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Abstract. Let be given a graph G = (V, E) whose edge set is partitioned into a set R
of red edges and a set B of blue edges, and assume that red edges are weighted and
form a spanning tree of G. Then, the Stackelberg Minimum Spanning Tree (StackMST)
problem is that of pricing (i.e., weighting) the blue edges in such a way that the total
weight of the blue edges selected in a minimum spanning tree of the resulting graph is
maximized. StackMST is known to be APX-hard already when the number of distinct
red weights is 2. In this paper we analyze some meaningful specializations and general-
izations of StackMST, which shed some more light on the computational complexity of
the problem. More precisely, we first show that if G is restricted to be complete, then
the following holds: (i) if there are only 2 distinct red weights, then the problem can
be solved optimally (this contrasts with the corresponding APX-hardness of the gen-
eral problem); (ii) otherwise, the problem can be approximated within 7/4 + ǫ, for any
ǫ > 0. Afterwards, we define a natural extension of StackMST, namely that in which
blue edges have a non-negative activation cost associated, and it is given a global acti-
vation budget that must not be exceeded when pricing blue edges. Here, after showing
that the very same approximation ratio as that of the original problem can be achieved,
we prove that if the spanning tree of red edges can be rooted so as that any root-leaf
path contains at most h edges, then the problem admits a (2h + ǫ)-approximation
algorithm, for any ǫ > 0.

Keywords: Communication Networks, Minimum Spanning Tree, Stackelberg Games,
Network Pricing Games.

1 Introduction

Leader-follower games, which were introduced by von Stackelberg in the far 1934 [13],
have recently received a considerable attention from the computer science community.
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supported by the Research Grant PRIN 2010 “ARS TechnoMedia” (Algorithms for Techno-Mediated
Social Networks), funded by the Italian Ministry of Education, University, and Research.
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This is mainly due to the fact that the Internet is a vast electronic market composed
of millions of independent end-users (i.e., the followers), whose actions are by the
way influenced by a limited number of owners of physical/logical portions of the
network (i.e., the leaders), that can set the price for using their own network links.
In particular, in a scenario in which the leaders know in advance that the followers
will allocate a communication subnetwork enjoying some criteria, a natural arising
problem is that of analyzing how the leaders can optimize their pricing strategy.
Games of this latter type are widely known as Stackelberg Network Pricing Games
(SNPGs).

When only 2 players (i.e., a leader and a follower) are involved, a SNPG can be
formalized as follows: We are given a graph G = (V, E), whose edge set is partitioned
into a set R of red edges and a set B of blue edges, and an edge cost function
c : R → R

+ for red edges only, while blue edges need instead to be priced by the
leader. In the following, we assume that n = |V | and m = |R| + |B|. Then, the
leader moves first and chooses a pricing function p : B → R

+ for her1 edges, in
an attempt to maximize her objective function f1(p, H(p)), where H(p) denotes the
decision which will be taken by the follower, consisting in the choice of a subgraph
of G. This notation stresses the fact that the leader’s problem is implicit in the
follower’s decision. Once observed the leader’s choice, the follower reacts by selecting
a subgraph H(p) = (V ′, E ′) of G which minimizes his objective function f2(p, H),
parameterized in p. Note that the leader’s strategy affects both the follower’s objective
function and the set of feasible decisions, while the follower’s choice only affects the
leader’s objective function. Quite naturally, we assume that f1 is price-additive, i.e.,
f1(p, H(p)) =

∑

e∈B∩E′ p(e). This means, the leader decides edge prices having in mind
that her revenue equals the overall price of her selected edges. Therefore, the 2-player
game can be equivalently thought (as we will do in the rest of the paper) as a bilevel
optimization problem in which an optimal value of f1 has to be computed.

Previous work. The most immediate SNPG is that in which we are given two specified
nodes in G, say s, t, and the follower wants to travel along a shortest path in G between
s and t (see [12] for a survey). This problem has been shown to be APX-hard [9],
as well as not approximable within a factor of 2 − o(1) unless P = NP [5], while
an O(log |B|)-approximation algorithm is provided in [11]. For the case of multiple
followers (each with a specific source-destination pair), Labbé et al. [10] derived a
bilevel LP formulation of the problem (and proved NP-hardness), while Grigoriev et
al. [8] presented algorithms for a restricted shortest path problem on parallel edges.
Furthermore, when all the followers share the same source node, and each node in G is
a destination of a single follower, then the problem is known as the Stackelberg single-

1 Throughout the paper, we adopt the convention of referring to the leader and to the follower with female
and male pronouns, respectively.
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source shortest paths tree game. In this game, the leader’s revenue for each selected
edge is given by its price multiplied by the number of paths – emanating from the
source – it belongs to, and in [1] it was proved that finding an optimal pricing for the
leader’s edges is NP-hard, as soon as |B| = Θ(n).

Another basic SNPG, which is of interest for this paper, is that in which the
follower wants to use a minimum spanning tree (MST) of G. For this game, known
as Stackelberg MST (StackMST) game, in [6] the authors proved the APX-hardness
already when the number of red edge costs is 2, and gave a min{k, 1 + ln β, 1 + ln ρ}-
approximation algorithm, where k is the number of distinct red costs, β is the number
of blue edges selected by the follower in an optimal pricing, and ρ is the maximum ratio
between red costs. In a further paper [7], the authors proved that the problem remains
NP-hard even if G is planar, while it can be solved in polynomial time once that G
has bounded treewidth. We point out that a structural property about StackMST,
which will also hold for our generalized version we are going to present, is that the
hardness in finding an optimal solution lies in the selection of the optimal set of blue
edges that will be purchased by the follower, since once that a set of blue edges is
part of the final MST, then their best possible pricing can be computed in polynomial
time, as shown in [6].

Notice that all the above examples fall within the class of SNPGs handled by the
general model proposed in [3], encompassing all the cases where each follower aims
at optimizing a polynomial-time network optimization problem in which the cost of
the network is given by the sum of prices and costs of contained edges. Nevertheless,
SNPGs for models other than this one have been studied in [2, 4].

Our results. In this paper we analyze some meaningful specializations and general-
izations of StackMST, which shed some more light on the computational complexity
of the game. For the sake of presenting our results in a unifying framework, we start
by defining the aforementioned generalized version of StackMST. First of all, notice
that given any instance of StackMST, this can be simplified into an equivalent in-
stance in which we compute a red MST of G, and then we discard all the red edges
not belonging to it (see also [6]). Then, the budgeted StackMST game is a 2-player
game defined as follows. We are given a tree T = (V, E(T )) of n nodes where each
(red) edge e ∈ E(T ) has a fixed non-negative cost c(e). Moreover, we are given a
non-negative activation cost γ(e) for each (blue) edge e = (u, v) /∈ E(T ), and a bud-
get ∆. The game, denoted by StackMST(γ, ∆), consists of two phases. In the first
phase the leader selects a set F of edges to add to T such that the budget is not ex-
ceeded, i.e.,

∑

e∈F γ(e) ≤ ∆, and then prices them with a price function p : F → R
+

having in ming that, in the second phase, the follower will take the weighted graph
G = (V, E(T ) ∪ F ) resulting from the first phase, and will compute a MST M(F, p)
of G. Then, the leader will collect a revenue of r(M(F, p)) =

∑

e∈F ∩M(F,p) p(e). Our

3



goal is to find a strategy for the leader which maximizes her revenue.2 Notice that
using this more general definition, the original StackMST game can be rephrased as
a StackMST(γ, ∆) game in which T is any red MST of G, ∆ is equal to 0, and the
activation cost for an edge not in E(T ) is equal to 0 if it belongs to B, otherwise it
is equal to any positive value.

In this paper, we prove the following results:

1. StackMST(0, 0) with only 2 distinct red costs can be solved optimally, where the
first 0 in the argument is used to denote the fact that γ is identically equal to 0;
in other words, this is a special case of StackMST with only two red edge costs in
which the input graph is complete;

2. StackMST(0, 0) can be approximated within 3/2 + ǫ, for any ǫ > 0 when the red
edges form a path;

3. StackMST(0, 0) can be approximated within 7/4 + ǫ, for any ǫ > 0, in general;

4. StackMST(γ, ∆) admits a min{k, 1+ln β, 1+ln ρ, 2h+ǫ}-approximation algorithm,
for any ǫ > 0, where k, β and ρ are as previously defined for StackMST, and h
denotes the radius of T w.r.t. the number of edges, once T is rooted at its center.

We point out that all the above problems have an application counterpart, since
the StackMST(0, 0) class of problems models the case in which the leader retains the
potentiality to activate (at no cost) any missing connection in the network, while
clearly result (4) complements the approximation ratio given in [6] whenever the ra-
dius of the red tree is bounded, which might well happen in practice. Finally, notice
also that StackMST(0, 0) is a specialization of the general StackMST, for which how-
ever we were not able to prove whether the problem is in P or not. Therefore, this
remains a challenging open problem.

The rest of the paper is organized by providing each of the above results in a cor-
responding section, followed by a concluding section listing some interesting problems
left open.

2 Exact algorithm for StackMST(0, 0) with costs in {a, b}

In this section we present an exact polynomial-time algorithm for StackMST(0, 0)
when the cost of any red edge belongs to the set {a, b}, with 0 ≤ a < b. Notice
that this case is already APX-hard for StackMST [6]. For the sake of clarity, we will
first present the algorithm and the analysis when the red tree is actually a path. The
extension to the general case will be derived in the subsequent subsection.

2 Throughout the paper, as usual we assume that when multiple optimal solutions are available for the
follower, then he selects an optimal solution maximizing the leader’s revenue.
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2.1 Solving StackMST(0, 0) with two red costs when T is a path

Now, we present an exact algorithm for StackMST(0, 0) on a red path P with costs in
{a, b}, with 0 ≤ a < b. We call a subpath P ′ of P an a-block if P ′ has all edges of cost
a, and P ′ is maximal (w.r.t. inclusion). We say that an a-block is good if its length is
greater than or equal to 3, bad otherwise. Let σ be the number of bad blocks of P .

We first present an algorithm achieving a revenue of c(P ) −min
{

σa,
⌊

σ
2

⌋

(b−a) +
(

σ − 2
⌊

σ
2

⌋)

min{a, b − a}
}

, where c(P ) denotes the sum of costs of edges of P , and

then we show that such a revenue is actually an upper bound to the optimal revenue.
For technical convenience, we only consider instances where P has at least 5

edges. Clearly, the solutions for the remaining instances can be easily computed.
The algorithm uses the following four rules. Each rule considers a subpath of P and
specifies a feasible solution for the subpath, i.e., a set of blue edges incident to the
vertices of the subpath with a corresponding pricing. The solutions corresponding to
the rules are shown in Figure 1.

Rule 1: Let P ′ be a subpath of P containing only one a-block, and this a-block is
good. We can obtain revenue c(P ′) from P ′ by adding blue edges only within P ′.

Rule 2: Let P ′ be a subpath of P containing only one a-block and this a-block is
bad. We can compute a solution with revenue c(P ′) − a from P ′.

Rule 3: Let P ′ be a subpath of P containing one a-block, and this a-block is the
last bad block of P . Moreover P ′ has at least one more edge of cost b that either
precedes or follows the a-block. We can obtain a revenue of c(P ′)− (b−a) from P ′

by using a star of blue edges centered at the left or right endvertex of P , depending
on the position of the edge of cost b. Notice that the endvertices of P ′ might be
followed by other good blocks.

Rule 4: Let P1, P2 be two edge-disjoint subpaths of P each containing only one a-
block. Assume that both a-blocks are bad and P1 contains an edge of cost b whose
removal separates the two a-blocks. We can obtain a revenue of c(P1) + c(P2) −
(b − a) from P1 and P2. Notice that P1 and P2 do not need to be adjacent.

Our algorithm is as follows. If b ≥ 3a then we split P into subpaths each of them
containing exactly one a-block. Then we apply Rule 1 or Rule 2 to each subpath,
depending on whether the a-block in the subpath is good or bad. Hence, this solution
yields a revenue of c(P ) − σa.

Now, consider the case b < 3a. Let B1, . . . , Bσ be the bad a-blocks contained in P
from left to right w.r.t one of the endvertices. We first consider the case where σ ≥ 2,
i.e., there are at least two bad blocks. The algorithm splits P into subpaths such
that (i) each subpath contains exactly one a-block, (ii) for every i = 0, . . . , ⌊σ/2⌋ − 1,
subpath containing B2i+1 has an edge of cost b incident to its right endvertex, and
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[h]b
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[t]b
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α, β ∈ {1, 2}
h, ℓ, t, w ≥ 0

[w]b[β]a

[ℓ]b

bℓ

Rule 1

Rule 4

P1 P2

Rule 2

Rule 3

b bt

[t]b

bh aα a

[h]b

a

a
α ∈ {0, 1}
h, t ≥ 0

[α]a

abh aα

[h]b

[α]a
[t]b

bt

α ∈ {0, 1}
h, t ≥ 0

bh a a

a

a
α, h, t ≥ 0

a aα bt

[t]b[α]a
a

[h]b

Fig. 1. Rules used by the algorithm to solve subpaths. We denote by ηδ a path of δ edges each having
a cost of η. An edge with label [i]η represents i blue edges each having a price of η. Observe that,
except for Rule 2, all red (path) edges with cost a will be discarded by the follower. Concerning Rule
2, the follower will select only a single red edge of cost a (of the shown subpath). The left endvertex
of the path of Rule 3 corresponds to one endvertex of P .

(iii) if σ is odd, the subpath containing Bσ has an edge of cost b incident to its
left endvertex.3 Let Pi be the subpath containing Bi. The algorithm uses Rule 4
for every pairs of subpaths P2i+1, P2i+2, i = 0, . . . , ⌊σ/2⌋ − 1, and Rule 1 for every
subpath containing a good a-block. Finally, if σ is odd, we apply Rule 3 for Pσ when
b ≤ 2a (we can apply Rule 3 since property (iii) above holds), while we use Rule
2 when b > 2a. It is easy to see that the revenue of this solution coincides with

c(P ) − min
{

σa,
⌊

σ
2

⌋

(b − a) +
(

σ − 2
⌊

σ
2

⌋)

min{a, b − a}
}

.

Concerning the case σ ≤ 1, then either P has no bad blocks, and then a revenue
of c(P ) can be obtained, or there exists only one bad block B1. In this latter case:

– if b ≥ 2a, let P ′ be any subpath containing B1; then, solve P ′ using Rule 2.
– Otherwise, if b < 2a, let P ′ be a subpath containing B1 and a suitable additional

edge of cost b; then, use Rule 3 on P ′.

Finally, split P \ P ′ into subpaths, each contaning one good a-block, and solve them
using Rule 1. By doing so we obtain a revenue of c(P ) − min{a, b − a}.

Now, we show that the revenue computed by the above algorithm is the optimal
revenue r∗:

3 Property (iii) can always be guaranteed since σ ≥ 2.
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Lemma 1. r∗ ≤ c(P ) − min
{

σa,
⌊

σ
2

⌋

(b − a) +
(

σ − 2
⌊

σ
2

⌋)

min{a, b − a}
}

.

Proof. Let na be the number of red edges of cost a. Let T ∗ be the tree computed
by the follower w.r.t. an optimal solution. Moreover, let B1, . . . , Bσ and B̂1, . . . , B̂σ′

be the bad and the good blocks of P , respectively. We denote by mi and m̂j the

number of edges of Bi and B̂j, respectively. Moreover, for an edge e = (x, y), T ∗(e)
will denote the unique path in T ∗ between x and y (observe that T ∗(e) may be
the path containing only edge e). For each i = 1, . . . , σ and j = 1, . . . , σ′, consider
the bad tree Ti =

⋃

e∈E(Bi) T ∗(e),4 and the good tree T̂j =
⋃

e∈E(B̂j) T ∗(e). Let T =

{T1, . . . , Tσ} ∪ {T̂1, . . . , T̂σ′}. Observe that for each i, j, we have: (i) Ti and T̂j are

trees and every edge has cost a, (ii) V (Bi) ⊆ V (Ti) and V (B̂j) ⊆ V (T̂j), and (iii)
E(T ∗) ∩ E(Bi) 6= ∅, or Ti contains at least mi + 1 edges.

Let us consider the following graph H = (
⋃

i V (Ti)∪
⋃

j V (T̂j),
⋃

i E(Ti)∪
⋃

j E(T̂j)),
and let N be the number of nodes of H . Clearly, H is a forest. Moreover, each
connected component of H is either a single tree of T or it consists of the union
of at least two trees in T . Let us consider the set X of “unmerged” bad trees, i.e.,
X = {Ti | i = 1, . . . , σ, V (Ti) ∩ V (T ) = ∅, ∀ T ∈ T \ {Ti}}. We define ℓ = |X|.
Observe that each tree in X is in the set C of connected components of H . Let t be
the number of the remaining connected components of H , i.e., |C| = t + ℓ. As each

bad tree not in X has been merged with some other tree, we have t ≤ σ′ +
⌊

σ−ℓ
2

⌋

.

In order to relate t to the number N of nodes of H , we define ℓ1 = |{Ti | Ti ∈
X, E(T ∗)∩E(Bi) 6= ∅}|. Notice that ℓ1 is a lower bound to the number of red edges in
H . We now give a lower bound to N . Since H spans all a-blocks (which are pairwise
vertex disjoint), and since property (iii) holds, we have that N ≥ na + σ + σ′ + ℓ − ℓ1.
Therefore, since H has N −ℓ−t edges of cost a, and using c(P ) = na(a−b)+(n−1)b,
we have:

r∗ ≤
(

N − ℓ − t
)

a − ℓ1a +
(

n − 1 −
(

N − ℓ − t
)

)

b

= (N − ℓ − t)(a − b) − ℓ1a + (n − 1)b

≤ (na + σ + σ′ − ℓ1 − t)(a − b) + (n − 1)b − ℓ1a

= c(P ) −
(

σ + σ′ − ℓ1 − t
)

(b − a) − ℓ1a

≤ c(P ) −

(

(σ − ℓ1) −

⌊

σ − ℓ

2

⌋)

(b − a) − ℓ1a

≤ c(P ) − min
{

σa,
⌊

σ

2

⌋

(b − a) +
(

σ − 2
⌊

σ

2

⌋)

min{a, b − a}
}

.

To see why the latter inequality holds, one can consider the different parity of σ and
ℓ for each of the following three cases: b ≥ 3a, 2a ≤ b < 3a, and b < 2a. ⊓⊔

4 Here the union symbol denotes the union of graphs.
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Hence, from the above lemma, we have:

Theorem 1. StackMST(0, 0) can be solved in polynomial time when the red edges
form a path and their costs are in {a, b}.

2.2 Solving StackMST(0, 0) with two red costs: the general case

We now extend the previous result by providing an optimal polynomial-time algorithm
for StackMST(0, 0) when the red costs belong to the set {a, b}, and T is a tree.

Let 0 ≤ a < b, and let T be a red tree with costs in {a, b}. In a similar fashion
as before, we call a subtree T ′ of T an a-block if T ′ has all edges of cost a, and T ′ is
maximal (w.r.t. inclusion). We say that an a-block is bad if it is a star, good otherwise.
Let σ be the number of bad blocks of T . As the upper bound to the maximum revenue
r∗ shown in Lemma 1 still holds,5 we now present a general algorithm achieving a
revenue equal to the given upper bound.

The four rules used by the algorithm are similar to the ones used in the algorithm
for the path and they are shown in Figure 2 and 3, along with the corresponding
revenues.

Our algorithm is as follows. If b ≥ 3a, then we split T into subtrees, each of them
containing exactly one a-block. Then we apply Rule 1 or Rule 2 to each subtree,
depending on whether the a-block in the subtree is good or bad. Clearly, this solution
yields a revenue of c(T ) − σa

Now, consider the case b < 3a. Let B1, . . . , Bσ be the bad a-blocks contained in T .
The algorithm splits T into subtrees such that (i) each subtree contains exactly one
a-block, (ii) there exists a permutation B′

1, . . . , B′
σ of the bad a-blocks such that for

every i = 0, . . . , ⌊σ/2⌋ − 1, subtree containing B′
2i+1 has an edge of cost b along the

(unique) path joining B′
2i+1 with B′

2i+2, and (iii) if σ is odd, the subtree containing
B′

σ has an edge of cost b.

Let Ti be the subtree containing B′
i. The algorithm uses Rule 4 for every pair

of subtrees T2i+1, T2i+2, i = 0, . . . , ⌊σ/2⌋, Rule 1 for every subtree containing a good
a-block. Finally, if σ is odd, we apply Rule 3 for Tσ when b ≤ 2a, while we use Rule
2 when b > 2a. From this, we have:

Theorem 2. StackMST(0, 0) can be solved in polynomial time when red edge costs
are in {a, b}.

5 The proof is identical to the one previously shown.
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T
′

Rule 1

revenue: c(T ′)b b

b

b

b

b

b

b

a a

a

a

a

aa

a

Rule 2

T
′

revenue: c(T ′)− a

a a

a

b b

b

b
b

b

Fig. 2. Rules 1 and 2 used by the algorithm to solve subtrees. Edges without label are priced to b.
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a

a
a

b

b

bb
b

b
b

b

b

b

b

x
z z′

y
T1

T2

Rule 4

revenue: c(T1) + c(T2)− (b− a)

T
′

Rule 3

revenue: c(T ′)− (b− a)

a a

b b

b

b

b

b

b a

Fig. 3. Rules 3 and 4 used by the algorithm to solve subtrees. Edges without label are priced to b.
Notice that in Rule 4, while there is a blue edge between x and z′, there is no edge between y and z.
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3 StackMST(0, 0) can be approximated within 3/2 + ǫ when

the red edges form a path

Here we design a (3
2

+ ǫ)-approximation algorithm for StackMST(0, 0) when the tree
T is actually a path, say P .

Let then P be the path of red edges. The idea of the algorithm is to consider three
possible solutions and pick the best one. We will argue that the revenue of such a
solution is at least a fraction 2

3
of the cost of almost the entire path. More precisely,

we select a cheap subpath P̄ of P of length 2 or 3, and we then compute a solution
achieving a revenue of at least 2

3
(c(P ) − c(P̄ )).

Let m = n − 1 be the length of P , and let e1, . . . , em be the red edges of P in
the order of traversing P from an endpoint to the other one. Moreover, let us set
ℓ to 2, if m is even, and to 3 otherwise. Let Pi be the subpath of P of length ℓ
starting from ei, i.e., Pi consists of the edges ei, . . . , ei+ℓ−1. Let P̄ be the subpath with
minimum cost among P2j−1, j = 1, . . . , ⌊m/2⌋. If we remove P̄ from P , we obtain
two paths of even length, say Q1 and Q2. At most one of Q1 and Q2 may be empty.
Let us assume for the ease of presentation that both paths are non-empty (similar
arguments hold when this does not happen), and let 2h and 2k be the length of Q1

and Q2, respectively. Moreover, let u0, u1, . . . , u2h and v0, v1, . . . , v2k be the nodes of
Q1 and Q2, respectively. The two end-nodes of P̄ are u2h and v0. Let xi = c(ui−1, ui)
and yj = c(vj−1, vj). Finally, let z be an internal node of P̄ (see Figure 4).

Let A =
∑h

i=1 max{x2i−1, x2i}+
∑k

i=1 max{y2i−1, y2i}, and let B =
∑h

i=1 min{x2i−1, x2i}+
∑k

i=1 min{y2i−1, y2i}. Notice that c(Q1)+c(Q2) = A+B. The first solution we consider
is

F1 = {(u2i−2, u2i) | i = 1, . . . , h} ∪ {(v2i−2, v2i) | i = 1, . . . , k},

and the price function is defined as p(u2i−2, u2i) = max{x2i−1, x2i}, and p(v2i−2, v2i) =
max{y2i−1, y2i}. Notice that this solution obtains a revenue r1 = A.

The second solution is a star centered in the node z; more precisely:

F2 = {(z, ui) | i = 0, . . . , 2h − 1} ∪ {(z, vi) | i = 1, . . . , 2k},

and the prices are defined as p(z, u0) = x1, p(z, v2k) = y2k, p(z, ui) = min{xi, xi+1},
and p(z, vi) = min{yi, yi+1}. Notice that this solution obtains a revenue of

r2 = B + x1 + y2k +
h−2
∑

i=0

min{x2i+2, x2i+3} +
k−2
∑

i=0

min{y2i+2, y2i+3}.

Finally, the third solution is the following:

F3 = {(u2i+1, u2i+3) | i = 0, . . . , h − 2}∪

{(v2i+1, v2i+3) | i = 0, . . . , k − 2} ∪ {(u2h−1, z), (z, v1)},

11



u1 u2 u2h−2 u2h−1 u2h z v0 v1 v2
v2k−2 v2k−1 v2ku0

. . .
. . .

u1 u2 u2h−2 u2h−1 u2h z v0 v1 v2
v2k−2 v2k−1 v2ku0

. . .
. . .

u1 u2 u2h−2 u2h−1 u2h z v0 v1 v2
v2k−2 v2k−1 v2ku0

. . .
. . .

u1 u2 u2h−2 u2h−1 u2h z v0 v1 v2
v2k−2 v2k−1 v2ku0

. . . . . .

Fig. 4. The path and the three solutions considered by the algorithm. Blue edges are in bold. Here
P̄ consists of 2 edges.

and the pricing is as follows: p(u2h−1, z) = x2h, p(z, v1) = y1, p(u2i+1, u2i+3) =
max{x2i+2, x2i+3}, and p(v2i+1, v2i+3) = max{y2i+2, y2i+3}. Hence, the corresponding
revenue is:

r3 = x2h + y1 +
h−2
∑

i=0

max{x2i+2, x2i+3} +
k−2
∑

i=0

max{y2i+2, y2i+3}.

Hence, we have:

r1 + r2 + r3 = A + B + x1 + x2h + y1 + y2k +
h−2
∑

i=0

(min{x2i+2, x2i+3} + max{x2i+2, x2i+3}) +

k−2
∑

i=0

(min{y2i+2, y2i+3} + max{y2i+2, y2i+3})

= 2(c(Q1) + c(Q2)),

from which it follows that the revenue r = max{r1, r2, r3} is at least 2
3
(c(Q1)+c(Q2)).

Now, observe that by construction we have

c(P̄ ) ≤
c(P )
⌊

n
ℓ

⌋ ≤
3

n − 2

(

c(P̄ ) + c(Q1) + c(Q2)
)

,

12



and hence c(P̄ ) ≤ 3
n−5

(c(Q1) + c(Q2)). Denoting by r∗ the optimal revenue, and
observing that the cost of the red tree is always an upper bound to r∗, we then have

r∗

r
≤

c(P )

r
=

c(Q1) + c(Q2)

r
+

c(P̄ )

r
≤

3

2
+

3
n−5

(c(Q1) + c(Q2))
2
3
(c(Q1) + c(Q2))

=
3

2
+

9

2n − 10
.

We have proved the following:

Theorem 3. StackMST(0, 0) can be approximated within a factor of 3/2 + ǫ, for any
ǫ > 0, when the red edges form a path.

We point out that our algorithm is asymptotically tight with respect to the
adopted upper-bound scheme. An example is the path in which c(e1) = 1, c(e2) = 2,
and c(ei) = 0, for every i > 2. It is easy to see that for this path the revenue obtained
by an optimal solution is 2, while the total cost of the path is 3.

4 StackMST(0, 0) can be approximated within 7/4 + ǫ

In this section we design an algorithm that achieves an approximation ratio of 7/4+ ǫ
for the general StackMST(0, 0) game.

The idea of the algorithm is to partition the red tree into suitable subtrees for
which we can guarantee a revenue of at least 4/7 of the cost of each one of them.
Let T = (V, E(T )) be the red tree. We say that T1 = (V1, E1), . . . , Tℓ = (Vℓ, Eℓ) is a
partition of T into ℓ subtrees if (i) each Ti is a subtree of T , (ii) V =

⋃

i Vi, E(T ) =
⋃

i Ei, and (iii) for each i, j, i 6= j, Ei ∩ Ej = ∅.
It is easy to see that once T is partitioned into subtrees as specified above, we can

solve locally a StackMST(0, 0) game for each red subtree of the partition, and then
solve the original problem by joining together all the local solutions (by maintaining
the corresponding pricing). Indeed, the union of all the trees associated with the local
solutions is clearly a spanning tree of G. Hence, we can claim the following

Lemma 2. Let T1, . . . , Tℓ be a partition of T into ℓ subtrees. For each i, let ri be the
revenue returned by a local solution of Ti. Then, the revenue which can be obtained
for T is at least

∑ℓ
i=1 ri.

Moreover, we can prove the following:

Lemma 3. Let T be a tree rooted at a node s. There always exists a partition of T
into ℓ subtrees T1, . . . , Tℓ such that

– Tℓ has at most 2 edges and at least one of them is incident to s;
– for every 1 ≤ j ≤ ℓ − 1, Tj is either (i) a path of 3 or 4 edges, or (ii) a star with

at least 3 edges.

13
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Fig. 5. The five rules of the decomposition algorithm.

Moreover, this partition can be found in polynomial time.

Proof. We provide a polynomial-time algorithm that finds the partition of the lemma.
Let d(v) denote the depth of v in T , i.e., the number of edges of the path (in T )
between s and v. We denote by S(v) the set of the children of v. Moreover, we use v̄
to denote the parent of v. We proceed in phases. In phase j, we find a subtree Tj by
applying one of the rules below (we consider them in order), then we remove Tj from
T and we move to the next phase. We stop when no rule can be applied. Let L be
the set of leaves of T with depth equal to the current height of T . The rules are the
following (see Figure 5):

Rule 1: if there exists a node v ∈ L with d(v) ≥ 2 and such that v has at least one
sibling, then Tj is the star with edge set {(v̄, ¯̄v)} ∪ {(v̄, u) | u ∈ S(v̄)};

Rule 2 if there exists a node v ∈ L with d(v) ≥ 2 such that v̄ has a sibling u and u
is a leaf, then Tj is the path with edge set {(v, v̄), (v̄, ¯̄v), (¯̄v, u)};

Rule 3: if there exists a node v ∈ L with d(v) ≥ 2 such that v̄ has a sibling u and u
is not a leaf, then let u′ be the unique child of u (u′ must be unique otherwise Rule
1 would apply). Then, Tj is the path with edge set {(v, v̄), (v̄, ¯̄v), (¯̄v, u), (u, u′)};

Rule 4: if there exists a node v ∈ L with d(v) ≥ 3, then Tj is the path with edge set

{(v, v̄), (v̄, ¯̄v), (¯̄v, ¯̄̄v)};
Rule 5: if T is a star with at least 3 edges, then Tj = T .

Now, assume that the last phase is phase ℓ − 1, then we set Tℓ equal to the remaining
tree T . If there is no edge left, we set Tℓ equal to the empty subtree. It is easy to
see that if Tℓ is non-empty, it must have at most 2 edges, and one of them must be
incident to s. Moreover, since each phase takes polynomial time and each Tj with
j < ℓ contains at least one edge, the claim follows. ⊓⊔

The following lemmas allow us to obtain a revenue of at least 4
7

c(Ti) for each
subtree Ti, i = 1, . . . , ℓ − 1, of the decomposition.

Lemma 4. Let S be a star with at least 3 edges, then we can obtain a revenue of at
least 2

3
c(S).
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Fig. 6. Three possibile solutions for paths of 3 or 4 edges.

Proof. Let s be the center of the star, and let u1, . . . , ut be the leaves ordered such that
c(s, u1) ≤ c(s, u2) ≤ · · · ≤ c(s, ut). The set of blue edges F = {(u1, uj) | j = 2, . . . , t}
yields a revenue of

∑t
j=2 c(s, uj) ≥ 2

3
c(S), since t ≥ 3. ⊓⊔

Lemma 5. Let P be a path of 3 or 4 edges, then we can obtain a revenue of at least
4
7
c(P ).

Proof. Let us consider the path of 3 edges first. Let 0 ≤ c1 ≤ c2 ≤ c3 be the edge costs.
If the cost of the middle edge is c1, we can easily obtain a revenue of c2 + c3 ≥ 2

3
c(P ).

Assume that the cost of the middle edge is not c1. In Figure 6 three solutions are
shown. The corresponding revenues are: c3, 2c2, 2c1 + c2. A trivial calculation shows
that the maximum of the three revenues is at least 4

7
c(P ).

Now, we consider a path of 4 edges. Let x1, . . . , x4 be the costs of the edges from
left to right. We set M1 = max{x1, x2}, m1 = min{x1, x2}, M2 = max{x3, x4}, m2 =
min{x3, x4}. Assume w.l.o.g. that m1 ≥ m2. Three solutions are shown in Figure 6.
The corresponding revenues are: M1 + M2, m1 + 3m2, 2m1 + m2, the maximum of
which is easy to see to be at least 4

7
c(P ). ⊓⊔

We are now ready to prove the following:

Theorem 4. StackMST(0, 0) can be approximated within a factor of 7/4 + ǫ, for any
constant ǫ > 0.

Proof. W.l.o.g., we can restrict ourselves to the case n ≥ 7
2ǫ

+ 1, since otherwise to
find an optimal solution we can always use an exhaustive search algorithm that tries
all the possible sets of blue edges and prices them at the optimum (remember this
can be done in polynomial time [6]). For each v, let µ(v) = maxu|(u,v)∈E(T ) c(u, v). We
root T at a node s minimizing µ. Then we decompose T using the algorithm given
in Lemma 3, and we solve locally each Tj with j ≤ ℓ. Let rj be the corresponding
obtained revenue, and observe that rℓ ≥ c(Tℓ) − mine∈E(Tℓ) c(e) ≥ c(Tℓ) − µ(s).
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As Lemma 2 together with Lemmas 4 and 5 implies that the total revenue r is at
least

∑ℓ
j=1 rj ≥ 4

7
(c(T ) − µ(s)), and since c(T ) ≥ 1

2

∑

v∈V µ(v) ≥ n
2
µ(s), we obtain

r∗

r
≤

c(T )

r
≤ 7/4 +

7

2n − 4
≤ 7/4 + ǫ.

⊓⊔

5 StackMST(γ, ∆) on trees of bounded radius

In this section, we study the general StackMST(γ, ∆). First, we will argue that for this
generalized version, the very same approximation ratio as that of the original game
can be achieved, since the single-price algorithm defined in [6] can be easily adapted
to provide an approximation of min{k, 1 + ln β, 1 + ln ρ} for StackMST(γ, ∆) as well,
where k is the number of distinct red costs, β is the number of blue edges selected by
the follower in an optimal solution, and ρ is the maximum ratio between red costs.
Then we focus on the case in which T is a tree of radius h (measured w.r.t. the number
of edges) once rooted at its center. For this case, we show that the problem remains
APX-hard even for constant values of h, as well as approximable within a factor of
2h + ǫ.

Let k denote the number of distinct red costs, and let c1 < c2 < · · · < ck denote
these costs. To extend the single-price algorithm, we proceed as follows. We consider
the complete graph consisting of the union of the red tree and all the potential blue
edges. For each j between 1 and k, we set the price of every potential blue edge to
cj, and we compute a spanning tree by a slightly modification of Kruskal’s algorithm
as follows. In the phase in which the algorithm considers all the edges of cost cj , we
break tightness in favor of blue edges, and among the blue edges, we prefer those with
smaller activation cost. As soon as we consider a blue edge exceeding the budget ∆,
we delete that edge and all the remaining blue edges, and we go on with Kruskal’s
algorithm. The solution for a given j will be the set of all picked blue edges which
will be priced to cj. Then we pick j such that the corresponding revenue is maximum,
and we return the corresponding solution. It turns out that the same analysis given
in [6] can be applied here. Hence, we have:

Theorem 5. The above algorithm achieves an approximation ratio of min{k, 1 +
ln β, 1 + ln ρ} for StackMST(γ, ∆).

We now study StackMST(γ, ∆) when T is a tree that once rooted at its center,
say v0, has height/radius h. First, we observe that the reduction the authors in [6]
used to prove that StackMST is APX-hard already when T is a path can be modified
to show the following:
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Theorem 6. StackMST is APX-hard even if T is a star.

Proof. We show an approximation-preserving reduction from StackMST for the case
in which T is a path to StackMST for the case in which T is a star. Our reduction
works only for the hard instances constructed in [6].

The hard instances given in [6] are constructed from instances of the Set Cover
Problem in the following way. Let U = {u1, . . . , uℓ} be a set of objects and let
{S1, . . . , St} be a set of subsets of U such that uℓ ∈ Si, for every i = 1, . . . , t. T
is a path of ℓ+ t vertices {u1, . . . , uℓ}∪{S1, . . . , St} with edge set E(T ) = {(ui, ui+1) |
i = 1, . . . , ℓ − 1} ∪ {(Si, Si+1) | i = 1, . . . , t − 1} ∪ {(uℓ, S1)}. The fixed cost c(e) of an

edge e ∈ E(T ) is 2 if e = (Si, Si+1) or e = (uℓ, S1), 1 otherwise. Let B =
{

(ui, Sj) |

ui ∈ Sj , i = 1, . . . , ℓ, j = 1, . . . , t
}

be the set of blue edges.
Our reduction works as follows. We take the above hard instance for StackMST

on red paths, we add a vertex v0 and we replace the red tree T by a star of red edges
centered at v0. Let T ′ denote the star of red edges. The fixed cost c′(e) of an edge
e is 2 if e = (v0, Si), 1 otherwise. First observe that for every F ⊆ B, (V (T ), F ) is
acyclic iff (V (T ′), F ) is acyclic. Let F ⊆ B be a set of blue edges such that (V (T ), F )
is acyclic. The revenue yielded by F in both instances of StackMST is the same, as
the price of an edge (Si, uj) ∈ F in both instances is 2 iff (Si, uj) is the only edge in
F which is incident to Si. The claim follows. ⊓⊔

In the remaining of the section we will show the existence of a (2h+ǫ)-approximation
algorithm. Before starting, recall that once that a set F of activated edges is part of
the final MST, then the optimal pricing for each e ∈ F can be computed in poly-
nomial time, as observed in (see [6]). More precisely, this can be done by computing
efficiently

pF (e) := min
H∈cycle(F,e)

max
e′∈E(H)∩E(T )

c(e′) (1)

where cycle(F, e) is the set of (simple) cycles containing edge e in the graph
(V (T ), E(T ) ∪ F ). With a little abuse of notation, in the following we will denote
by r(F ) the revenue yielded by the above optimal pricing pF .

The main idea of the algorithm is to reduce the problem instance to h instances
in which the red trees are stars. With a little abuse of notation, in each of the h
instances, the leader is sometimes allowed to activate edges which are parallel to
red edges. We denote by Vi = {v1, . . . , vℓi

} the set of vertices at level i in T , and
by Ei the set of edges in T going from vertices in Vi to their parents. Let Ti be a
red star obtained by identifying all red edges in T but those in Ei. With a little
abuse of notation, when edge (u, v) is identified, and w.l.o.g. u is the parent of v,
we assume that the corresponding vertex is labeled with u. Thus, according to this
assumption, we have that Ti is a star centered at v0 with v1, . . . , vℓi

as leaves. The
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T̂0

T̂1 T̂i T̂ℓi. . . . . .

v0

v1 vi vℓi. . . . . .

v1 vi vℓi

v0

TiT

Fig. 7. Auxiliary instance for StackMST(γ, ∆) corresponding to level i. Vertices in the tree T̂q are
identified. When two or more edges between the same two trees are present, only the one with
smallest activation cost is preserved.

cost of a red edge (v0, v) in Ti is ci(v0, v) = c(u, v), where u is the parent of v
in T . Let T̂0, T̂1, . . . , T̂ℓi

be the connected components in T − Ei. W.l.o.g., assume
vi ∈ V (T̂i). Let ej,q be a blue edge connecting T̂j and T̂q with cheapest activation
cost. Let bluei := {ej,q | j, q = 0, . . . , ℓi, j 6= q}. Notice that this set contains edges
that the leader can activate in the original instance of the problem. We now map
them to their counterpart in Ti, namely let Bi := {ēj,q := (vj , vq) | ej,q ∈ bluei} be
the set of blue edges the leader is allowed to activate in Ti. The activation cost of an
edge ēj,q ∈ Bi is γi(ēj,q) := γ(ej,q). The auxiliary instance corresponding to level i is
shown in Figure 7.

Let F ∗ be an optimal solution for the leader on input instance T and let
F ∗

i := {(vj, vq) ∈ Bi | (u, v) ∈ F ∗, u ∈ V (T̂j), v ∈ V (T̂q), j 6= q} be the corre-
sponding edges in Ti. Let G∗

i := ({v0, . . . , vℓi
}, F ∗

i ), and denote by comp(G∗
i ) the set

of connected components of G∗
i . We start by proving an upper bound on the revenue

yielded by F ∗.

Lemma 6. r(F ∗) ≤ c(T ) −
h
∑

i=1

∑

H∈comp(G∗

i
)

min
v∈V (H)

ci(v0, v).6

Proof. Observe that for every H ∈ comp(G∗
i ) not containing vertex v0, at least one red

edge (v0, v), for some v ∈ V (H), has to be contained in any MST of (V (Ti), E(Ti)∪F ∗
i ).

Thus, for some v ∈ V (H), at least one edge (u, v) where u is the parent of v in T has
to be contained in any MST of G = (V (T ), E(T ) ∪ F ∗). As ci(v0, v) = c(u, v), the
claim follows by summing over all components H ∈ comp(G∗

i ) for all i’s. ⊓⊔

6 With a slight abuse of notation, we assume ci(v0, v0) = 0.
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The key idea of our algorithm is to find a set F of blue edges whose overall
activation cost does not exceed the budget, and such that (V, F ) is a forest of stars.
More precisely, for every i = 1, . . . , h, the algorithm first finds a set F̂i ⊆ Bi such
that

∑

e∈F̂i
γi(e) ≤ ∆ and Ĝi := (V (Ti), F̂i) is a forest of stars; then, it considers the

set Fi := {ej,q | ēj,q ∈ F̂i} of the corresponding blue edges for the original instance.
Observe that (i) Gi := (V (T ), Fi) is still a forest of stars and (ii) the overall activation
cost of the edges in Fi equals that of the edges in F̂i. Furthermore, using Equation (1),
we can derive the following lemma, which claims that when we map F̂i back to Fi the
obtained revenue cannot decrease:

Lemma 7. r(Fi) ≥ r(F̂i).

We now give a lower bound of the revenue that can be obtained from F̂i. The
bound trivially follows from (1):

Lemma 8. Let Li := {v | v ∈ V (Ti), v is a leaf of some star in Ĝi}.7 Then, r(F̂i) ≥
∑

v∈Li
ci(v0, v).

Next lemma essentially shows that there exists a solution for Ti which is a forest
of stars yielding a revenue of at lest a half of the optimal revenue for Ti.

Lemma 9. Let B′ ⊆ Bi and let U = {v | v is an endvertex of some edge in B′}.
There exists a polynomial time algorithm that finds two sets F 1 and F 2 such that
(i) F 1, F 2 ⊆ B′, (ii) both (V (Ti), F 1) and (V (Ti), F 2) are forests of stars, and (iii)
r(F 1) + r(F 2) ≥

∑

v∈U ci(v0, v).

Proof. Let D be the graph induced by edge set B′. Let Dj be any of the t connected
components in D, and let T j be any spanning tree in Dj. As T j is a bipartite graph,
it is possible to partition the set of its vertices into two sets V j

1 and V j
2 in polynomial

time. Moreover, by the connectivity of T j, every vertex v ∈ V j
ℓ (ℓ ∈ {1, 2}) is adjacent

to some vertex in V j
3−ℓ, and thus it is easy to find a set Ej

ℓ of edges in T j such that

(V (Dj), Ej
ℓ ) is a forest of stars with centers in V j

ℓ and leaves in V j
3−ℓ. Therefore, for

ℓ = 1, 2, F ℓ =
⋃t

j=1 Ej
ℓ are two sets of edges satisfying (i) and (ii). Furthermore,

⋃t
j=1(V

j
1 ∪ V j

2 ) =
⋃t

j=1 V (Dj) = V (D). As a consequence, from Lemma 8, (iii) is also
satisfied. ⊓⊔

To compute F̂i, the algorithm does the following. Our algorithm uses the well-
known FPTAS for the Knapsack Problem to compute a (1 + ǫ/(2h))-approximate
solution Si for the following instance of knapsack. For each vj , consider the blue edge
e ∈ Bi incident to vj with cheapest activation cost. We create an object oi

j of profit

7 If a star contains only one edge, then let any of its vertices to be a leaf.
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ci(v0, vj) and volume γi(e); we say that e is associated with the object oi
j . Finally,

the volume of the knapsack is ∆. Denote by Ki the input instance of knapsack.
The solution Si for Ki identifies a set of blue edges, namely B′ = {e ∈ Bi | ∃oi

j ∈
Si s.t. e is associated with oi

j}. The algorithm then uses the decomposition algorithm

described in Lemma 9 to find two subsets of edges F 1 and F 2, and then it sets F̂i to
F 1 if r(F 1) ≥ r(F 2), and to F 2 otherwise. The pseudocode of the algorithm is given
in Algorithm 1.

Algorithm 1
1: for i = 1 to h do

2: compute a (1 + ǫ/(2h))-approximate solution Si for the knapsack instance Ki

3: B′ = {e ∈ Bi | oi
j ∈ Si, e is associated with oi

j}
4: compute F 1 and F 2 w.r.t. B′ as explained in Lemma 9
5: if r(F 1) ≥ r(F 2) then F̂i := F 1 else F̂i := F 2 end if

6: Fi := {ej,q | ēj,q ∈ F̂i}
7: end for

8: return the best of the Fi’s

Theorem 7. Algorithm 1 computes a (2h + ǫ)-approximate solution in polynomial
time for StackMST(γ, ∆), for any constant ǫ > 0.

Proof. Remind that G∗
i = ({v0, . . . , vℓi

}, F ∗
i ), where F ∗

i are obtained by mapping the
edges of an optimal solution F ∗ to the blue edges of the auxiliary instance Ti. In order
to show a lower bound for the profit of the optimal solution of Ki, we define a feasible
solution S∗

i as follows: for each connected component H of G∗
i , let v ∈ V (H) be the

vertex that minimizes c(v0, v), and consider any spanning tree TH of H rooted at v.
Notice that for each vj ∈ V (H) \ {v} we have an object oi

j whose volume is at most
γ(v̄j , vj), where v̄j denotes the parent of vj in TH . Add such objects to the solution
S∗

i . Once we have considered all the connected components of G∗
i , the solution S∗

i

contains a set of objects of total volume at most ∆ (since the solution F ∗ is feasible).
Moreover, by construction, the profit of S∗

i must be at least

profit(S∗
i ) ≥ c(Ti) −

∑

H∈comp(G∗

i
)

min
v∈V (H)

ci(v0, v).

We now bound the revenue r(F̂i). Since, from Lemma 7 and Lemma 9, r(Fi) ≥
r(F̂i) ≥ 1

2
profit(Si), we have that

c(Ti) −
∑

H∈comp(G∗

i
)

min
v∈V (H)

ci(v0, v) ≤ profit(S∗
i )

≤
(

1 +
ǫ

2h

)

profit(Si) ≤
(

2 +
ǫ

h

)

r(F̂i) ≤
(

2 +
ǫ

h

)

r(Fi).
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By summing over all levels and using Lemma 6, we obtain

r(F ∗) ≤ c(T ) −
h
∑

i=1

∑

H∈comp(G∗

i
)

min
v∈V (H)

ci(v0, v)

≤
(

2 +
ǫ

h

) h
∑

i=1

r(Fi) ≤ (2h + ǫ) max
i=1,...,h

r(Fi).

This completes the proof. ⊓⊔

6 Open problems

In this paper we have presented a collection of results concerning some interesting vari-
ants of the classic StackMST game. Many intriguing problems are left open. Among
the others, we list the following: (i) Is StackMST(0, 0) NP-hard? (ii) Can we design
a better approximation algorithm for StackMST(0, 0)? (iii) Can we prove a stronger
inapproximability result for StackMST(γ, ∆) than the one holding for StackMST?
(iv) What can we say about StackMST(γ, ∆) for instances with uniform activation
costs? Is the problem NP-hard? Can we design and can we extend our results for
StackMST(0, 0)? (v) Finally, and most importantly, does StackMST admit a constant
factor approximation algorithm?
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