
Synchronising Personal Data with
Web 2.0 Data Sources

Stefania Leone, Michael Grossniklaus,
Alexandre de Spindler, and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{leone|grossniklaus|despindler|norrie}@inf.ethz.ch

Abstract. Web 2.0 users may publish a rich variety of personal data
to a number of sites by uploading personal desktop data or actually
creating it on the Web 2.0 site. We present a framework and tools that
address the resulting problems of information fragmentation and fragility
by providing users with fine grain control over the processes of publishing
and importing Web 2.0 data.

1 Introduction

An increasing amount of personal data is being published on Web 2.0 sites
such as Facebook and Flickr as well as various forms of discussion forums and
blogs. These sites provide easy-to-use solutions for sharing data with friends
and user communities, and consumers of that data can contribute to the body
of information through actions such as tagging, linking and writing comments.
Sometimes, Web 2.0 sites also take over the primary role of managing a user’s
personal data by providing simple tools for creating, storing, organising and
retrieving data, even when users are on the move.

Desktop applications for multimedia processing such as Adobe Photoshop
Lightroom provide tools to support the publishing process. There is also an
increasing number of tools to support cross publishing, meaning that information
posted on one site is published automatically to another. For example, WordPress
allows information published on Twitter to be automatically published as a blog
article and vice versa. Although such tools facilitate the publishing process, they
are only available for certain types of data and applications. Further, since it is
now typical for active users of Web 2.0 sites to publish data to many different
sites, they need to learn to use a variety of publishing tools, some of which
require manual activation while others are fully automated.

Another problem is the fragility of information managed solely by Web 2.0
sites since many of these sites are considered to have an uncertain future. For
example, the expenses incurred by YouTube far exceed their advertisement rev-
enues which has led to speculation about its future [1]. It may therefore be
desirable to import data from Web 2.0 sites into desktop applications to ensure
offline and/or long-term access.

http://nbn-resolving.de/urn:nbn:de:bsz:352-259460

2 S. Leone et al.

To address these issues, there is a need for a single, general tool to support
the processes of publishing and importing Web 2.0 data across applications.
It should be easy to specify new synchronisation processes and data mappings
through a graphical user interface. In addition, it should be possible to integrate
existing tools for publishing and cross publishing, while allowing users to con-
trol the actual synchronisation processes. As a first step in this direction, we
have developed a synchronisation framework which allows users to synchronise
personal data with one or more Web 2.0 sites based in a plug-and-play style of
selecting and configuring synchronisation modules.

Section 2 discusses the background to this work, while Sect. 3 provides an
overview of our approach. Section 4 examines support for the required data
mappings. Details of the synchronisation engine are given in Sect. 5. Concluding
remarks are given in Sect. 6.

2 Background

Nowadays, it is common for users to manage a wide variety of personal infor-
mation using a mix of desktop applications and Web 2.0 services. Data is often
replicated with a user keeping a copy on the desktop as well as publishing it on
one or more Web 2.0 sites. For example, a version of a photo may be published
on Facebook and Flickr, and a friend on Facebook may also be connected to on
LinkedIn. In other cases, the data is created and managed using the Web 2.0
service, leaving the user entirely dependent on that service for access to the data.

While Web 2.0 services offer many advantages over traditional desktop appli-
cations in terms of data sharing and ubiquitous access, there are also drawbacks
resulting from the fragmented management of personal data across desktop ap-
plications and Web 2.0 services. To address this problem, researchers have pro-
posed different ways of providing file system services over Web 2.0 data sources.
One approach is to propose that Web 2.0 applications should use independent
file system services [2] rather than managing their own data. A less radical ap-
proach is to propose a software layer that supports an integrated file system
view of a user’s data based on a common interface to Web 2.0 services [3]. In
both cases, naming and security are major issues. There are also efforts in the
industry sector to promote open protocols and standards such as DataPortabil-
ity.org. OpenLink Data Spaces1 (ODS) implements the recommendation from
DataPortability.org and offers several components for personal data manage-
ment such as an address book and picture gallery as well as integration with
applications such as Facebook.

Other researchers have addressed the problem of extracting and aggregating
data from Web 2.0 services, for example [4–6]. While these approaches mostly use
data extraction techniques for gathering data, many Web 2.0 platforms nowadays
provide an API which provides access to platform data. We note that a number
of commercial data aggregator services are available for news, blogs and social

1 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/Ods

Synchronising Personal Data with Web 2.0 Data Sources 3

networking data, e.g. FriendFeed2. Content aggregator services such as GNIP3

act as an intermediate data aggregator between Web 2.0 services and applications
by offering developers a uniform API and polling services.

While these projects provide partial solutions, they do not deal with issues of
data replication and volatility. Also, they pay little attention to the publishing
process or the need to import Web 2.0 data in order to ensure both offline and
long-term access. Further, in cases where data synchronisation is supported, it
tends to be hard-wired in the sense that the developer predefines data mappings
and means of handling conflict resolution.

Web 2.0 platforms provide opportunities to address data synchronisation
issues in a novel way by passing greater responsibilities, and hence more control,
to the user. Just as users have become actively involved in, not only the creation
and sharing of content, but also the development and integration of applications,
they should be empowered to take decisions on what, when and how data should
be synchronised in order to meet their own information needs. Therefore, rather
than providing a fully automated and transparent solution, we believe that it
is important to provide a flexible and configurable framework that gives users
the freedom to either select synchronisation modules developed/configured by
others or to develop/configure their own modules.

3 Synchronisation Framework

Our synchronisation framework allows users to control all synchronisation of
personal data with Web 2.0 data in a single place. In Fig. 1, we present an
overview of the architecture of the framework. It consists of a synchronisation
engine, a number of synchronisation modules and some utilities, and exposes
an API that offers the synchronisation functionality. A synchronisation module
defines a particular synchronisation process in terms of internal and external
synchronisation endpoints, a data mapping and a synchronisation algorithm.

The synchronisation endpoints are adapters to data sources and encapsu-
late the access to these sources. An external synchronisation endpoint is the
conceptual representation of a Web 2.0 data source that includes information
about the data source’s data model as well as other synchronisation specific
information such as access and authentication characteristics. We make use of
the APIs offered by Web 2.0 applications such as Facebook and Flickr to imple-
ment synchronisation endpoints and access their data. These platforms usually
expose their data and functionality through REST-based APIs. An internal syn-
chronisation endpoint is the conceptual representation of a desktop application.
The framework is extensible in that synchronisation with additional external
and internal data sources can easily be implemented by adding an associated
synchronisation endpoint.

The synchronisation engine is responsible for the actual synchronisation pro-
cess. It first configures the synchronisation process based on the specification

2 http://friendfeed.com
3 http://www.gnip.com/

4 S. Leone et al.

Synchronisation Framework

Synchronisation Engine

Desktop
Personal Data

Pictures, Contacts,...

Application

Application Programming Interface (API)

Web 2.0
Data Sources

Flickr, Facebook,...

Social
API

Module
Repository

Utils

API

REST/HTTP

Synchronisation Module

External
Synchronisation

Endpoint

Synchronisation Algorithm

Internal
Synchronisation

Endpoint

Data
Mapping

Synchronisation Module

External
Synchronisation

Endpoint

Synchronisation Algorithm

Internal
Synchronisation

Endpoint

Data
Mapping

Fig. 1. Architecture of the synchronisation framework

provided by the synchronisation module and then executes it. The synchronisa-
tion module defines a mapping between the data models of the two data sources
and also a synchronisation algorithm. Additionally, it specifies other configura-
tion information such as when the synchronisation process should be executed
and a conflict resolution strategy. Default mappings and specifications of the
synchronisation processes are provided, but users can choose and configure a
synchronisation module for a pair of endpoints or even develop their own.

Note that the distinction between internal and external endpoints is some-
what artificial, since the framework can be used to synchronise any two data
sources. Thus, it could be used to support cross-publishing between two differ-
ent Web 2.0 data sources such as Twitter and Facebook as well as between two
desktop applications. However, since our main goal was to investigate support for
publishing and importing Web 2.0 data, we have focussed so far on synchronising
desktop data with social networking sites such as Facebook and Flickr.

4 Data Access and Data Mappings

The synchronisation endpoints provide access to Web 2.0 data sources through
their APIs. While the Facebook API4, Microsoft Live Services5 and Flickr Ser-
vices6 are all platform-specific, the Google OpenSocial API7 is a common API
which can be implemented by any Web 2.0 service. Although several well-known
social networking platforms, e.g. LinkedIn, implement the OpenSocial API, they
usually implement only part of the API since many features are optional.

Some APIs only provide access to a platform’s data while others allow ap-
plications or external data to be integrated. For example, Facebook allows users
to publish their own applications developed using either the Facebook Markup

4 http://developers.facebook.com/
5 http://dev.live.com
6 http://www.flickr.com/services/api/
7 http://code.google.com/apis/opensocial/

Synchronising Personal Data with Web 2.0 Data Sources 5

Language (FBML) and Facebook Query Language (FQL) or a general program-
ming language such as Java, PHP or Visual Basic. Similarly, services such as
Orkut that implement the OpenSocial API can be extended by building gadgets
using Google Gadget technology8.

While Facebook and LinkedIn target different audiences and therefore offer
different kinds of data and services, the data accessible through the APIs is
actually quite similar in terms of the concepts and attributes. The main difference
lies in “additional” attributes that can be associated with friends in the case of
Facebook and business contacts for LinkedIn. Application developers are highly
dependent on what the APIs offer in terms of functionality and data access.
In the case of Facebook, a developer has read access to user profiles as well as
to their immediate network of friends. However, the OpenSocial API offered by
LinkedIn can only be used upon approval.

The data models for many Web 2.0 sites tend to be quite similar and also
relatively simple and modular. Consequently, the data mappings between syn-
chronisation endpoints tend to be much simpler than typical data integration
scenarios tackled by the information systems community. This is something that
we have been able to exploit in the data mapping tools provided for develop-
ers of synchronisation modules. We now describe how a data mapping between
Outlook contacts and Facebook could be specified using our mapping tool.

Figure 2 shows parts of the two data models represented as ER models.
The Outlook contact model shown on the left has a Contact entity which de-
fines attributes such as Full Name, Birth Date, Home Address and Business

Address. The central entity of the Facebook model shown on the right is User

which defines attributes such as Birthday, Name and HomeTown. A user can be
a member of one or more Groups and has a work history, which is a sequence of
WorkInfo entities.

User

friend

Name Brithday

Home
Town

Group

member

Name

Contact

Full
Name

Home
Street

Home
City

Business
City

Business
Street

Email

Email2

Email3 ...

Last
Name

Activities

Birth
Date First

Name

WorkInfo

Work
History

Fig. 2. Simplified Outlook and Facebook data models

The actual synchronisation of data is performed over data collections. To
create a mapping between the data models, the collections of data to be synchro-
nised must first be specified. Assume that we want to synchronise the collection
of all contacts in Outlook with the collection of friends in Facebook. Using our
mapping tool, we could define a mapping between the corresponding entity types

8 http://code.google.com/apis/gadgets/

6 S. Leone et al.

contact and user as shown in the screenshot in Fig. 3. The two data models are
represented as tree structures, with the Outlook data model in the left window
and that of Facebook on the right. Types and attributes can be mapped by sim-
ply dragging and dropping the tree nodes from one model over those of the other
model. When creating such a mapping, the system checks whether the types of
the two nodes are compatible. Basic transformations are done automatically by
the system. For more complex transformations, the user has to select one of the
provided data transformers.

The highlighted mapping defines a mapping between the attribute fullName

of the local contact type to the attribute name of the Facebook User type. In the
lower part of the screenshot, the navigation paths of that specific mapping are
displayed. Note that the Facebook User type defines both attributes firstName
and lastName as well as a composed name attribute. Since the local contact type
only offers a composed fullName attribute, we chose the latter for the mapping.
Attributes and entities which are mapped are tagged with a small lock label.

Fig. 3. Mapping tool screenshot

Structural mappings, such as mapping the first entity of Facebook’s Work-

History list to the business information in Outlook represented as a set of
attributes defining an organisation’s address, can also be performed.

5 Implementation

Figure 4 shows a simplified UML diagram of the system architecture. The syn-
chronisation engine SyncEngine is the heart of the system and handles the syn-
chronisation process. Parts of its functionality are extracted into configuration
and synchronisation strategy objects allowing the engine to be adapted to the
needs of an application and simplifying the implementation of extensions. A
synchronisation strategy is a class that implements the interface SyncStrategy

Synchronising Personal Data with Web 2.0 Data Sources 7

+getName()
+getDataModel()
+authenticate()
+isReadable()
+isWritable()
+getCollections()
+createObject()
+addToCollection()
+removeFromCollection()
+store()

«interface»
SyncEndpoint

+reconcileConflict()

«interface»
RecStrategy

CallbackStrategy
-callback

WinnerStrategy
-winner

+synchroniseSets()

«interface»
SyncStrategy

+synchronise()

«interface»
SyncEngine

+getMode()
+getPeriodicity()
+getInternal()
+getExternal()
+getStrategy()

«interface»
SyncConfig

+transform()

«interface»
ValueTransformer

FacebookSyncEndpoint OutlookSyncEndpoint

DefaultSyncEngine

SyncStrategyImpl

Fig. 4. Synchronisation framework UML diagram

and provides the actual synchronisation algorithm. We provide a naive synchro-
nisation algorithm SyncStrategyImpl as default strategy but new strategies
can easily be added by developing a class that implements the SyncStrategy

interface.
SyncEngine uses SyncConfig to configure the synchronisation process. A

SyncConfig object is associated with two SyncEndpoint objects internal and
a reconciliation strategy object RecStrategy as well as configuration parame-
ters such as periodicity and mode. Classes that implement the RecStrategy

interface offer a strategy to handle conflicts that arise when synchronising. Cur-
rently, we provide two strategies. The WinnerStrategy can be configured to give
priority to one of the endpoints, while the CallbackStrategy propagates the
conflict resolution task to the user. Other conflict resolution strategies can be
added by developing classes implementing the RecStrategy interface.

Synchronisation endpoints can be added by implementing the SyncEndpoint
interface. An endpoint provides access to the data source’s objects via one or
more collections that group these objects. In our example, the Facebook end-
point offers access to a single collection friends, but a developer could use two
collections, one for close friends and one for acquaintances.

Objects can be created as well as added to and removed from the actual
collection to be synchronised. In order to synchronise data in an efficient way,
synchronisation endpoints represent their data in a intermediate and uniform for-
mat based on object graphs following the JavaBeans conventions. For the data
mappings specified through the user interface, we use OGNL (Object-Graph
Navigation Language)9. Mapping expressions specify the mapping between the
two models, both represented as object graphs with the collections to be syn-
chronised as the root objects of the graphs. Mappings can either be created and
manipulated using the visual mapping tool or through XML files. A simplified
excerpt of a mapping for our example is shown below.

<cMapping iCollName="contacts" expr="friends"/>

<tMapping iName="contact" expr="User" key="fullName">

<attrMapping iName="fullName" expr="name"/>

<attrMapping iName="birthdate" expr="birthday"

valueTransformerClass="..Birthdate2FBBirthday"/>

9 http://www.opensymphony.com/ognl/

8 S. Leone et al.

</tMapping>

cMapping maps the internal collection contacts to an external concept matching
the OGNL expression friends. tMapping maps the internal type contact to
a concept matching the expression User and defines its key to be fullName.
There are two attribute mappings which map the local attributes fullName and
birthdate to the expressions name and birthday, respectively. Both external
expressions are evaluated by OGNL in the context of the the external User type.
OGNL performs automatic type conversions between numeric types, booleans
and strings. To support special conversions, we introduced value transformers
that offer methods to convert values from one format to another. For example,
the class Birthdate2FBBirthday transforms a birthdate value in the Outlook
date format to the Facebook birthday format. Note that it is also possible to use
transformer classes to convert from flat to nested structures and vice versa. Our
framework provides several standard value transformer classes and additional
transformers can easily be implemented.

6 Conclusion

We have presented a framework for synchronising personal data with Web 2.0
data sources that allows users to control where, when and how data is published
to, and imported from, the Web. Tools are provided that enable users to configure
the synchronisation process as well as to define new synchronisation processes
along with the required data mappings. Some of the key distinguishing features of
our approach stem from the fact that, instead of trying to develop new standards
or architectures, our aim is to work with existing APIs and publishing services
as well as taking into account the nature of data replication, data volatility and
data inconsistencies evident in current Web 2.0 settings.

References

1. Wayne, B.: YouTube Is Doomed. The Business Insider (April 2009) http://www.

businessinsider.com/is-youtube-doomed-2009-4.
2. Hsu, F., Chen, H.: Secure File System Services for Web 2.0 Applications. In: Proc.

ACM Cloud Computing Security Workshop (CCSW 2009). (2009)
3. Geambasu, R., Cheung, C., Moshchuk, A., Gribble, S.D., Levy, H.M.: Organizing

and Sharing Distributed Personal Web-Service Data. In: Proc. Intl. World Wide
Web Conf. (WWW 2008). (2008)

4. Matsuo, Y., Hamasaki, M., Nakamura, Y., Nishimura, T., Hasida, K., Takeda, H.,
Mori, J., Bollegala, D., Ishizuka, M.: Spinning Multiple Social Networks for Semantic
Web. In: Proc. Natl. Conf. on Artificial Intelligence (AAAI 2006). (2006)

5. Guy, I., Jacovi, M., Shahar, E., Meshulam, N., Soroka, V., Farrell, S.: Harvesting
with SONAR: the Value of Aggregating Social Network Information. In: Proc. ACM
Intl. Conf. on Human-Computer Interaction (CHI 2008). (2008) 1017–1026

6. Matsuo, Y., Mori, J., Hamasaki, M., Nishimura, T., Takeda, H., Hasida, K., Ishizuka,
M.: POLYPHONET: an Advanced Social Network Extraction System from the Web.
Web Semant. 5(4) (2007) 262–278

	Text1: Ersch. in: Web information systems engineering : 11th international conference ; proceedings / WISE 2010, Hong Kong, China, December 12 - 14, 2010 / Lei Chen, Peter Triantafillou, Torsten Suel (eds.). - Berlin [u.a.] : Springer, 2010. - S. 411-418. - (Lecture notes in computer science ; 6488). - ISBN 978-3-642-17615-9http://dx.doi.org/10.1007/978-3-642-17616-6_37
	Text2: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-259460

