Skip to main content

A Local Graph Clustering Algorithm for Discovering Subgoals in Reinforcement Learning

  • Conference paper
Communication and Networking (FGCN 2010)

Abstract

Reinforcement Learning studies the problem of learning through interaction with the unknown environment. Learning efficiently in large scale problems and complex tasks demands a decomposition of the original complex task to simple and smaller subtasks. In this paper a local graph clustering algorithm is represented for discovering subgoals. The main advantage of the proposed algorithm is that only the local information of the graph is considered to cluster the agent state space. Subgoals discovered by the algorithm are then used to generate skills. Experimental results show that the proposed subgoal discovery algorithm has a dramatic effect on the learning performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaelbling, L.P., Littman, M.L.: Reinforcement Learning: A Survey. J. Artificial Intelligence Research 4 (1996)

    Google Scholar 

  2. Bertsekas, D.B., Tsitsiklis, J.N.: Neuro-dynamic programming. Athena Scientific (1995)

    Google Scholar 

  3. Parr, R., Russell, S.: Reinforcement learning with hierarchies of machines. In: Proc. the 1997 Conference on Advances in Neural Information Processing Systems, Cambridge, MA, USA, pp. 1043–1049 (1997)

    Google Scholar 

  4. Sutton, R., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. J. Artificial Intelligence 112, 181–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artificial Intelligence 13, 227–303 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Barto, A.G., Mahadevan, S.: Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems 13, 341–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Şimşek, Ö., Barto, A.G.: Learning Skills in Reinforcement Learning Using Relative Novelty, pp. 367–374 (2005)

    Google Scholar 

  8. Digney, B.L.: Learning hierarchical control structures for multiple tasks and changing environments. In: Proc. the Fifth International Conference on Simulation of Adaptive Behavior on From Animals to Animals 5, Univ. of Zurich, Zurich, Switzerland (1998)

    Google Scholar 

  9. McGovern, A., Barto, A.G.: Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density. In: Proc. the Eighteenth International Conference on Machine Learning, pp. 361–368 (2001)

    Google Scholar 

  10. Menache, I., Manno, S., Shimkin, N.: Q-Cut - Dynamic Discovery of Sub-goals in Reinforcement Learning. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, p. 295. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Mannor, S., Menache, I., Hoze, A., Klein, U.: Dynamic abstraction in reinforcement learning via clustering. In: Proc. the Twenty-First International Conference on Machine Learning, Banff, Alberta, Canada (2004)

    Google Scholar 

  12. Şimşek, Ö., Wolfe, A.P., Barto, A.G.: Identifying useful subgoals in reinforcement learning by local graph partitioning. In: Proc. The 22nd International Conference on Machine Learning, Bonn, Germany (2005)

    Google Scholar 

  13. Jing, S., Guochang, G., Haibo, L.: Automatic option generation in hierarchical reinforcement learning via immune clustering. In: 1st International Symposium on Systems and Control in Aerospace and Astronautics, ISSCAA 2006, p. 4, p. 500 (2006)

    Google Scholar 

  14. Şimşek, Ö., Barto, A.G.: Skill Characterization Based on Betweenness. In: Advances in Neural Information Processing Systems, vol. 21, pp. 1497–1504 (2009)

    Google Scholar 

  15. Jonsson, A., Barto, A.G.: Automated state abstraction for options using the u-tree algorithm. In: Advances in Neural Information Processing Systems: Proceedings of the 2000 Conference, pp. 1054–1060 (2001)

    Google Scholar 

  16. Elfwing, S., Uchibe, E., Doya, K.: An Evolutionary Approach to Automatic Construction of the Structure in Hierarchical Reinforcement Learning. In: Genetic and Evolutionary Computation, pp. 198–198 (2003)

    Google Scholar 

  17. Jonsson, A., Barto, A.: A causal approach to hierarchical decomposition of factored MDPs. In: Proc. the 22nd International Conference on Machine Learning, Bonn, Germany ( 2005)

    Google Scholar 

  18. Jonsson, A., Barto, A.: Causal Graph Based Decomposition of Factored MDPs. J. Machine Learning, Res. 7, 2259–2301 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Mehta, N., Ray, S., Tadepalli, P., Dietterich, T.G.: Automatic discovery and transfer of MAXQ hierarchies. In: Proc. of the 25th International Conference on Machine Learning, Helsinki, Finland (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Entezari, N., Shiri, M.E., Moradi, P. (2010). A Local Graph Clustering Algorithm for Discovering Subgoals in Reinforcement Learning. In: Kim, Th., Vasilakos, T., Sakurai, K., Xiao, Y., Zhao, G., Ślęzak, D. (eds) Communication and Networking. FGCN 2010. Communications in Computer and Information Science, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17604-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17604-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17603-6

  • Online ISBN: 978-3-642-17604-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics