Skip to main content

Human Authentication Based on ECG Waves Using Radon Transform

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 122))

Abstract

Automated security is one of the major concerns of modern times. Secure and reliable authentication systems are in great demand. A biometric trait like electrocardiogram (ECG) of a person is unique and secure. In this paper, we propose a human authentication system based on ECG waves considering a plotted ECG wave signal as an image. The Radon Transform is applied on the preprocessed ECG image to get a radon image consisting of projections for θ varying from 0o to 180o. The pairwise distance between the columns of Radon image is computed to get a feature vector. Correlation Coefficient between feature vector stored in the database and that of input image is computed to check the authenticity of a person. Then the confusion matrix is generated to find False Acceptance Ratio (FAR) and False Rejection Ratio (FRR). This methodology of authentication is tested on ECG wave data set of 105 individuals taken from Physionet QT Database. The proposed authentication system is found to have FAR of about 3.19% and FRR of about 0.128%. The overall accuracy of the system is found to be 99.85%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Trans. on Circuits Sys. 14(1), 4–20 (2004)

    Google Scholar 

  2. Hegde, C., Manu, S., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.: Secure Authentication using Image Processing and Visual Cryptography for Banking Applications. In: Proc. Int. Conf. on Advanced Computing (ADCOM-2008), pp. 65–72 (December 2008)

    Google Scholar 

  3. Hegde, C., Srinath, U.S., Aravind Kumar, R., Rashmi, D.R., Sathish, S., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.: Ear Pattern Recognition using Centroids and Cross-Points for Robust Authentication. In: Proc. Second Int. Conf. on Intelligent Human and Computer Interaction (IHCI 2010), pp. 378–384 (2010)

    Google Scholar 

  4. Hegde, C., Rahul Prabhu, H., Sagar, D.S., Vishnu Prasad, K., Deepa Shenoy, P., Venugopal, K.R., Patnaik, L.M.: Authentication of Damaged Hand Vein Patterns by Modularization. In: Proc. of IEEE Region Ten Conference, TENCON 2009 (2009)

    Google Scholar 

  5. Sufi, F., Khalil, I., Hu, J.: ECG-Based Authentication. In: Handbook of Information and Communcation Security, pp. 309–331. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Simon, B.P., Eswaran, C.: An ECG Classifier Designed using Modified Decision Based Neural Network. Computers and Biomedical Research 30, 257–272 (1997)

    Article  Google Scholar 

  7. Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG Analysis: A New Approach in Human Identification. IEEE Trans. on Instrumentation and Measurement 50(3), 808–812 (2001)

    Article  Google Scholar 

  8. Esbensen, K., Schonkopf, S., Midtgaard, T.: Multivarate Analysis in Practice, 1st edn., vol. 1 (1997)

    Google Scholar 

  9. Shen, T.W., Tompkins, W.J., Hu, Y.H.: One-Lead ECG for Identity Verification. In: Proc. of Second Joint Conf. of IEEE EMBS/BMES, pp. 62–63 (2002)

    Google Scholar 

  10. Singh, Y.N., Gupta, P.: Biometrics Method for Human Identification using Electrocardiogram. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 1270–1279. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Swamy, P., Jayaraman, S., Girish Chandra, M.: An Improved Method for Digital Time Series Signal Generation from Scanned ECG Records. In: Int. Conf. on Bioinformatics and Biomedical Technology (ICBBT), pp. 400–403 (2010)

    Google Scholar 

  12. Jose, C.R.S., Fred, A.L.N.: A Biometric Identification System based on Thyroid Tissue Echo-Morphology. In: Int. Joint Conf. on Biomedical Engineering Systems and Technologies, pp. 186–193 (2009)

    Google Scholar 

  13. Chen, B., Chandran, V.: Biometric Based Cryptographic Key Generation from Faces. In: Proc. of the 9th Biennial Conf. of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, pp. 394–401 (2007)

    Google Scholar 

  14. Boulgouris, N.V., Chi, Z.X.: Gait Recognition Using Radon Transform and Linear Discriminant Analysis. IEEE Trans. on Image Processing 16(3), 731–740 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ariyapreechakul, P., Covavisaruch, N.: Personal Verification and Identification via Iris Pattern using Radon Transform. In: Proc. of First National Conf. on Computing and Information Technology, pp. 287–292 (2005)

    Google Scholar 

  16. Laguna, P., Mark, R.G., Goldberger, A.L., Moody, G.B.: A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG. Computers in Cardiology, 673–676 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hegde, C., Prabhu, H.R., Sagar, D.S., Shenoy, P.D., Venugopal, K.R., Patnaik, L.M. (2010). Human Authentication Based on ECG Waves Using Radon Transform. In: Kim, Th., Fang, Wc., Khan, M.K., Arnett, K.P., Kang, Hj., Ślęzak, D. (eds) Security Technology, Disaster Recovery and Business Continuity. Communications in Computer and Information Science, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17610-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17610-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17609-8

  • Online ISBN: 978-3-642-17610-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics