Skip to main content

Statistical Rail Surface Classification Based on 2D and 21/2D Image Analysis

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6474))

Abstract

We present an approach to high-resolution rail surface analysis combining 2D image texture classification and 21/2D analysis of surface disruptions. Detailed analysis of images of rail surfaces is used to observe the condition of rails and, as a precaution, to avoid rail breaks and further damage. Single rails are observed by a color line scan camera at high resolution of approximately 0.2 millimeters and under special illumination in order to enable 21/2D image analysis. Gabor filter banks are used for 2D texture description and classes are modeled by Gaussian mixtures. A Bayesian classifier, which also incorporates background knowledge, is used to differentiate between surface texture classes. Classes which can be related to surface disruptions are derived from the analysis of the anti-correlation properties between two color channels. Images are illuminated by two light sources mounted at different position and operating at different wavelengths. Results for data gathered in the Vienna metro system are presented.

This work is supported by the Austrian Federal Ministry for Transport, Innovation and Technology BMVIT, program line I2V ”Intermodalität und Interoperabilität von Verkehrssystemen”, project fractINSPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, C.M.: Neural Networks for Pattern Recognition, ch. 2.6: Mixture models, pp. 59–73. Oxford Univerity Press, Oxford (1995)

    Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning, ch. 1.5: Decision theory, pp. 38–48. Springer, Heidelberg (2006)

    Google Scholar 

  3. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Doherty, A., Clark, S., Care, R., Dembowsky, M.: Why rails crack. Ingenia 23, 23–28 (2005)

    Google Scholar 

  5. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Optical Soc. Am. A 12, 2379–2394 (1987)

    Article  Google Scholar 

  6. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Transactions on Image Processing 11(10), 1160–1167 (2002)

    Article  MathSciNet  Google Scholar 

  7. Hoßfeld, M., Chu, W., Adameck, M., Eich, M.: Fast 3D-vision system to classify metallic coins by their embossed topography. Electronic Letters on Computer Vision and Image Analysis 5(4), 47–63 (2006)

    Google Scholar 

  8. Jähne, B.: Digitale Bildverarbeitung, ch. 13.4.5: Quadraturfilter, 5th edn., pp. 383–384. Springer, Heidelberg (2002)

    Book  Google Scholar 

  9. Jain, A., Zongker, D.: Feature selection: Evaluation, application and small sample performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)

    Article  Google Scholar 

  10. Jarmulak, J., Kerckhoff, E.J.H., van’t Veen, P.P.: Case-based reasoning for interpretation of data from non-destructive testing. Engineering Applications of Artificial Intelligence 14(4), 401–417 (2001)

    Article  Google Scholar 

  11. Khandogin, I., Kummert, A., Maiwald, D.: Nonlinear image processing for automatic inspection of railroad lines. In: Proceedings of IEEE Workshop on Nonlinear Signal and Image Processing, vol. 1 (1997)

    Google Scholar 

  12. Klette, R., Schlüns, K., Koschan, A.: Computer Vision: Three-Dimensional Data from Images, ch. 7: Shape from Shading, pp. 263–300. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  13. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143 (1995)

    Google Scholar 

  14. Mandriota, C., Nitti, M., Ancona, N., Stella, E., Distante, A.: Filter-based feature selection for rail defect detection. Machine Vision and Applications 15, 179–185 (2004)

    Article  Google Scholar 

  15. Pang, G.K., Chu, M.H.: Automated optical inspection of solder paste based on 2.5D visual images. In: Proceedings of International Conference on Mechatronics and Automation, pp. 982–987 (2009)

    Google Scholar 

  16. Pudil, P., Novovičová, J.: Novel methods for subset selection with respect to problem knowledge. IEEE Intelligent Systems 13(2), 66–72 (1998)

    Article  Google Scholar 

  17. Randen, T., Husøy, J.H.: Filtering for texture classification: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21, 291–310 (1999)

    Article  Google Scholar 

  18. Samson, V., Champagnat, F., Giovannelli, J.F.: Detection of point objects with random subpixel location and unknown amplitude. Applied Optics 43(2), 257–263 (2004)

    Article  Google Scholar 

  19. Shi, X., Manduchi, R.: A study on Bayes feature fusion for image classification. In: Proc. of Conference on Computer Vision and Pattern Recognition Workshop (2003)

    Google Scholar 

  20. Singh, M., Singh, S., Jaiswal, J., Hempshall, J.: Autonomous rail track inspection using vision based system. In: Proceedings of International Conference on Computational Intelligence for Homeland Security and Personal Safety, pp. 56–59 (2006)

    Google Scholar 

  21. Tuceryan, M., Jain, A.K.: 2.1: Texture analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Co., Singapore (1998)

    Google Scholar 

  22. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1-2), 61–81 (2005)

    Article  Google Scholar 

  23. Zacher, M., Baumann, G., Le, R.: Modelle zur Prognose von Rollkontaktermüdungsschäden an Schienen. EI - Der Eisenbahningenieur 60(7), 44–52 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huber-Mörk, R., Nölle, M., Oberhauser, A., Fischmeister, E. (2010). Statistical Rail Surface Classification Based on 2D and 21/2D Image Analysis. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17688-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17688-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17687-6

  • Online ISBN: 978-3-642-17688-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics