
Domain-specific Language for
Context-aware Web Applications

Michael Nebeling, Michael Grossniklaus,
Stcfania Leone, and Moira C. Norrie

Institute of Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland

{nebelinglgrossniklaus lleonelnorrie}@inf.ethz.ch

Abstract. Context-awareness is a requirement in many modern web
applications. \Vhile most model-driven web engineering approaches have
been extended vvith support for adaptivity, state-of-the-art dew lopment
platforms generally provide only limited means for the specification of
adaptation and often completely lack a notion of context. \Ve propose a
domain-specific language for context-aware web applications that builds
on a simple context model and powerful context matching expressions.

1 Introduction

ConteA.i:-awanmess ha.s been recognised as an important requirement in several
application domains ranging from mobile and pervasive computing to web engi
neering. Particularly in web engineering, it has been proposed to address person
alisation, internationalisation and multi-channel content delivery. \Vith clients
ranging from desktop computers, laptops and mobile devices to digital TVs and
interactive tabletops or wall displays, web applications today have to support
many different device contexts and input modalities.

Researchers have mainly addressed the need for adaptivity in web applia
tions on the conceptual level by adding support for specifying context-sensitive
behaviour at design-time into eA.isting methodologies. lVIost of these model-driven
approaches also feature code generators capable of deploying adaptive web appli
cations, but often lack comprehensive run-time support for managing conteA.i:
aware sites. Practitioners, on the other hand, tend to build on development
platforms such as Silverlight, JavaFX and OpenLa,..,zlo to cater for multiple nm
time platforms; however, the methods and languages underlying these frame
works often follow a less systematic approach and, in particular, lack support
for context-aware constructs and mechanisms.

In this paper, we propose a domain-specific language for conteA.i:-aware web
applications that extends and consolidates existing approaches based on context
aware concepts in markup languages. \Ve present a possible execution environ
ment t hat builds on a database-driven system developed in previous work [1].
We begin in Sect. 2 by discu&'5ing related work. Our approach is described in
Sect. 3. Section 4 presents an implementation of the proposed language followed
by concluding remarks in Sect. 5.

http://nbn-resolving.de/urn:nbn:de:bsz:352-259513

2 M. Nebeling et al.

2 Background

Various model-based approaches have addressed the need for adaptivity in web
appliations. For example, Webl\iiL [2] has introduced new primitives that allow
the behaviour of context-aware and adaptive sites to be modelled at design
time [3]. In UWE [4], the Munich Reference l\iiodel [5] for adaptive hypermedia
applications provides support for rule-based adaptation expressed in terms of the
Object Constraint Language (OCL). The specification of adaptive behaviour is
an integral part of the Hera methodology [6], where all design artefacts can
be annotated with appearance conditions. These annotations will then be used
to configure a run-time environment such as AlVIACONT [7] which supports
run-time adaptation ba,..,ed on a layered component-based XlVIL document for
mat [8] . Finally, the Bellerofonte framework [9] is a more recent approach using
the Event-Condition-Action (ECA) paradigm. The implementation separates
conte:x.--t-aware rules from application execution by means of a decoupled rule
engine with the goal of supporting adaptivity at both design and run-time.

In a second stream, research on user interface description languages has
spmvned a mnnber of different models and methods with the most prominent
example being the CAlVIELEON framework [10] which separates out different
levels of user interface abstraction to be able to adapt to different user, platform
and environment contexts. A diversity of languages and tools have been pro
posed (UsiXML [11], MARIA [12], etc.), and W3C is forming a working group
on future standards of model-based user interfaces. 1

State-of-the-art development practices show a significant gap between the
methodical approaches at the conceptual level and existing implmmmtation plat
forms at the technological level. For example, while researchers promote the
importance of design processes such as task modelling, in practice, this step is
often skipped and developers instead use visual tools such as Photoshop and
Flash for rapid prototyping and to directly produce the concrete user interfaces.
lVIoreover, even though platforms such as Silverlight, JavaFX and OpenLaszlo
have been specifically designed to support multiple run-time environments, the
underlying languages (Microsoft XAlVIL, JavaFX Script, OpenLaszlo LZX, etc.)
use many different approaches and lack common concepts and vocabulary, let
alone a unified method, for the specification of context-aware adaptation.

Early research on Intensional HTlVIL (IHTl\iiL) [13] demonstrated how con
text-aware concepts can be integrated into HTlVIL with the goal of declaring
versions of web content inside the same document. The concepts used in IHTlVIL
were later generalised to form the basis for lVIulti-dimensional XML (MXML),
which in turn provided the foundation for lVIulti-dimensional Semi-structured
Data (lVISSD) [14]. However, these languages still suffer from two major design
issues. First, the multi-dimensional concepts are not tightly integrated with the
markup and need to be specified in separate blocks of proprietary syntax. This
renders existing HTlVIL/XML validators and related developer tools void as any
attempt to parse IHTML/lVIXlVIL documents will fail. Second, it becomes ex-

1 http: I /TNfH'il.w3. org/2010/02/rnbui/prograrn.htrnl

Domain-specific LHI{,tuage for Context-aware Web Applications 3

trmnely difficult to manage such vcrsioncd documents, at least for a considerable
number of contc),_"tual states, if the possible states arc not dearly defined in some
sort of contcA"t model.

3 Approach

To alleviate the aforementioned problems with IHTML and MXML, we designed
XClVIL not to support vcrsioning of single web documents, but instead to aug
ment entire web sites with context-dependent behaviour ba,..,cd on the following
three core principles.

XML-based markup language. We base XClVIL on XML since many web
development frameworks build on XlVIL-bascd markup languages. XClVIL
introduces a set of proprietary, but well-defined, tags that integrate context
aware concepts into the markup while still producing well-formed XlVIL.
Application-specific context model. Contc),_-t-awarc web sites based on
XClVIL must first define the context dimensions and possible states specific
to the respective application. To facilitate the management of larger version
spaces, we enforce a d ear separation between context state definitions in the
header and context matching expressions in the body of XClVIL documents.
Context algebra and expression language. A distinguishing feature of
our approach is t hat context is a refining concept used to augment rather
than completely specify content delivery. XCML is hence based on context
matching e),_1)ressions as opposed to statements formulated in an if-then-else
manner. Instead ofrelying on rather strict ECA rules as used in [9, 5], XCl\iiL
requests trigger a matching process in which the best-matching variants arc
determined based on scoring and weighting functions as defined in [1].

To keep the specification of context models simple, we usc a very general
contc),_"t representation based on the notion of context dimensions and states.
A cortte~J:t dimension represents a set of characteristics or semantically grouped
factors to be taken into account when compiling the conte),_-t-awarc web site, while
a conte'J:t state describes a valid allocation of such a dimension. The following
example defines a simple conteA"t model to distinguish different browser contexts.

<xcrnl:context>
<xcrnl:context-dirnension narne="Browser">

<xcrnl:context-key narne="agent" />
<xcrnl:context-key narne="version" />

</xcrnl:context-dirnension>
<xcrnl:context-state narne="old_IE" dirnension="Browser">

<xcrnl:context-property key="agent" value="IE" />
<xcrnl:context-property key="version" value="3 .. 6" />

</xcrnl:context-state>
<xcrnl:context-state narne="new_IE" dirnension="Browser">

<xcrnl:context-property key="agent" value="IE" />
<xcrnl:context-property key="version" value="7 .. 8" />

4 M. Nebeling et al.

</xcml:context-state>
<xcml:context-state narne:"Firefox" dimension:"Brows er">

<xcml:context- property key: "agent" value:"Firefox" />
<xcml:context-property key="version" value:"1. .3.8" />

</xcml:context-state>
[..] <--other dimensions and states -->

</xcml:context>

The e?..-tract shows the definition of the Browser dimension in terms of agent
and version. With the states defined thereafter, an application can distinguish
between previous and current versions of Internet E?..l)lorcr and Fircfox. The
potential advantages of our approach arc clearer when looking at contm .. -t models
with multiple dimensions. For example, in a three-dimensional contc?..-t space, an
XClVIL body could be defined to distinguish not only browsers but also languages
English and German as well a .. s desktop and mobile platforms as follows.

<xcml:layout narne: "webs iteLayout">
<xcml: layout-variant match: "Desktop">

< !DOCTYPE html PUBLIC "-I /W3C/ /DTD XHTML [. .] I /EN" [..] >
<html>

<head>
<title> <xcml:attribute-value select: "header/title" /> </title>
<xcml:context match: "Firefox">

<link href:"firefox.css" rel:"stylesheet" type:"text/css" />
</xcml: context>
<xcml:context match: "old_IE or new_IE">[..]</xcml:context>

</head>
<body> <xcml:component select="*" />[..]</body>

</html>
</xcml:layout-variant>
<xcml: layout - variant match:"Mobile"> [..] </xcml: layout-variant>

</xcml:layout>
<xcml:component narne:"website">
<xcml: component-variant layout:"websiteLayout" match:"Desktop">

<xcml:child-components>
<xcml:component narne: "header">
<xcml:component-variant type="headerType" match="English">
<xcml:attribute-value narne:"title" value:"XCML Site" /> [. .]

</xcml:component-variant>
<xcml: component-variant match:" German"> [..] </xcml: component-variant>

</xcml:component>
[..] <!--other components-->

</xcml:child-components>
</xcml:component- variant>
<xcml: component-variant match: "Mo bile"> [..] </xcml: layout- variant>

</xcml:component>

As with many existing approaches, we separate presentation concepts from
content and navigation. In XCML, we achieve this by means of a simple compo
mmt-based model that allows for versioning on each layer in terms of so-called

Domain-specific LHI{,tuage for Context-aware Web Applications 5

variants. The clmmmt websitelayout in the example above defines variants to
place the web site's title in the best-matching language, link stylesheets opti
mised for Internet Explorer or Firefox and recursively include all children of
the <h'>Sociated components. The website component <h'>Sociated with the layout
defines content variants such <J..'> the title in English and German and structure
variants for the desktop and mobile platforms.

XClVIL supports versioning at the data, structure and layout levels for ma}..i
mum flexibility. The essence of XClVIL is however the underlying conte}..i; algebra
t hat allows for the specification of conte}..-t-dependent behaviour along simple
but powerful context matching e}..l)I"Cssions. The match clause " Firefox" used in
the example directly translates to {(agent, Firejo'J:), (version, 1 .. 3.8)} and, in this
case, constitutes a best-match for all Firefox browsers versions 1 to 3.8. XClVIL
also supports more complex conte}..i; expressions such as "oldJE or newJE" and
"not Firefox" or even those that span multiple dimensions as in "Desktop and
(oldJE or newJE)". The evaluation of such e}..1)ressions involves two steps. First ,
each context state will be substituted with the respective context properties.
This would mean that the latter expression evaluates to "{(type,desktop)} and
({(agent,IE), (version,?)} or {(agent,IE), (version,8)})". A dimensional analysis
would then find that the left part of t he given e}..1)ression is of the device di
mension (which defines the key type) while the right part translates to the
browser dimension (which defines the two keys agent and version) for both t he
left and right operand. In the second step, all propositional connectives will be
resolved to give {(type,desktop)} and {(agent,! E), (version,7 .. 8)} and finally to
{(type,desktop), (agent, IE), (version,7 .. 8) }.

After evaluating each conte}..i; expression, it is necessary to compare the re
sulting context states against the context for which the web site is compiled.
Only if equal or at least a partial match will a variant IJ..'>Sociated with a conte}..i;
state become part of the whole version. In our example, this would mean that
the variant associated with {(type,desktop), (agent, IE), (version,7 .. 8)} would only
be displayed if the web site is accessed from the desktop using either Internet
Explorer 7 or 8 (independent of the selected language).

4 Implementation

vVe have implemented an execution environment for XCML b<J..o.;ed on a general
isation of the XClVI system that we developed in previous work [1]. By mapping
the XClVIL language concepts to the previously established concepts for conte}..i;
aware data management, we can use t he database lh'> a cache for the conte}..i;
dependent variants lh'> shown in Fig. 1. vVe have defined several components for
the processing of XClVIL, which now form the new design-time and complement
the existing run-time of t he XClVI system.

The resulting plat form supports two processes: (1) t he compilation process of
XClVIL to create conte}..-t-dependent variants in the datab<J..'>e and (2) the linking
process triggered in response to client requests and the conte}..i; in which these
take place. The roles of the individual system components are a.'l follows.

6 M. Nebeling et al.

xcML -----------------------xc"ML-;;I;.t;~;;;,·---------------------------------------o-esi91i=lime

Document

D<l:abase Builder

Compooent Layout
Builder Builder

I I
I I

/" ' ,_ _________ __

I'-- _./

Cootext Engine

Context
Builder

Context
Algebra

, ---------· ---j

_Lo... Mcontehxt Page Builder J(2)eient
I -- ate er --- i ·

!

i

!

·------------ Con te~~r~:t~ndent ---------------- ----- --------------- - ----- ------ ----- ------ ----- ------ ----- ---~-u~~ti_~e _ _!

Fig. 1: Integration of the new design-time components \'Y-ith XCM run-time

- Database B·uilder. As the Database Builder parses the XClVIL documents,
it employs the Context Builder to build the conte:x.-t space and creates the
corresponding context-dependent variants in the database.

- Conte:d Engine. The Conte:x.-t Engine has been e:x.-tended with the Conte:x.-t
Builder as part of the design-time to provide several methods to parse conte:x.-t
information declared in XClVIL documents. The Conte:x.-t Algebra is repre
sented by a utility cla .. ss that implements the two-step evaluation process of
context e:x.1Jressions described in Sect. 3. The role of the Context Matcher
is to score all variants of a specific object and determine the best-matching
version for a given context at run-time as described in detail in [1].

- Page B·uilder. In response to client requests, the Page Builder uses the Con
text lVIatcher to retrieve the best-matching variant for all conte:x.-t-aware cle
ments stored in the databa .. se and assembles them into the request ed version
of the web site. Again, details are given [1].

\Ve now explain how XClVIL documents are processed and compiled into t he
database (process (1) in Fig. 1) . As shown in Fig. 2, presentation instructions
within xcml:layout tags are handled differently from XCML component variants.

Components. For each xcml:component-variant, the Component Builder creates
a version with the respective attribute value sets. Each version is appended
to its component object and stored in the database together with the specific
conte:x.-t that was evaluated from t he associated match clause. This step repeats
recursively for all child components contained in each variant.

Domain-specific LHI{,tuage for Context-aware Web Applications 7

~:c:::::,~:;;;::,: :;::-- 1

. . match= "Mobi le " r ~~1.--- ---tB-~--d--
~: l ayou uJ. l e r

l
l:L! __ ->::-~-:_,...:_a-_'!_-~.-~:-_>-__ -___ -__ -__ -__ -__ -___ -__ -__ -__ -__ -___ -__ ...J __ _j

layout : XCMLLayout

w t~Qet=
deSktop

'

'

•

D !~get=

rrobile

.
component: XCML Component

tit le : " Wel come "

"!: crs~~ lang= en

c,
=
c.

-

I t~tle : "Wi llkommen " I I lang= de

--··--· -··- - D ~~aba.!l eBui l de r

' •

\
\

r=7~
/

D at;ilia:~eBuilde r

Fig. 2: Processing of XClVIL layouts and components

The processing of components is rather straightforward as we specify each
variant separately using structured data in XCML attribute values. \Ve have,
however, defined an inheritance mechanism for component variants to inherit
from the default variant using the copy-default attribute and only override the
conte:x."t-sensitive values. This kind of inheritance is rca .. '30IHJ.ble as default variants
are usually rich in detail , and some fields such as a person's first and last name in
staff member pages are constant across all versions. This is in contrast to layouts
where the underlying templates are t:n)ically semi-structured and patterns for
reuse are somewhat different. For that reason, we allow the developer to define
layout variants separately similar to components but without inheritance or to
use nest ed context matching e:x.1)ressions wit hin the same layout variant. If the
differences between individual templates arc not substantial, then nested variants
are more practical in order not to duplicate large parts between versions that
are essentially the same.

Layo·uts. For each xcml:layout defined in an XClVIL document, the Layout Builder
preprocesses all specified variants to find, combine, and evaluate the individual
conte:x."t e:x.1)ressions that may have been nested inside the template. For each
context evaluated from the expressions, it then runs a first XSL transformation
on the template to generate a new XSL template that

(a) copies only t he XlVIL child nodes nested in matching xcml:context blocks and
(b) replaces each xcml:attribute-value/ xcml:component select with a correspond

ing xsl:value-of select statement.

Step (a) therefore reduces the multi-dimensional XCl\iiL template to an XSL
template specific to the conte:x."t for which it was evaluated. Step (b) is required

8 M. Nebeling et al.

to resolve the XClVIL namespace and prepare the resulting XSL template for the
run-time where all placeholders for nested attribute values and components will
be substituted with the best-matching results evaluated for the specific context.
Finally, each of the reduced XSL templates will be appended to the couespond
ing layout object and stored in the database together with the contm .. 1:.

5 Conclusion

\Ve have presented a domain-specific language that promotes a simple contnx1:
model and powerful conte}..1: matching e}..l)ll1Ssions. Our work wa .. '-5 motivated by
the lack of conte}..1:-aware concepts in state-of-the-art web development platforms
and languages. In future work, we want to improve the integration with exist
ing frameworks and also design adequate tool support for the development and
debugging of adaptive web sites based on our language.

References

1. Grossniklaus, M., Norrie , M.C.: An Object-Oriented Version Model for Context
Aware Data Management. In: Proc. \VISE. (2007) 398-409

2. Ceri, S., Fraternali, P. , Bongio, A., Brambilla, M., Comai, S. , Matera, M.: Desif,rn
ing Data-Intensive \Veb Applications. Morgan Kaufinann Publishers Inc. {2002)

3. Ceri, S., Daniel, F., Matera, M., Facca, F .M.: Model-driven Development of
Context-Aware Web Applications. TOIT 7{1) {2007) Article 2

4. Hennicker, R. , Koch, N.: A UML-Based Methodology for Hypermedia Design. In:
Proc. UML. (2000) 410-424

5. Koch, N., \Virsing, M.: The Munich Reference Model for Adaptive Hypermedia
Applications. In: Proc. AH. (2002) 213-222

6. Houben, G . .J., Barna, P., Friisincar, F., Vdovjak, R.: Hera: Development of Se
mantic \Veb Information Systems. In: Proc. ICWE. {2003) 529-538

7. Fiala, Z., Hinz, M., Houben, G . .J. , Fri..:;incar, F.: Design and Implementation of
Component-based Adaptive Web Presentations. In: Proc. SAC. {2004) 1698-1704

8. Fiala, Z., Hinz, M., Meissner, K. , \Velmer, F.: A Component-based Approach for
Adaptiv-e, D_y·namic Web Documents . .J\VE 2{1-2) (2003) 58-73

9. Daniel, F., Matera, M., Pozzi, G.: Managing Runtime Adaptivity through Active
Rules: the Bellerofonte Framework . .JWE 7(3) (2008) 179-199

10. Calvary, G ., Coutaz, .J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
.J.: A Unifying Reference Framework for Multi- Target User Interfaces. Interacting
v.rith Computers 15{3) {2003) 289-308

11. Limbourg, Q., Vanderdonckt, .J. , Michotte, B., Bouillon, L. , Lopez-.Ja.quero, V.:
UsiXML: UsiXML: a Language Supporting Multi-Path Development of User In
terfaces. In: Proc. EHCI/DS-VIS. (2005) 200-220

12. Paterno, F. , Santoro, C., Spano, L. : MARIA: A Universal Language for Service
Oriented Applications in Ubiquitous Environment. ACM Trans. on Computer
Human Interaction 16{ 4) {2009) Article 19

13. \Vadge, \V.\V. , Brown, G. , m. c. schraefel, Yildirim, T.: Intensional HTML. In:
Proc. PODDP. {1998) 128-139

14. Stavrakas, Y. , Gergatsoulis, M.: Multidimensional Semistructured Data: Repre
serlting Context-Dependent Information on the Web. In: Proc. CAiSE. (2002)
183-199

	2010_Domain-specific language for context-aware web applications_Seite_1
	2010_Domain-specific language for context-aware web applications_Seite_2
	2010_Domain-specific language for context-aware web applications_Seite_3
	2010_Domain-specific language for context-aware web applications_Seite_4
	2010_Domain-specific language for context-aware web applications_Seite_5
	2010_Domain-specific language for context-aware web applications_Seite_6
	2010_Domain-specific language for context-aware web applications_Seite_7
	2010_Domain-specific language for context-aware web applications_Seite_8

	Text3: Ersch. in: Web information systems engineering : 11th international conference ; proceedings / WISE 2010, Hong Kong, China, December 12 - 14, 2010. Lei Chen, Peter Triantafillou, Torsten Suel (eds.). - Berlin [u.a.] : Springer, 2010. - S. 471-479. - (Lecture notes in computer science ; 6488). - ISBN 978-3-642-17615-9http://dx.doi.org/10.1007/978-3-642-17616-6_42
	Text4: Konstanzer Online-Publikations-System (KOPS)URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-259513

