E . Finally, note that the probability of having s successful
tasks, given that the agent works hard on e tasks, is given by

πs
e =

s
∑

i=0

(

e

i

)

pi
h(1 − ph)e−i

(

N − e

s − i

)

ps−i
l (1 − pl)

N−e−s+i ,

where we assumed that
(

n
k

)

= 0 if k > n.
This model can be fully reduced to a principal-agent model with a single task, N + 1 states

and N + 1 efforts. To map the multiple-task model into the model of Section 2 we show that the
aggregate instance satisfies MLRP. Intuitively, this states that the larger the observed number of
successful tasks, the more likely it is that the agent works hard in many tasks.

Lemma 3. When the principal hires one agent to perform N identical and independent tasks, the
distribution of the aggregated outcome satisfies MLRP.

Therefore, by a simple application of Theorem 2, the worst-case welfare loss is upper bounded by
N + 1. This bound, however, is not tight. Laux (2001) shows that when the manager exerts high
effort in all tasks (aggregated effort N), the only binding constraint is the one in which the manager
must have no incentive to choose low effort in the N tasks (aggregate effort 0). This implies that
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only two aggregated efforts are relevant, namely N and 0. Thus, the worst-case welfare loss is at
most 2 and this bound is tight. The following result formalizes this discussion.6

Theorem 5. In the principal-agent problem in which both players are risk-neutral and there are N
identical and independent tasks, the only two relevant aggregated efforts are the ones in which: (i)
the agent exerts high effort in each possible task (aggregated effort N), and (ii) the agent neglects
all tasks (aggregated effort 0). Hence, the optimal wage schedule for aggregated effort N is

wN = N
ch − cl

pN
h − pN

l

IN .

Additionally, the worst-case welfare loss is 2.

Proof. From Theorem 1, aggregated effort N is always relevant. To prove that the next relevant
aggregated effort in the sequence is 0, it suffices to show that wN,0 ≥ wN,e for all e = 1, . . . , N − 1.
Letting q = ph/pl > 1, we can write

(14) wN,e =
cN − ce

πS
N − πS

e

=
Nch − ech − (N − e)cl

pN
h − pe

hpN−e
l

=
ch − cl

pN
l

N − e

qN − qe
=

ch − cl

pN
l (q−1)

(

∑N−1
n=e qn

N − e

)−1

,

where the last equation follows from expressing qN − qe as a geometric sum. The right-hand side is
the multiplication of a positive coefficient and the reciprocal of an average of terms greater than one.
Since q > 1, as e increases the smallest term is sequentially excluded from the average. Hence, the
average is increasing in e, and wN,e is decreasing in e. Thus, wN,0 ≥ wN,e for all e = 1, . . . , N − 1,
implying that the next and last relevant effort is 0, and wN = wN,0IN .

Finally, recall that in Theorem 2 the upper bound on the worst-case welfare loss is the number
of relevant efforts. Because in this case R = {0, N}, then ρ ≤ 2. This bound is tight; to see that it
suffices to take each task to be equal to the instance of Section 3.3 with E = 2. �

6. Conclusions

This paper considers a worst-case approach to quantify the welfare loss that arises from the
principal’s impossibility to observe the agent’s effort when there is limited liability. We have shown
that the worst-case welfare loss exactly equals the number of efforts available to the agent, which
suggests that the welfare loss in a principal-agent relationship depends on the agent’s discretion
understood as the set of efforts available to the agent.

The principal-agent model in its different forms has been used to explain many contractual
arrangements such as sharing contracts, insurance contracts, managerial contracts, political rela-
tionships and so on and so forth. In addition, it has been used to provide an economic theory of
the firm and a theory of organizational forms. Our results show that in these cases and in many
others the existence of an agency relationship with moral hazard may have nontrivial consequences
in terms of welfare loss and thus the proper design of contracts and organizations to deal with
moral hazard is of great practical importance.

Two concluding comments are useful: first, we leave open the question of how to relax Assump-
tion 1 in the general case. We conjecture that the worst-case bounds do not change; and second,
we leave as further work to consider a risk-averse agent. In the latter case the optimal contract is
highly nonlinear, and thus its characterization in terms of the main parameters is a complex task.
There is an exception to this, which is given by the linear agency model introduced in the literature
by Holmström and Milgrom (1987).

6Our proof for the optimal wage structure exploits the results from Section 3, and hence it is somewhat simpler
that the one given by Laux (2001).
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Appendix A. Proofs

A.1. Proof of Theorem 1.

Proof. We construct the set R backwards, starting form effort E. At each step, we guarantee that (i) the
properties hold for efforts {er, . . . , eR}, (ii) wer ,f ≥ wer

for all efforts f > er, and (iii) wer ,f ≤ wer
for all

efforts f < er.
First, consider effort E. If zE = cE , then the principal gets the maximum possible social welfare for

himself with E so he has no reason to chose any other effort, implying that R = {E} and that the wage
vector wE = (0, . . . , 0, cE/πS

E) is optimal. To prove this, the IC constraint (7) together with MLRP give
that cE − cf ≤ (πE −πf )wE ≤ (1− πS

f /πS
E)πEwE . Since there is a feasible solution that satisfies πEw = cE ,

we have that cfπS
E ≥ cEπS

f , which proves that the IC constrains are valid for wE . Then, wE satisfies all

constraints of MPLP(e) and attains the objective value cE , proving its optimality. The only thing left to
prove is (iii), which follows from the same inequality.

We now consider that zE > cE . The dual constraints (11) can be rewritten as

∑

e<E

(

1 −
πs

e

πs
E

)

pe + pE + 1 ≥ 0 ∀s ∈ S .

From MLRP we know that 1 − πs
e/πs

E is increasing in s, and since p ≤ 0 all constraints with s < S are
redundant. Thus, the extreme points are {0,−I1π

S
E/(πS

E − πS
1 ), . . . ,−IE−1π

S
E/(πS

E − πS
E−1

),−IE}, where Ie

is the unit vector corresponding to effort e. Evaluating the objective in all extreme points, we obtain the
optimal dual value

(15) zE = max
e=1,...,E−1

{

(cE − ce)
πS

E

πS
E − πS

e

}

.

We let the next relevant effort, eR−1, be the one attaining the maximum. Next, we show that the optimal
solution to the primal problem is

wE = wE,eR−1
= IS

cE − ceR−1

πS
E − πS

eR−1

.

Observe that πEwE = zE ≥ cE , so it satisfies the primal constraints (6) and (8). It also satisfies the IC
constraints (7) because (πE − πe)wE ≥ cE − ce follows directly from the optimality of effort e in (15).
The latter, in addition, proves (iii). The optimality of wE is immediate from strong duality for linear
programming. Since (ii) is trivial in this case, that finishes the proof for the basic case.

For the inductive step, we consider problem MPLP(er), assuming that (i) the properties hold for {er+1, . . . , eR},
(ii) wer+1,f ≥ wer+1

for all f > er+1, and (iii) wer+1,f ≤ wer+1
for all f < er+1.

The feasibility of wer+1
for MPLP(er+1), and the equality (πer+1

− πer
)wer+1

= cer+1
− cer

imply that
wer+1

is feasible for MPLP(er). From wer+1
we construct an optimal solution to MPLP(er) by decreasing its

component S until we reach a face. If in this process we first reach the IR constraint, we have zer
= cer

and
R = {er, . . . , eR}, completing the proof similarly to the basic case. Otherwise, we let the next relevant effort
er−1 be that corresponding to the IC constraint that is reached first, which cannot be one corresponding to
an effort larger than er. Indeed, we find the maximum ε such that wer+1

−εIS is feasible. The IC constraints

for MPLP(er) can be rewritten as wS
er+1

− ε ≤ wS
er ,f for f > er and wS

er+1
− ε ≥ wS

er ,f for f < er. Hence
efforts f > er do not impose a constraint for ε. Therefore, we have that

wer
= IS max

e<er

{

cer
− ce

πS
er

− πS
e

}

.

By construction wer
is feasible, it verifies (ii) and (iii), and it has the desired objective value. To conclude

we consider the dual solution per
= −Ier−1

πS
er

/(πS
er

− πS
er−1

) and prove that wer
and per

are an optimal

primal-dual pair. Indeed, per
is dual feasible because per

≤ 0 and (11) hold (the latter because of MLRP).
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Finally, the objective function value is (cer
− cer−1

)πS
er

/(πS
er

− πS
er−1

) = πS
er

wS
er

, completing the last step of
the proof. �

A.2. Proof of Corollary 1.

Proof. For the first claim observe that zer
− cer

= πer
wer

− cer
≤ πer

wer+1
− cer

= πer+1
wer+1

− cer+1
=

zer+1
− cer+1

, where the inequality follows from the fact that wer+1
is feasible for MPLP(er) and that wer

is the optimal solution. The second equality holds because the IC constraint between efforts er and er+1 is
binding at wer+1

.
For the second claim, let f be a dominated effort. If f < er1

, the result is trivial because zer1
− cer1

= 0.
So, suppose that er < f < er+1. Using the dual of MPLP, as done previously, it is easy to observe that
p = −Ier

πS
f /(πS

f −πS
er

) is dual feasible for effort f , and its objective value is (cf−cer
)πS

f /(πS
f −πS

er
) = πS

f wS
er ,f ,

which by weak duality is a lower bound on zf . Hence, zf ≥ πS
f wS

er ,f = πS
er

wS
er ,f + wS

er+1,f (πS
f − πS

er+1
) +

wS
er+1

(πS
er+1

−πS
er

). Rearranging the terms, the last expression equals zer+1
+cf −cer+1

+πS
er

(wS
er ,f −wS

er+1
) ≥

zer+1
+ cf − cer+1

, where the inequality follows because wer ,f ≥ wer+1
. Indeed,

wS
er ,f =

cf − cer+1

πS
f − πS

er

+
cer+1

− cer

πS
f − πS

er

= wS
er+1,f

πS
f − πS

er+1

πS
f − πS

er

+ wS
er+1

πS
er+1

− πS
er

πS
f − πS

er

≥ wS
er+1

,

because wer+1,f ≤ wer+1
(property (iii) in the proof of Theorem 1) and πS

f − πS
er+1

≤ 0. �

A.3. Proof of Lemma 3.

Proof. Let {Xe}e∈E
be a family of random variables, such that Xe is the random number of successes given

that the agent works hard in e tasks. Then, Xe is the sum of e independent Bernoulli random variables with
success probability ph, and N−e independent Bernoulli random variables with success probability pl. Denote
by Y (p) a Bernoulli random variable with success probability p; i.e., P(Y (p) = 1) = p = 1 − P(Y (p) = 0).
Hence, we may write Xe as

Xe =

e
∑

f=1

Yf (ph) +

N
∑

f=e+1

Yf (pl) =

N
∑

f=1

Yf (pf (e)),

where the functions {pf (e)}
f∈E

equal pl if e < f , and ph otherwise. Notice that for all f ∈ E the functions

pf (e) are non-decreasing in e. Ghurye and Wallace (1959) or more recently Huynh (1994) show that given
any number of independent Bernoulli random variables Yf with success probability pf (e) strictly between 0
and 1, and non-decreasing in e, then the sum

∑

Yf has monotone likelihood-ratio with respect to e. �
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