
Neighborhood-restricted mining and weighted
application of association rules for recommenders

Fatih Gedikli and Dietmar Jannach

Technische Universität Dortmund,
44227 Dortmund, Germany

{firstname.lastname}@tu-dortmund.de

Abstract. Association rule mining algorithms such as Apriori were orig-
inally developed to automatically detect patterns in sales transactions
and were later on also successfully applied to build collaborative filtering
recommender systems (RS). Such rule mining-based RS not only share
the advantages of other model-based systems such as scalability or ro-
bustness against different attack models, but also have the advantages
that their recommendations are based on a set of comprehensible rules.
In recent years, several improvements to the original Apriori rule min-
ing scheme have been proposed that for example address the problem of
finding rules for rare items. In this paper, we first evaluate the accuracy
of predictions when using the recent IMSApriori algorithm that relies
on multiple minimum-support values instead of one global threshold. In
addition, we propose a new recommendation method that determines
personalized rule sets for each user based on his neighborhood using IM-
SApriori and at recommendation time combines these personalized rule
sets with the neighbors’ rule sets to generate item proposals. The evalua-
tion of the new method on common collaborative filtering data sets shows
that our method outperforms both a standard IMSApriori recommender
and a nearest-neighbor baseline method. The observed improvements in
predictive accuracy are particularly strong for sparse data sets.

1 Introduction

Association rule mining is a popular knowledge discovery technique which was
designed as a method to automatically identify buying patterns in sales trans-
actions, or, in a more broader view, to detect relations between variables in
databases. One of the earliest efficient techniques to find such rules is the Apri-
ori algorithm proposed by Agrawal and Srikant in [AS94]. A common example
of an association rule that could be found in the sales transactions in a super-
market could be [LHM99]:

cheese ⇒ beer [support = 10%, confidence = 80%]
which can be interpreted that in 10% of all transactions beer and cheese were
bought together (support of the rule) and that in 80% of the transactions, in
which cheese was bought, also beer was in the shopping basket (confidence). Con-
fidence and support are thus statistical measures that indicate the “strength” of
the pattern or rule.

Quite obviously, the knowledge encoded in such automatically detected asso-
ciation rules (frequent itemsets) can be exploited to build recommender systems
(RS)1. A simple recommendation algorithm capable of producing a “top-N” list
of items could include the following steps: (1) Use Apriori to detect all associa-
tion rules that surpass a minimum support threshold. These rules can be mined
from real purchase data or from “like” statements in a rating database. (2) Take
those rules that are “supported” by the target user (i.e., where the user has pur-
chased all items on the rule’s left-hand-side) and compute the set of items that
are predicted by those rules and which the user has not yet purchased. (3) Sort
the recommendation list by the confidence values of the involved rules. Early
successful experiments using such a method for recommendation purposes with
a slight variation of the prediction scheme are for example reported in [SKKR00].

Since the rules can be mined in an offline model-learning phase, rule mining-
based approaches do not suffer from scalability problems like memory-based
algorithms [SMB07]. A further advantage of these approaches lies in the fact that
the underlying model, i.e., the set of rules, is explicit and comprehensible to users.
Thus, not only interesting consumer behavior phenomena can be learned from
it, the rules can also be used to explain the recommendations to end users as to
increase the users’ confidence in the system’s proposals. Finally, from a business
perspective, the explicit rule bases can also be easily extended manually with
additional domain knowledge, which is not easily possible with other learning-
based recommendation methods.

While the accuracy of rule mining-based recommenders is comparable to
nearest-neighbor (kNN) collaborative filtering approaches, using the original
Apriori algorithm can lead to the problem of reduced coverage as shown in
[SMB07]. This phenomenon can be caused by the usage of a global minimum
support threshold in the mining process, which leads to the effect that no rules
for rare items can be found. Lin et al. [LAR02] therefore propose an “adaptive-
support” method, in which the minimum support value is determined individ-
ually for each user or item (depending on whether item associations or user
associations are used). Their experiments show a slight increase in accuracy
when compared with the baseline kNN-method.

More recently, Kiran and Reddy [KR09] proposed a new method called IM-
SApriori that uses a particular metric to determine appropriate minimum sup-
port values per item (see also [LHM99]) in order to mine rare itemsets; their
experiments indicate that this method is better suited to mine rare itemsets
than previous methods. An evaluation of the approach for recommendation pur-
poses has however not been done so far.

In this work, we evaluate the predictive accuracy of a recommender system
based on the IMSApriori algorithm and describe our extension to the Frequent
Itemset Graph used in [NM03b] for enabling a fast recommendation process. In
addition, we propose a new scheme for association rule-based recommendation
called NRR (Neighborhood-restricted Rule-based Recommender), which is based
on the idea to learn a personalized set of rules for each user based on his nearest

1 See [AT05] for an overview.

neighbors and not on the whole database of transactions, see also [Zan08]. Similar
to kNN-approaches, the underlying idea of this is that close neighbors will be
better predictors than others. The user’s personalized knowledge base is then
combined with the rule sets of his nearest neighbors to generate recommendation
lists.

The paper is organized as follows. After an example and the introduction of
the basics of the used rule mining methods, we describe our NRR method to
learn personalized rule learning and prediction generation in detail. Afterwards,
the results of an evaluation on typical CF data sets with different density levels
and parameter settings are discussed. The paper ends with a conclusion and a
short discussion of further works.

2 Example

Let us illustrate the different ideas in this paper with a simplified example.
Consider the rating database in Figure 1 in which a “1” indicates that a user
liked or purchased an item, a “0” corresponds to a dislike statement. Empty cells
mean that no information is available. Let us assume that our goal is to make a
recommendation for User1.

Item 1 Item 2 Item 3 Item 4 … Item 6 Item 7 Item 8

User 1 1 0 1 0 … ? ? ?

User 2 1 0 1 0 … 1

User 3 1 0 1 0 … 1

User 4 1 0 1 1 … 1 1

User 5 1 0 1 1 … 1

User 6 1 1 1 1 … 1

… … … … … … … … …

r1

r2

Rare item

Fig. 1. Example setting for personalized rule bases.

Among others, a rule mining algorithm could detect rules such as
r1: Item1, Item3 ⇒ Item6 [support = 33%, confidence = 33%] and
r2: Item1 ⇒ Item8 [support = 50%, confidence = 50%]

where the second rule is “stronger” as it is supported by more evidence. Note that
Item7 is a “rare” item, i.e., only few ratings (in that simplified case only one) are
available. When using the standard Apriori algorithm, a global minimum support
threshold value is used in order to avoid the effect of “rule explosion”. This
however leads to the effect, that no rules can be learned for rare items because
they never reach the global threshold value. Thus, as mentioned above, variations
to the Apriori scheme like IMSApriori have been developed that employ multiple
minimal support values to take the relative frequency of the items into account.

When making a prediction based on the standard scheme described in the
introduction, both rule r1 and r2 apply as User1 has rated both Item1 and Item3
positively. Since the confidence value of r2 is the higher one, the recommender
would recommend Item8 (place Item8 before Item6 in the recommendation list).
The idea in our approach however is that closer neighbors are better predictors
than other users. In the example, it could therefore be a good idea to recommend
Item6 because rule r1 is supported by the ratings of User2 and User3 who are
very similar to the target user User1 in their rating behavior (in that case even
identical).

The NRR method proposed in this paper works as follows. First, we learn a
personalized set of rules for each user by taking only the n closest neighbors into
account. In an extreme setting, we could only use the ratings of User2 and User3
for learning the rules for User1. In that case, rule r1 would be learned. The rule
base for User4, on the other hand, would probably also include r2. When again
applying the standard prediction scheme, Item6 would now be recommended for
User1 as intended. However, the coverage of that approach could be very limited.
Thus, we propose a neighborhood-based prediction scheme, in which also the
rules of the neighbors are taken into account. When recommending items for
User1 we would therefore use the rules of User2 and User3, but probably also
those of User4 (which include the rule r2). In that case, coverage is increased
again. At the same time - if we give limited weights to rules of farther-away
neighbors - r1 can remain the dominating rule and cause Item6 to be at the top
of the recommendation list without losing the other rules.

3 Algorithms

In the following we will shortly summarize the rough ideas of the used rule mining
approaches Apriori and IMSApriori in order to give the reader a quick overview
of the algorithm parameters that were varied in the experimental evaluation.
In addition, we will describe how the Frequent Itemset Graph proposed, e.g., in
[NM03b], has to be extended for a recommender based on IMSApriori.

Apriori. The original Apriori algorithm [AS94] works by iteratively generating a
set of candidate itemsets in multiple phases. In our example above, it will start by
constructing one-element itemsets, such as {Item1} and {Item2}, and then check
if these itemsets have minimum support, where the support of an itemsetX ⇒ Y
is defined as the ratio of the number of transactions containing X ∪ Y to the
number of all transactions. Itemsets that have not enough support are pruned. In
the next phase, the remaining itemsets are combined with one more (frequent)
element and checked against the database. This process is repeated until no
more candidates can be generated. Overall, one of the ideas of the algorithm’s
implementation is that “any subset of a large itemset must be large”2 [AS94].

2 Frequent itemsets were originally called large itemsets.

Once all frequent itemsets are detected, association rule mining approaches
use further quality metrics to measure the significance of the detected rules. The

confidence of a rule X ⇒ Y is defined as support(X∪Y)
support(X) , which is a common metric

to prune uninteresting rules. The threshold values for minimum confidence and
support are often empirically determined and have to be specified by the user.

IMSApriori. In order to deal with the problem of “missing rules” for rare, but
interesting itemsets, different proposals have been made. IMSApriori [KR09],
which is used in this work, is a very recent one that builds on the idea of having
several minimum support thresholds, an idea also proposed earlier as MSapriori
in [LHM99]. The general idea is to calculate a minimum item support (MIS) value
for each item with the goal to use a lower support threshold for rare itemsets. In
[LHM99] a user-specified value β (between 0 and 1) is used to calculate a MIS
value based on the item’s support and a lower support threshold value LS as
MIS(item) = max(β×support(item), LS). In order to be counted as a frequent
itemset, itemsets containing only frequent items have to pass a higher minimum
support threshold than itemsets consisting of frequent and rare or only rare
items. Thus, rare itemsets are found when using a low value for LS while at the
same time not too many uninteresting, but more frequent rules are accepted.

Recently, in [KR09], a different approach to calculate the MIS values was
proposed because MSapriori fails to detect rare itemsets in situations with
largely varying item support values. This phenomenon can be attributed to
the fact that due to the constant proportional factor β the difference between
the item support and the MIS value decreases when we move from frequent to
rare items. The main idea of the improved MSapriori (IMSApriori) is therefore
the use of the concept of “support difference” (SD) to calculate MIS values as
MIS(item) = max(support(item)−SD,LS). SD is calculated as SD = λ(1−α),
where λ is a parameter “like mean, median, mode, maximum support of the item
supports” and α is a parameter between 0 and 1. The net effect of the support
difference concept is that the difference between item support values and the MIS
values remains constant so that rare items can also be found in data sets with
strongly varying item supports. Finally, an itemset is considered to be frequent
if its support is higher than the minimum of the MIS values of its components.
Regarding the generation of candidates, it has to be noted that the Apriori as-
sumption that all subsets of frequent itemsets are also frequent does not hold
and that a different algorithm for finding frequent itemsets has to be used.

Neighborhood-restricted Rule-based Recommender (NRR). As shown
in the example, the idea of the herein proposed NRR algorithm is to learn
personalized rule sets for each user in an offline phase and to exploit these rule
sets in combination with the neighbor’s rule sets to generate more accurate
predictions. The algorithm is summarized in Algorithm 1. The parameters of
the algorithm include – beside the IMSApriori parameters – two neighborhood
sizes (for rule learning and for the prediction phase). In the online phase, the
calculated user-specific frequent itemsets (UserFISs) of the target user and of the

neighbors of the target user are used to calculate predictions using the Extended
Frequent Itemset Graph (EFIG) which is introduced in the next section. The
resulting confidence scores are weighted according to the similarity of the target
user and the neighbor (using Pearson correlation as a metric). These user-specific
predictions are finally combined and sorted by the weighted confidence scores.

Algorithm 1 NRR algorithm (sketch).

In: user, ratingDB, learnNeighborSize, predictNeighborSize, λ, α
Out: recommendedItems
(Offline:) UserFISs = CalcUserFISsIMSApriori(ratingDB, learnNeighborSize, λ, α)
neighborhood = user ∪ findNeighbors(user, predictNeighborSize, ratingDB)
recommendedItems = ∅
for all u ∈ neighborhood do

userRecs = Recommend(u,buildEFIG(UserFISs(u)))
weightedUserRecs = adjustConfidenceScoresBySimilarity(userRecs, user, u)
recommendedItems = recommendedItems ∪ weightedUserRecs

end for
recommendedItems = sortItemsByAdjustedScores(recommendedItems)

The Extended Frequent Itemset Graph. The Frequent Itemset Graph
(FIG) as proposed in [MDLN01] is a data structure to organize the frequent
itemsets in a way that allows us to generate recommendations directly from the
frequent itemsets (i.e., without the need to derive all association rules first). Fig-
ure 3(a) shows such a graph in which the elements of the frequent itemsets are
lexicographically sorted and organized in a tree structure where the size of the
itemsets are increased on each level. Given, for example, a set of past transac-
tions T = {A,D} of user u, recommendations can be produced by traversing the
tree in depth-first order and looking for supersets of {A,D} in the next level of
the graph. In the example, given the superset {A,D}, C could be recommended
to u. The solid arrows in the figure indicate how the graph would be traversed
in depth-first order.

Since, however, the assumption that “any subset of a frequent itemset must
be frequent” does not hold when using multiple minimum-support values, the
standard FIG-based method has to be extended. Let us assume that in the
example Figure 3(a) the itemsets {D} and {C,D} are not frequent, although
they are subsets of the frequent itemset {A,D} and {A,C,D} respectively. We
could therefore not recommend {A} to users who purchased {C,D} or {D} alone
although this would be plausible.

In our work, we solve this problem by extending the FIG in a way that it
also contains all subsets of the frequent itemsets and connect these additional
nodes with their supersets as shown in Figure 3(b). In order to find frequent
itemsets like {A,C,D} from {C,D} we re-start the depth-first search on the
not-yet-visited parts of the subgraph beginning from the additional nodes. Note

(a) Example for an Frequent Itemset Graph. (b) Example for an Extended Frequent Item-
set Graph.

Fig. 2. Extended Frequent Itemset Graph approach.

that the negative effects on the scalability of the approach itself are very limited,
because only small portions of the graph have to be analyzed in these additional
traversals.

4 Experimental Evaluation

The proposed NRR algorithm has been evaluated in an experimental study on
different data sets. In particular, the predictive accuracy was measured using
different sparsity levels and compared to (a) a recommender based on IMSApriori
and a classical prediction scheme and (b) the standard correlation-based kNN-
method. In the following, we will summarize the findings of this evaluation.

4.1 Experimental Setup and Evaluation Metrics

Data sets. As data sets for the evaluation, we used the 100k-MovieLens rating
database consisting of 100,000 ratings provided by 943 users on 1,682 items and
a snapshot of the Yahoo!Movies data set containing 211,231 ratings provided by
7,642 users on 11,915 items3. Regarding the user characteristics, the MovieLens
data set only contains users who have rated at least 20 items; the minimum
number of rated items per user in the Yahoo! data set is 10. In addition, in the
Yahoo! data set, each item was at least rated by one user.

In order to test our NRR scheme also in settings with low data density, we
varied the density level of the original data sets by using subsamples of different
sizes of the original data set as described in [SKKR01]. The smallest subsample
contained 10% of the original data. In this subsample, the average number of
ratings per user was around 10 as opposed to 100 for the original MovieLens
data set. Further measurements were taken in steps of 10% up to the 90% data

3 http://www.grouplens.org/node/73, http://webscope.sandbox.yahoo.com

set. Four-fold cross-validation was performed for each data set; in each round,
the data sets were split into a 75% training set and a 25% test set.

Accuracy metrics. In the study, we aim to compare the predictive accuracy of
two rule mining-based methods and the kNN-method. We follow the evaluation
procedure proposed in [NM03a] and proceed as follows. First, we determine the
set of existing “like” statements (ELS) in the 25% test set and retrieve a top-
N recommendation list of length |ELS| with each method based on the data
in the training set4. In the kNN-case, the rating predictions are converted into
“like” statements as described in [SMB07], where ratings above the user’s mean
rating are interpreted as “like” statements. The set of predicted like statements
returned by a recommender shall be denoted as Predicted Like Statements (PLS),
where |PLS| ≤ |ELS|.

We use standard information retrieval accuracy metrics in our evaluation.

Precision is defined as |PLS ∩ ELS|
|PLS| and measures the number of correct predic-

tions in PLS. Recall5 is measured as |PLS ∩ ELS|
|ELS| and describes how many of

the existing “like” statements were found by the recommender.
In the evaluation procedure, recommendations and the corresponding pre-

cision and recall values were calculated for all users in the data set and then
averaged. These averaged precision and recall values are then combined in the
usual F-score, where F = 2 ∗ precision∗recall

precision+recall .

Algorithm details and parameters. Regarding the algorithms, note that
we used Pearson correlation as a similarity metric both for the kNN-baseline
method and for determining the neighborhood in the NRR algorithm. For the
kNN-method, we additionally applied default voting and used a neighborhood-
size of 30, which was determined as an optimal choice in [SKKR01].

The IMSApriori implementation used in the experiments corresponds to
above-described algorithm and learns the rules from the whole database of trans-
actions. Recommendations are generated by using the Extended Frequent Item-
set Graph structure.

For the NRR method, two further parameters can be varied: neighborhood-
size-learn is the number of neighbors used to learn association rules; neighborhood-
size-predict determines on how many neighbors the predictions should be based.
The sensitivity of these parameters were analyzed by conducting multiple ex-
periments on the MovieLens data set with a fixed density level of 70%. The
value of the parameter neighborhood-size-predict was empirically determined to
be 100, see Figure 3 (a). To analyze the sensitivity of this parameter, we per-
formed experiments in which we varied the number of neighbors used for making
predictions and fixed the parameter neighborhood-size-learn at 30 as suggested
as an optimal value for this data set in literature.

4 The top-N recommendation lists are created either based on the confidence of the
producing rule or based on the prediction score of the kNN-method.

5 In [NM03a], this metric is called coverage.

We can observe from the figure that the recall value increases from 46% to
61% when moving from a prediction neighborhood size of 10 to 100. At the same
time, the precision value stays rather constant at 65% and does not decrease.
Afterwards, we fixed the parameter neighborhood-size-predict at 100 and ana-
lyzed the sensitivity of neighborhood-size-learn, see Figure 3 (b). It can be seen
that the initial value of 30 was actually a good choice for this parameter.

40

45

50

55

60

65

70

40%

45%

50%

55%

60%

65%

70%

10 20 30 40 50 60 70 80 90 100 110 120

F1

P
re

ci
si

o
n

/R
e

ca
ll

(a) neighborhood-size-predict

Precision Recall F1

40

45

50

55

60

65

70

40%

45%

50%

55%

60%

65%

70%

10 20 30 40 50 60 70 80 90 100 110 120

F1

P
re

ci
si

o
n

/R
e

ca
ll

(b) neighborhood-size-learn

Precision Recall F1

Fig. 3. Sensitivity of the parameters neighborhood-size-predict (a) and -learn (b).

Finding a suitable lower support threshold value (LS) for the rule learning
methods is challenging. In [MDLN01], the authors argue that higher LS values
are in general more desirable because they lead to a smaller model size, as the
number of frequent itemsets decreases, which in turn leads to good scalability.
Higher LS values however may lead to the effect that no rules for rare items can
be found.

In addition, remember that in IMSApriori-based algorithms the minimum
item support MIS for each item has to be at least LS, i.e., MIS(i) >= LS,
for each item i. Therefore, when using a high global LS value, the problem
can arise that each item gets the same MIS value, i.e., the value of the global
minimum support threshold LS. As a consequence, the IMSApriori algorithm
would behave like the standard Apriori algorithm which uses one global lower
support threshold value. Note that this phenomenon can also appear when the
density level of the data set is very low. A low density level implies low item
support values, which can result in MIS values that are below the LS value.

In order to establish fair conditions in our study, we have used individual,
empirically-determined LS values for each rule learning algorithm (IMSApriori:
3%; NRR: 19%), which we have then used for all density levels and data sets6.

Regarding computational complexity, the proposed NRR algorithm runs the
IMSApriori algorithm once for each user, which can be done offline during the
model building phase. Each IMSApriori execution however only has to consider a

6 Our current work includes a more detailed analysis of optimal parameter values for
specific density levels.

relatively small fraction of the whole database of transactions, or, more precisely,
at most neighborhood-size-learn transactions, when learning rules. On a standard
desktop computer (Intel Core 2 Duo CPU, 2.4 GHz, 3GB RAM), learning the
rules for all users takes about 11 minutes for the MovieLens data set at a density
level of 70%. The size of the resulting model is determined by the number of ex-
isting frequent itemsets. In the baseline IMSApriori recommender, 316 frequent
itemsets were found. When using the NRR algorithm, the average model size is
about 45 frequent itemsets for each user (MovieLens data set, density-level of
70%). The model size of course strongly depends on the selected LS values.

Results. Figure 4 summarizes the evaluation results for the three algorithms
kNN, IMSApriori and NRR. The table shows the average values of the F-score
as well as the precision and recall values for the different density levels for both
the MovieLens and the Yahoo! data set.

Fig. 4. Overall average F1, precision and recall values for different density levels.

The results show that our NRR algorithm consistently outperforms the kNN
algorithm on the F1-measure and is better than the IMSApriori method in nearly
all settings for both data sets. The observed accuracy improvements are partic-
ularly high for low density levels, i.e., for sparse data sets. With higher density
levels, the relative improvements become smaller for both data sets. As a side-
observation, we can see that in settings with medium and higher density levels,
also the pure IMSApriori version outperforms the kNN-method, which was not
analyzed in previous research. Note that the accuracy gains are stronger for

the MovieLens data set, which can be partially attributed to the fact that the
optimal parameters were empirically determined based on this data set.

A closer look at the precision and recall values shows that NRR has particular
advantages with respect to the recall measure, i.e., NRR is capable of retrieving
more relevant items than the other algorithms while at the same time precision
values remain at a comparably high level. Again, this effect is particularly strong
when the data sets are very sparse, which is a common situation in most real-
world settings.

5 Summary

Association rule mining is a powerful method that has been successfully used for
various personalization and recommendation tasks in the past; see for example
its recent application for social tag prediction ([HRGM08], [WHD09]).

In this paper we have shown how the personalization of the learned model
in rule mining-based approaches to recommendation can help to increase the
accuracy of the system’s prediction while at the same time the advantages of
model-based approaches such as robustness against attacks and the possibility
to generate explanations can be preserved.

Additional computational costs for the personalization task arise only in the
offline phase in which multiple smaller frequent itemset collections are computed
instead of one large one. At run-time, data structures such as the Extended
Frequent Itemset Graph can be used to efficiently generate recommendations
online. Furthermore, given the explicit and comprehensible nature of the frequent
itemsets, these (personalized) frequent itemsets can be easily manually extended
with additional manually-engineered domain rules.

Our future work includes the evaluation of our approach on further data sets
and a comparison with further algorithms. In addition, in our current work, we
conduct experiments in which we first perform probabilistic clustering on the
user base and then mine the frequent itemsets for each cluster. While we might
not expect significant accuracy gains, this approach will lead to a substantially
reduced model size which further improves the scalability of our approach. In
addition, the neighborhood-size parameter will not be required in the training
phase when a method like AutoClass [CKS+93] is used to determine the optimal
number of clusters automatically.

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant, Fast algorithms for mining as-
sociation rules in large databases, Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB’94) (Santiago de Chile,
Chile), 1994, pp. 487–499.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin, Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions, IEEE Transactions on Knowledge and Data Engineering 17
(2005), no. 6, 734–749.

[CKS+93] Peter Cheeseman, James Kelly, Matthew Self, John Stutz, Will Taylor,
and Don Freeman, Autoclass: A bayesian classification system, Readings
in knowledge acquisition and learning: automating the construction and
improvement of expert systems, Morgan Kaufmann, 1993, pp. 431–441.

[HRGM08] Paul Heymann, Daniel Ramage, and Hector Garcia-Molina, Social tag pre-
diction, Proceedings 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR’08) (Singapore,
Singapore), 2008, pp. 531–538.

[KR09] R. Uday Kiran and P. Krishna Reddy, An improved multiple minimum
support based approach to mine rare association rules, Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining, CIDM
2009 (Nashville, TN, USA), 2009, pp. 340–347.

[LAR02] W. Lin, S. Alvarez, and C. Ruiz, Efficient adaptive-support association rule
mining for recommender systems, Data Mining and Knowledge Discovery
6 (2002), 83–105.

[LHM99] Bing Liu, Wynne Hsu, and Yiming Ma, Mining association rules with mul-
tiple minimum supports, Proceedings of the 5th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD’99) (San
Diego, CA, United States), 1999, pp. 337–341.

[MDLN01] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa, Effective
personalization based on association rule discovery from web usage data,
Proceedings of the 3rd International Workshop on Web Information and
Data Management (WIDM’01) (Atlanta, Georgia, USA), 2001, pp. 9–15.

[NM03a] Miki Nakagawa and Bamshad Mobasher, A hybrid web personalization
model based on site connectivity, Proceedings of the 2003 WebKDD Work-
shop (Washington, DC, USA), 2003, pp. 59–70.

[NM03b] , Impact of site characteristics on recommendation models based
on association rules and sequential patterns, Proceedings of the IJCAI’03
Workshop on Intelligent Techniques for Web Personalization (Acapulco,
Mexico), 2003.

[SKKR00] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl, Analysis
of recommendation algorithms for e-commerce, Proceedings of the 2nd ACM
Conference on Electronic Commerce (EC’00) (Minneapolis, MN, USA),
2000, pp. 158–167.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl, Item-
based collaborative filtering recommendation algorithms, Proceedings of the
10th International Conference on World Wide Web (WWW’01) (Hong
Kong), 2001, pp. 285–295.

[SMB07] J. J. Sandvig, Bamshad Mobasher, and Robin Burke, Robustness of col-
laborative recommendation based on association rule mining, Proceedings
of the 2007 ACM Conference on Recommender Systems (RecSys’07) (Min-
neapolis, MN, USA), 2007, pp. 105–112.

[WHD09] Jian Wang, Liangjie Hong, and Brian D. Davison, Tag recommendation us-
ing keywords and association rules (RSDC’09), ECML PKDD Discovery
Challenge 2009 (DC09) (Bled, Slovenia), vol. 497, CEUR Workshop Pro-
ceedings, 2009, pp. 261–274.

[Zan08] Markus Zanker, A collaborative constraint-based meta-level recommender,
Proceedings of the 2008 ACM Conference on Recommender Systems (Rec-
Sys’08) (Lausanne, Switzerland), 2008, pp. 139–146.

