Skip to main content

Distributed Game-Theoretic Vertex Coloring

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6490))

Abstract

We exploit the game-theoretic ideas presented in [12] to study the vertex coloring problem in a distributed setting. The vertices of the graph are seen as players in a suitably defined strategic game, where each player has to choose some color, and the payoff of a vertex is the total number of players that have chosen the same color as its own. We extend here the results of [12] by showing that, if any subset of non-neighboring vertices perform a selfish step (i.e., change their colors in order to increase their payoffs) in parallel, then a (Nash equilibrium) proper coloring, using a number of colors within several known upper bounds on the chromatic number, can still be reached in polynomial time. We also present an implementation of the distributed algorithm in wireless networks of tiny devices and evaluate the performance in simulated and experimental environments. The performance analysis indicates that it is the first practically implementable distributed algorithm.

This work has been partially supported by the ICT Programme of the European Union under contract numbers ICT-2008-215270 (FRONTS) and ICT-2008-224460 (WISEBED).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for general networks. In: Toueg, S., Kirousis, L.M., Spirakis, P.G. (eds.) WDAG 1991. LNCS, vol. 579, pp. 15–28. Springer, Heidelberg (1992)

    Google Scholar 

  2. Baumgartner, T., Chatzigiannakis, I., Fekete, S., Koninis, C., Kröller, A., Pyrgelis, A.: Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks. In: Silva, J.S., Krishnamachari, B., Boavida, F. (eds.) EWSN 2010. LNCS, vol. 5970, pp. 162–177. Springer, Heidelberg (2010)

    Google Scholar 

  3. Chatzigiannakis, I., Koninis, C., Mylonas, G., Colesanti, U., Vitaletti, A.: A peer-to-peer framework for globally-available sensor networks and its application in building management. In: DCOSS/IWSNE 2009 (2009)

    Google Scholar 

  4. Escoffier, B., Gourves, L., Monnot, J.: Strategic Coloring of a Graph. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 155–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Computer and System Sciences 57(2), 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Halldórsson, M.: A still better performance guarantee for approximate graph coloring. Information Processing Letters 45, 19–23 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  8. Kröller, A., Pfisterer, D., Buschmann, C., Fekete, S.P., Fischer, S.S.: A new approach to simulating wireless sensor networks. In: DASD 2005, pp. 117–124 (2005)

    Google Scholar 

  9. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moscibroda, T., Wattenhofer, R.: Coloring Unstructured Radio Networks. In: SPAA 2005, pp. 39–48 (2005)

    Google Scholar 

  11. Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 183–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Park, V.D., Corson, M.S.: A Highly Adaptive Distributed Routing Algorithm for Mobile Wireless Networks. In: INFOCOM 1997, pp. 1405–1413 (1997)

    Google Scholar 

  14. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks. In: PODC 2009, pp. 210–219 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatzigiannakis, I., Koninis, C., Panagopoulou, P.N., Spirakis, P.G. (2010). Distributed Game-Theoretic Vertex Coloring. In: Lu, C., Masuzawa, T., Mosbah, M. (eds) Principles of Distributed Systems. OPODIS 2010. Lecture Notes in Computer Science, vol 6490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17653-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17653-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17652-4

  • Online ISBN: 978-3-642-17653-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics