
Model Refinement using Bisimulation Quotients

R. Glück1, B. Möller1 and M. Sintzoff2

1 Universität Augsburg, Germany
2 Université catholique de Louvain, Belgium

Abstract. The paper shows how to refine large-scale or even infinite
transition systems so as to ensure certain desired properties. First, a
given system is reduced into a smallish, finite bisimulation quotient. Sec-
ond, the reduced system is refined in order to ensure a given property,
using any known finite-state method. Third, the refined reduced system is
expanded back into an adequate refinement of the system given initially.
The proposed method is based on a Galois connection between systems
and their quotients. It is applicable to various models and bisimulations
and is illustrated with a few qualitative and quantitative properties.

1 Introduction

This paper extends the work in [8]. There a generic method for refining system
models was presented informally. Here it is defined constructively and is then
used to ensure optimality properties and temporal properties.

Our aim is to refine large-scale system models so as to satisfy a required
property. According to the Concise Oxford Dictionary, “to refine something” is
“to free it from defects”. In our context, refinement is the elimination of unsuit-
able transitions and states, and is thus a form of control refinement or control
synthesis. To realize it, we use a well known approach to problem solving: reduce
–or abstract– the problem, solve the reduced problem, and expand the obtained
solution. These three steps are implemented as follows. First, the given model is
reduced to a finite bisimulation quotient [1]; we use bisimulations because they
preserve many properties, including quantitative ones, and they can be com-
puted efficiently. Second, the design problem is solved for the reduced model by
some known finite-state technique. Third, the refined reduced model is expanded
back into a satisfactory refinement of the large-scale model given initially. The
expansion function is a right-inverse of the quotient function that yields largest
refined models. It results from a Galois connection.

Consider for instance the control problem of restricting a possibly infinite
transition graph G in such a way that every path starting from any node is a
path of shortest length leading into a set of given nodes. The reduced model is a
smaller finite quotient graph of G. It is refined into an optimal sub-graph using
a known finite-state algorithm. The small optimal sub-graph is then expanded
back into a full-fledged optimal sub-graph of G. This problem has been treated
by dedicated techniques [15]. Here we extend that work to a generic method
that allows tackling different problems in a uniform way. The novelty lies in the

particular combination and adaptation of results known from control synthesis
and abstraction-based verification to yield an abstraction-based technique for
refinement that ensures qualitative as well as quantitative properties and works
for a family of infinite-state systems.

In the sequel, first we present generic definitions for classes of usual models
and classes of related bisimulations. Second the proposed method is elaborated
with the help of a Galois connection. Third a few applications are summarized.
At the end we compare with related work and conclude.

2 Model Classes and Bisimulation Classes

We introduce a general pattern for typical model and bisimulation classes. The
quotient operation, used to collapse models, is also defined generically.

This preliminary section may be skimmed over in a first reading.

2.1 Prerequisites and Notational Conventions

Our technical development is based on binary and ternary relations; therefore
we recall some definitions for them and fix some notation. The symbol ⊆ de-
notes non-strict inclusion between sets. Instead of bi-implication⇔ we write ≡ .
Definitional equality and equivalence are denoted by

.
= and ≡̇ , resp.

– For relation R ⊆ Q×Q′, x ∈ Q , x′ ∈ Q′, and B,C ⊆ Q ,B ⊆ 2Q,
R◦

.
= {(y, x) | (x, y) ∈ R} is the converse of R,

R(x)
.
= {x′ | xRx′}, R(B)

.
=

⋃
{R(x) | x ∈ B},

R(x, x′) ≡̇ xRx′ ≡̇ (x, x′) ∈ R,
Im(R)

.
= R(Q), Dom(R)

.
= R◦(Q′); R is total iff Dom(R) = Q.

– Domain restriction is defined as R↓B .
= R ∩ (B ×Q′). Two properties are

(R↓B)↓C = R↓(B ∩ C) , R↓(
⋃
B∈B

) =
⋃
B∈B

(R↓B) . (1)

– The composition of two relations R ⊆ Q×Q′, R′ ⊆ Q′ ×Q′′ is R ;R′ where
x(R ;R′)x′′ ≡̇ ∃x′ ∈ Q′ :xRx′ ∧ x′R′x′′.

– Given sets S, S′, we write S−S′ for the set difference of S, S′. Moreover, by
S2 we mean S × S and χS is some predicate that characterizes S.

– For the application of a function f to an argument e we may write fe instead
of f(e).

– The set of Booleans is Bool
.
= {false, true}.

2.2 Model Classes

We present model structures that describe discrete-time dynamical systems.
They comprise graphs and auxiliary components. The graph nodes and edges
represent system states and transitions, resp. The auxiliary components may

be maps labelling states or transitions. Quotients of models are defined in a
canonical way given equivalences between states.

Graphs. A graph is a pair (Q,T) composed of a set Q and an edge relation
T ⊆ Q2. A graph (Q′, T ′) is a subgraph of a graph (Q,T) if Q′ ⊆ Q ∧ T ′ ⊆ T .
We then write (Q′, T ′) ⊆ (Q,T). All paths in a subgraph of G are paths in G.
For a graph G let SubGr(G) denote the set of all subgraphs of G.

The following result is straightforward from the definitions. It generalizes the
supremum definition (Q,T) ∪ (Q′, T ′)

.
= (Q ∪Q′, T ∪ T ′) .

Lemma 2.1 (Complete Lattice of Subgraphs). Given a graph G, the partial
order (SubGr(G),⊆) is a complete lattice where the supremum of a set of graphs
is formed by taking componentwise union.

Graph-Based Models. A (graph-based) model M is a structure G or (G,A)
where G is a graph (Q,T), denoted by graphM , and A is a tuple (A1, . . . , An).
Each (auxiliary) component Ai is a mapping from Q or T into an external set
Si defined independently of G. If Si = Bool then Ai represents a subset of Q or
T . If n = 1 we omit the tuple parentheses around A and write M = (G,A1).

A model M is infinite if Q is infinite.

The considered models are relatively simple. The graph of a model can be seen
as its skeleton. A subset-type component Ai may, e.g., represent a set of target
nodes. Other mappings Ai can be used to describe edge labels, e.g. weights, or
node labels, e.g. node inputs or outputs in an import network. Kripke structures
are models which involve a mapping from nodes into a set of atomic propositions
(e.g. [2]). Of course, a combination of both node and edge labels is possible.

For a decorated model identifier such as M ′ or M̃ it is understood that all its
constituents carry the same decoration. E.g., when talking about a model M ′′

it is understood that M ′′ = (G′′, A′′) and similarly for G′′ and A′′.

Various operations Ψ on models M = ((Q,T), (A1, . . . , An)) are determined
by the definitions of Ψ Q, Ψ T , and Ψ Ai for each component Ai, together with
the distribution rule Ψ M

.
= ((Ψ Q, Ψ T), (Ψ A1, . . . , Ψ An)).

A model class M is some set of models which have the same structure, i.e.,
the same number and types of components. An M-model is an element of M.

Quotient Operation. Consider a model M = ((Q,T), A) and an equivalence
E ⊆ Q2. The quotient operation “/” serves to construct quotient models and is
defined first for states and transitions, while the auxiliary components Ai will
be treated in the following paragraph.

For any x, x′ ∈ Q, let x/E
.
= E(x) and (x, x′)/E

.
= (x/E, x′/E). For any

U ⊆ Q or U ⊆ T , let U/E
.
= {u/E | u ∈ U}. Thus T/E = {(x/E, x′/E) |

(x, x′) ∈ T} ⊆ (Q/E)2. We say that E is finitary if Q/E is finite.

Model Compatibility and Canonical Quotient Models. An equivalence
E on a model M = (G,A) is called M -compatible if each map Ai satisfies
∀u, u′ ∈ Dom(Ai) :u/E = u′/E ⇒ Ai(u) = Ai(u

′). Relationally this can be
expressed as E ∩Dom(Ai)

2 ⊆ Ai ; A◦i .

Let Compat(M) denote the set of M -compatible equivalences. For any E ∈
Compat(M), we define the map Ai/E by ∀u ∈ Dom(Ai) : (Ai/E)(u/E) = Ai(u).

The (canonical) quotient (model) of M by E is M/E as defined by the above
distribution rule. A model class may contain models M and quotients M/E.

Labelled Transition Systems. The classical labelled transition systems, a.k.a.
LTS, have the form S = (Q,H, TH) where H is a finite set of transition labels
and TH ⊆ Q×H ×Q [1, 5].

For each h ∈ H, let Th
.
= {(x, x′) | (x, h, x′) ∈ TH}. Then S is easily trans-

formed into the model MS = ((Q,T), L), where L :T → 2H and ∀t ∈ T : L(t) =
{h | t ∈ Th}. Thus S amounts to a structured presentation of the model MS .

2.3 Bisimulation Classes

Bisimulations prove useful because they preserve many properties of system dy-
namics. Different classes of bisimulations are associated with different properties
and different classes of models. Bisimulation equivalences may determine drasti-
cally reduced quotients and may even downsize some infinite models into finite
ones. They can be computed in polynomial time in the case of finite models.
Therefore we treat bisimulation equivalences in greater detail.

2.3.1 Bisimulations

We briefly review the classical definition of bisimulations, e.g. [14], and recall an
equivalent form that is more suitable for our purposes.

A (partial) simulation between two models M,M ′ is a relation R ⊆ Q×Q′
such that ∀x, y ∈ Q, x′ ∈ Q′ :xT y ∧ xRx′ ⇒ ∃y′ ∈ Q′ :x′ T ′ y′ ∧ y R y′ .

A bisimulation between models M,M ′ is a relation R ⊆ Q×Q′ such that R
and R◦ are simulations between M,M ′ and M ′,M , resp. For actually computing
bisimulations the following equivalent characterisation is fundamental (see the

preface in [13]): R is a bisimulation between M,M ′ iff R ⊆ F (M,M ′)
basic (R) where

F
(M,M ′)
basic

.
= λR :Q×Q′ . { (x, x′) | (∀y :xTy ⇒ ∃y′ :x′T ′y′ ∧ yRy′) ∧

(∀y′ :x′T ′y′ ⇒ ∃y : xTy ∧ yRy′) } .

The above condition characterizes R as an expanded element, a.k.a. a post-

fixpoint, of the isotone function F
(M,M ′)
basic . Since the set of all relations is a com-

plete lattice under the ⊆ ordering, by the Knaster-Tarski theorem that function
has a greatest fixpoint. The latter is called the coarsest bisimulation between
M,M ′, since it coincides with the union of all bisimulations between M,M ′. It

can be computed by iterating F
(M,M ′)
basic , starting with the universal relation.

2.3.2 Bisimulation Classes and Generators of Bisimulation Maps

We abstract a bit from the above definitions, since we aim at a generic model re-
finement technique. From now on, the bisimulations introduced as post-fixpoints

in § 2.3.1 are called basic bisimulations and their defining function is F
(M,M ′)
basic .

Families and Classes of Bisimulations. Let M,M ′ be two models from an
arbitrary model class. The set of all basic bisimulations for (M,M ′) is denoted

by B(M,M ′)
basic . A bisimulation family B(M,M ′) is a subset of B(M,M ′)

basic that is closed
under arbitrary unions. This subset may be defined by auxiliary constraints –
e.g. equalities between node labels– which ensure the model compatibility of
bisimulation equivalences (§ 2.2).

Given a model classM and a definition of the family B(M,M ′) for all M,M ′ ∈
M, the (M-)bisimulation class B is the set

⋃
M,M ′∈M B(M,M ′).

Bisimulation Maps. As recalled in § 2.3.1, basic bisimulation families can
be defined using maps that generate basic bisimulations. A number of special-
ized bisimulation families can similarly be defined using functions between re-
lations over states. Namely, a B(M,M ′)-bisimulation map is an isotone function

F
(M,M ′)
B : 2Q×Q

′ → 2Q×Q
′

such that B(M,M ′) = {R | R ⊆ F (M,M ′)
B (R)}.

The function F
(M,M ′)
B may be defined by a term λR :Q × Q′.G, where

R,M,M ′ may occur free in G. Moreover the type of the parameter R may be
strengthened as follows. Assume G = W ∩G′ where W ⊆ Q×Q′ is defined in-

dependently of R. Then F
(M,M ′)
B may be given as λR :W . G′. This formulation

allows simplifying the computation of the greatest fixpoint of F
(M,M ′)
B .

Iterative Construction of Coarsest Bisimulations. The coarsest basic
bisimulation for M,M ′ is the greatest fixpoint of the map F

(M,M ′)
basic . It can be

obtained as GFP(F
(M,M ′)
basic)

.
=

⋂
n∈N

(F
(M,M ′)
basic)n(Q×Q′); see § 2.3.1 and [5, 14]. Sim-

ilarly, if F
(M,M ′)
B

.
= λR :W .G is a B(M,M ′)-bisimulation map then the coarsest

B(M,M ′)-bisimulation is GPF (F
(M,M ′)
B) =

⋂
n∈N

(F
(M,M ′)
B)n(W).

Map Generators. A simple additional generalization abstracts bisimulation
maps from particular models and thus determines a generic bisimulation-map
for a whole set of models having the same structure. Namely, given a model
class M and a bisimulation class B, an (M-bisimulation) map generator FB is

a function that assigns a B-bisimulation map F
(M,M ′)
B to any M,M ′ ∈M .

Hence FB
.
= λM,M ′ :M .F

(M,M ′)
B , viz. FB(M,M ′) = F

(M,M ′)
B . So the char-

acteristic predicate χB can be given by χB(R) ≡̇
∨

M,M ′∈MR ⊆ FB(M,M ′)(R).
Examples for map generators will be presented in § 2.4 and § 4.

2.3.3 Conventions

We fix a few further notational conventions and abbreviations on the basis of
classical notions. Let B be a bisimulation class and assume M,M ′ belong to the
same model class.

– A relation R is a B-bisimulation between M and M ′ if R ∈ B(M,M ′).
– The models M,M ′ are B-bisimilar if ∃R :R ∈ B(M,M ′).

– We write B(M), F
(M)
B , FB(M) for B(M,M), F

(M,M)
B , FB(M,M), resp.

– A relation R ⊆ Q2 is a B-bisimulation for M if R ∈ B(M).

2.3.4 Bisimulation Equivalences and Model Reductions

We recall two useful properties (see e.g. [1, 2]) and introduce quotient models
based on coarsest bisimulations. One fixed but arbitrary model class containing
models and their quotients is understood.

Lemma 2.2 (Bisimulation Equivalences). Consider a model M , a bisimu-
lation class B, and E ∈ Compat(M).

1. The coarsest B-bisimulation for M is an equivalence.
2. If E is a B-bisimulation for M then M/E and M are B-bisimilar.

For a specific bisimulation class, these properties are established by the proofs
of Lemma 7.8 and Theorem 7.14, resp., in [1]. These proofs can be reused for
other auxiliary components and thus for other bisimulation classes.

A bisimulation class B is M-compatible if, for all M ∈ M , the coarsest
B-bisimulation for M is M -compatible; see Part 1 above and § 2.2.

Reducers and Reductions of Models. The coarsest B-bisimulation for M
determines the least number of equivalence classes of any bisimulation in B(M). It
is called the (strongest B-)reducer of M and is denoted by RedB(M). Accordingly
the quotient model M/RedB(M) is called the (strongest B-)reduction of M .

For sufficiently regular infinite models, called well-structured [10], the reduc-
ers are finitary and hence the reductions are finite.

2.4 Algorithms Generating Bisimulation Equivalences

A bisimulation algorithm BisimAlgoB for an M-map-generator FB is an algo-
rithm which, given M ∈ M , yields the B-reducer RedB(M), if finitary. So it
computes the function λM :M . GFP(FBM); see § 2.3.2. A few such algorithms
are briefly recalled hereafter; all are derived from a fundamental algorithm for
labelled transition systems in which partitions represent equivalences.

In this section models are finite unless indicated otherwise.

1. Labelled Transition Systems. Let MH be an LTS (Q,H, TH) (§ 2.1). Recall
that xThy ≡ (x, h, y) ∈ TH . The basic bisimulation map generator FLTS

basic is akin
to Fbasic (§ 2.3.2) and is defined as follows [5, 14]:

FLTS
basic

.
= λMH .λE :Q2. {(x, x′) | ∀h ∈ H : (∀y :xThy ⇒ ∃y′ :x′Thy′ ∧ yEy′)∧

(∀y′ :x′Thy′ ⇒ ∃y : xThy ∧ yEy′) }.

A bisimulation algorithm BisimAlgoLTS
basic is found in [11].

2. Basic Maps for Models. A bisimulation algorithm BisimAlgobasic is obtained
in two steps. First, the graph (Q,T) of any model M is transformed into the LTS
MH = (Q, {h}, {(x, h, y) | xTy}), where H = {h} consists of an arbitrary single

label h (§ 2.1). Thus the basic bisimulations for M are those for MH . Second,
Case 1 above is applied.

3. Maps with an Independent Auxiliary Equivalence. Consider a model class
M and a map generator Fbasic,W

.
= λM :M .λE :W .Fbasic(E) (§ 2.3.2). A

bisimulation algorithm BisimAlgobasic,W is obtained by applying BisimAlgobasic

from Case 2 where the initial partition {Q} is replaced by Q/W [1, 5].

4. Maps with a Dependent Auxiliary Equivalence. Consider the class Mg of
models ((Q,T), g) where g :T → S for a given set S. Let the map generator be

Fg
.
= λM :Mg .λE :Q2 .Wg(E) ∩ Fbasic(E)

Wg(E)
.
= {(x, x′) | ∀y, y′ :xTy ∧ x′Ty′ ∧ yEy′ ⇒ g(x, y) = g(x′, y′)}.

Case 3 is inapplicable because Wg depends on E . A bisimulation algorithm
BisimAlgog can be obtained as follows. First, any Mg-model M is transformed
into the LTS MH = (Q,H, TH) such that H = Im(g) and TH = {(x, g(x, y), y) |
xTy} (§ 2.1). Thus the bisimulations generated by Fg for M are the basic bisim-
ulations for MH . Second, Case 1 is applied.

Bisimulation algorithms can be defined similarly for other models which in-
clude mappings akin to g.

5. Well-Structured Infinite Models. Since their reducers are finitary equivalences
(§ 2.3.4), a symbolic variant of Case 2, 3 or 4 can be used [10].

3 Generic Refinement using Finite Abstract Models

As outlined in § 1, a given model is abstracted into a finite quotient model and
the latter is refined into a model that must be expanded back to a full-fledged
model refining the given one. In this main section, first an adequate expansion
operation is constructed. Second, we define a class of formulae that are preserved
under expansion. Third, a refinement algorithm is presented.

As in § 2.3.4, one fixed but arbitrary model classM is understood. Likewise,
an M-compatible bisimulation class B is understood.

3.1 Construction of an Adequate Expansion Operation

To ensure consistency, expansion needs to be an approximate inverse of quo-
tient, which is not invertible (§ 2.2). Moreover refined models should include a
maximum of useful states and transitions. Expansion should thus generate the
largest possible models. Therefore, to ensure invertibility and maximality, the
quotient and expansion operations must be adequately restricted.

Fortunately, expansion, restricted quotient, and restricted expansion can eas-
ily be developed using a Galois connection between models and their quotients.

3.1.1 A Brief Reminder about Galois Connections

A pair (F,G) of total functions F : A → B and G : B → A between pre-orders
(A,≤A) and (B,≤B) is called a Galois connection between A and B iff

∀x ∈ A : ∀y ∈ B : F (x) ≤B y ≡ x ≤A G(y) . (2)

Then F is called the lower, G the upper adjoint of (F,G). In particular a pair
(F, F ◦) of mutually inverse functions forms a Galois connection.

We summarize the most important results about Galois connections for our
purposes (see e.g. [4]), omitting the indices A,B and some symmetric properties.

Proposition 3.1 (Closures and Adjoints).
1. F preserves all existing suprema and G preserves all existing infima.
2. G ◦F and F ◦G are a closure and a kernel operator, resp. The set of G ◦F -

closed elements, i.e., the set of fixpoints of G ◦ F , is the image set G(B).
3. The adjoints of a Galois connection determine each other uniquely.

By this latter fact, one adjoint allows defining the other. A sufficient condition
for the existence of an upper adjoint is given in the following central proposition,
which also characterizes the upper adjoint in terms of the lower one.

Proposition 3.2 (Upper Adjoints and Image-Maximal Inverses).

1. Assume that (A,≤A) and (B,≤B) are complete lattices. Then every function
F : A→ B that preserves all suprema has an upper adjoint G given by

∀y ∈ B : G(y) = sup{x ∈ A | F (x) ≤ y} . (3)

2. Consider a Galois connection (F,G) between preorders (A,≤A) and (B,≤B).
Let f

.
= F ↓G(B) and g

.
= G ↓F (A) be the restrictions of F and G to the

respective image sets. Then f and g are inverses of each other such that

(Maximality) ∀y ∈ F (A) : g(y) = sup{x ∈ A | F (x) = y} . (4)

The function inverse g is called image-maximal in order to highlight maximality.
We will apply Prop. 3.2 for the case where F is the quotient operation. The

details of the proofs to follow may be skipped in a first reading.

3.1.2 The Complete Lattice of Submodels of a Model

An operation restricting models serves to define lattices of submodels on the
basis of lattices of subgraphs (cf. § 2.2).

Model Restriction and Canonical Submodels. Consider a model M and a
graph G′ ⊆ graphM . The restriction operation “⇓ ” extends domain restriction
↓ of functions (§ 2.1) to the case of models.

We first set P⇓G′ .= P ∩ Q′ for P ⊆ Q and S⇓G′ .= S ∩ T ′ for S ⊆ T . For
a map Ai, let Ai⇓G′

.
= Ai↓(Dom(Ai)⇓G′). Then the (canonical) submodel of a

model M induced by G′ is M⇓G′ as defined by the distribution rule of § 2.2.
We establish three useful properties of restriction.

Lemma 3.3 (Composition of Model Restrictions).

1. graph (M⇓G′) = G′ and M = M⇓ graphM .
2. If G′ ⊆ graphM then Dom(Ai⇓G′) = Dom(Ai)⇓G′.
3. If G′ ⊆ graphM and G′′ ⊆ G′ then (M⇓G′)⇓G′′ = M⇓G′′.

Proof. In calculations “C reason” can be read as “because (of) reason”.

1. The first assertion is immediate from the definition. For the second one we
observe that Ai⇓ (graphM) = Ai↓(Dom(Ai)⇓ (Q,T)) = Ai↓Dom(Ai) = Ai.

2. Immediate from the definition.
3. First, (M⇓G′)⇓G′′ = M⇓G′′ is well defined, since by the assumption and

Part 1 we have G′′ ⊆ G′ = graph (M⇓G′). Second, given M = (G,A), we
treat G = (Q,T) and A in turn. For P ⊆ Q, we calculate (P⇓G′)⇓G′′ =
(P ∩ Q′) ∩ Q′′ = P ∩ Q′′ = P⇓G′′ . Likewise for S ⊆ T . Then, for Di

.
=

Dom(Ai), D
′
i
.
= Di⇓G′, and A′i

.
= Ai↓D′i , we derive

(Ai⇓G′)⇓G′′ = A′i⇓G′′ C LHS of the thesis and def. of ⇓
= A′i↓(D′i⇓G′′) = A′i↓((Di⇓G′)⇓G′′) C def. of ⇓ and Part 2
= A′i↓(Di⇓G′′) C above calculation for P or S
= Ai↓((Di⇓G′) ∩ (Di⇓G′′)) C def. of A′i and (1)
= Ai↓(Di⇓G′′) = Ai⇓G′′ C G′′ ⊆ G′ and def. of ⇓ . ut

Submodel Relation. Using restriction we define the submodel relation ⊆ by

M ′ ⊆M ≡̇ ∃G′ ⊆ graphM : M ′ = M⇓G′

where M,M ′ ∈M . If M ′ ⊆M we also say that M ′ refines M . For a model M
let Sub(M)

.
= {M ′ |M ′ ⊆M} . In case M is infinite, Sub(M) is infinite too.

The submodel –or refinement– relation has pleasant properties.

Lemma 3.4 (Complete Lattices of Submodels). Consider any M ∈M .

1. For M ′,M ′′ ∈ Sub(M) we have M ′ ⊆M ′′ ≡ graphM ′ ⊆ graphM ′′ .
2. The relation ⊆ between models in Sub(M) is a partial order.
3. (Sub(M),⊆) is a complete lattice where the supremum of a set of submodels

is componentwise union.

Proof.

1. Assume M ′ = M⇓G′ and M ′′ = M⇓G′′ for some G′, G′′ ⊆ graphM . Then
by Lemma 3.3.1 we have graphM ′ = G′ and graphM ′′ = G′′.

(⇒) M ′ ⊆M ′′ C LHS of the thesis

⇒ graphM ′ = G̃ C for some G̃ ⊆ G′′ by def. of ⊆
and Lemma 3.3.1

⇒ G′ ⊆ G′′ C G′ = graphM ′ = G̃ ⊆ G′′ .

(⇐) G′ ⊆ G′′ C RHS of the thesis
⇒ M ′′⇓G′ = (M⇓G′′)⇓G′ C unfold M ′′

= M⇓G′ = M ′ C Lemma 3.3.3 and fold M ′

⇒ M ′ ⊆M ′′ C def. of ⊆ .

2. This is immediate from Part 1, since ⊆ is a partial order on graphs.
3. By Parts 1 and 2 the partial orders (SubGr(graphM),⊆) and (Sub(M),⊆)

are order-isomorphic. The former is a complete lattice by Lemma 2.1. ut

3.1.3 Expansion as an Upper Adjoint of Quotient

Expansion is specified using Prop. 3.2.1 and then is expressed constructively.

Specification of the Expansion Operation. We first study the interac-
tion between the submodels of a model M and those of a quotient M/E . The
equivalence E need not be a bisimulation.

Lemma 3.5 (Sub-Quotients). Let E ∈ Compat(M).
1. ∀M ′ ∈ Sub(M) : E ∈ Compat(M ′) , i.e., E ∩Dom(A′i)

2 ⊆ A′i ; (A′i)
◦.

2. The quotient operation /E : Sub(M)→ Sub(M/E) preserves all suprema.

Proof. Let Di
.
= Dom(Ai) and D′i

.
= Dom(A′i).

1. Consider an M ′ ∈ Sub(M), say M ′ = M⇓G′ for some G′ ⊆ graphM . By
definition of ⇓ we have A′i ⊆ Ai and thus D′i ⊆ Di. Hence

E ∩ (D′i)
2 = E ∩ (Di)

2 ∩ (D′i)
2 C LHS of the thesis and D′i ⊆ Di

⊆ (Ai ; A◦i) ∩ (D′i)
2 C E ∈ Compat(M)

= (Ai↓D′i) ; (Ai↓D′i)◦ = A′i ; (A′i)
◦ C relation algebra and def. of ⇓ .

2. By a straightforward calculation. ut
Now we can specify the expansion operation \E as an upper adjoint, thanks to
Part 2 and Prop. 3.2.1 where A = Sub(M) , B = Sub(M/E) , F = /E ,G = \E .
Namely, for any M ∈M and E ∈ Compat(M) ,

∀M ′ ∈ Sub(M), N ∈ Sub(M/E) : M ′ ⊆ N \E ≡̇ M ′/E ⊆ N . (5)

The set Sub(M/E)\E of E-closed submodels of M (see Prop. 3.1.2) is denoted
by ClSubE(M) . If M ′ ∈ ClSubE(M) then ∀t ∈ T, t′ ∈ T ′ : t′/E = t/E ⇒ t ∈ T ′ .

Computable Form of the Expansion Operation. Equation (3) for G = \E
is brought into a form that for finite M/E is computable symbolically (§ 2.3.4).

Lemma 3.6 (Constructive Expansion). Given any E ∈ Compat(M) and

ME ∈ Sub(M/E), we have ME\E = M⇓ Ĝ for the graph

Ĝ = (Q̂, T̂)
.
= (

⋃
QE ,

⋃
(X,Y)∈TE

(X × Y) ∩ T) .

Proof. By (3) it suffices to show that M⇓ Ĝ = sup{M ′ ∈ Sub(M) | M ′/E ⊆
ME}. Then Lemma 3.4.1 reduces this to proving Q̂ = supZ where Z .

= {P |
P/E ⊆ QE}, and similarly for T̂ . Let us detail the calculation for Q̂; that for T̂
is analogous.

First, clearly Q̂/E = (
⋃
QE)/E = QE ⊆ QE and hence Q̂ ∈ Z. Second, for

any P ∈ Z, we deduce P ⊆ Q̂ :⋃
(P/E) ⊆

⋃
QE C P/E ⊆ QE and isotony of

⋃
⇒ P ⊆ Q̂ C P =

⋃
(P/E) and def. of Q̂ . ut

3.1.4 Restrictions of the Quotient and Expansion Operations

Using Prop. 3.2.2 we first derive f and g from /E and \E, resp. Second, we
formalize M as a parameter and instantiate E to a coarsest bisimulation (cf.
Lemma 2.2.1).

Restricted Expansion as Maximal Inverse of Restricted Quotient. We
want to obtain an isomorphism between certain classes of models. To this end we
define the following restrictions of /E and \E for anyM ∈M , E ∈ Compat(M) :

∀M ′∈ ClSubE(M) : ShrinkM,E M ′ = M ′/E ,

∀N ∈ Sub(M/E) : GrowM,E N = N \E ,

and ShrinkM,E : ClSubE(M)→Sub(M/E) ,GrowM,E : Sub(M/E)→ClSubE(M) .
Indeed \E : B → A entails A ∩ (B\E) = B\E = ClSubE(M) and M/E ∈
Sub(M)/E entails B ∩ (A/E) = Sub(M/E) ∩ (Sub(M)/E) = Sub(M/E) .

The following maximality property follows from (5) and Prop. 3.2.2.

Lemma 3.7. GrowM,E is the image-maximal inverse of ShrinkM,E.

Generic Forms of Restricted Quotient and Expansion. Let ClSub(M)
.
=

ClSubRed(M)(M) and SubRed(M)
.
= Sub(M/Red(M)). Here Red(M) stands for

RedB(M) (cf. § 2.3.4) given the understood bisimulation class B. We define

∀M ∈M,M ′∈ ClSub(M) : (Shrink M)M ′ = M ′/Red(M) , (6)

∀M ∈M, N ∈ SubRed(M) : (Grow M)N = N \Red(M) . (7)

The typing is Shrink : (M :M)→ (ClSub(M)→ SubRed(M)) ,Grow : (M :M)→
(SubRed(M)→ ClSub(M)) . The reduction of any M ∈M is (ShrinkM)M .

Since GrowM = GrowM,Red(M) and ShrinkM = ShrinkM,Red(M) , Lemma 3.7
entails a parametrized form of maximality.

Proposition 3.8 (Maximal Inverse). For any M-model M, the function
GrowM is the image-maximal inverse of the function ShrinkM .

Therefore (GrowM)N = sup{M ′ ∈ Sub(M) | M ′/Red(M) = N} ; see (4).
Moreover M ∈ ClSub(M) since M = (GrowM ◦ ShrinkM)M .

3.2 Preservation of Satisfactory Refinements under Expansion

Abstract Model Classes. We assume that M is partitioned into M↓ and
M↑ such that M↑ = {M/E | M ∈ M↓ ∧ E ∈ Compat(M)} . Thus quotients of
quotients are not considered. In this caseM is called a two-level model class. Let
the class N ↑ ⊆M↑ of bisimulation quotients be N ↑ .=

⋃
M∈M↓ SubRed(M) . It

is said to abstract the quotient-free class M↓.

Satisfactory Refinements. Let ϕ be a predicate over states in M-models.
The refinement –or submodel– relation ⊆ :M2 (§ 3.1.2) is strengthened to the
ϕ-(satisfactory) refinement relation vϕ : (M↓)2 ∪ (N ↑)2 given by

M ′ vϕ M ≡̇ (M ′ ⊆M) ∧ (M ′ |= ϕ) . (8)

Certain satisfactory refinement relations can be expanded from (N ↑)2 to (M↓)2.

Admissibility. The predicate ϕ is M-admissible –see examples in § 4– if

∀M ∈M↓, E∈B(M) : M/E |= ϕ ⇒ M |= ϕ . (9)

Lemma 3.9. For any M-admissible ϕ , we have ∀M ∈M↓, M ′ ∈ ClSub(M) :
(ShrinkM)M ′ |= ϕ ⇒ M ′ |= ϕ .

Proof. Let any M ∈ M↓ and M ′ ∈ ClSubE(M) (§3.1.3) where E = Red(M)
and M ′/E |= ϕ (6). First we deduce E ∈ B(M ′) by proving ∀x, y, x′ ∈ Q′ :
xT ′y ∧ xEx′ ⇒ (∃y′ ∈ Q′ : x′T ′y′ ∧ yEy′) . Let any x, y, x′ ∈ Q′ and t′ = (x, y)
such that t′ ∈ T ′ ∧ xEx′. For some y′ ∈ Q and t′′ = (x′, y′) , we have

t′ ∈ T ′ ∧ xEx′ C hyp. about x, y, x′, t′

⇒ t′ ∈ T ′ ∧ xEx′ ∧ t′′ ∈ T ∧ yEy′ C M ′ ⊆M and E ∈ B(M)

⇒ t′′ ∈ T ′ ∧ yEy′ C t′/E = t′′/E and hyp. about M ′.

Now (9), Red(M) ∈ B(M ′), and (6) entail (ShrinkM)M ′ |= ϕ⇒M ′ |= ϕ . ut

For M ′ = (GrowM)N ′ , the thesis above becomes ∀M ∈M↓, N ′∈SubRed(M) :
N ′ |=ϕ⇒ (GrowM)N ′ |=ϕ . This yields a basic property by (8) and Lemma 3.5.

Proposition 3.10 (Expanding Abstract Refinements). Given a two-level
model class M , an abstract model class N ↑ , and an M-admissible formula ϕ ,

∀M ∈M↓, N,N ′∈SubRed(M) : N ′vϕN ⇒ (GrowM)N ′vϕ (GrowM)N .

The generalization to abstract model classes other than N ↑ should be studied.
This issue is related to the use of diverse abstractions in abstract verification [3].

3.3 A Generic Algorithm for Model Refinement by Abstraction

As a result we can present the specification and construction of Algorithm Refine.

Preconditions. The context has to provide the following data:

(H1) A two-level model class M, an M-compatible bisimulation class B, and
a map generator FB .

(H2) A finite or well-structured infinite M↓-model M for which the finitary
B-reducer is obtained by some known algorithm BisimAlgoB .

(H3) A set Frml of M-admissible formulae.
(H4) An algorithm FiniteRefine : Frml→ (M→M) with lowest known com-

plexity, which given any ϕ ∈ Frml and any finite M ∈ M, produces a
model M ′ that satisfies M ′ vϕ M ∧ ((M |= ϕ) ≡M ′ = M) .

Postcondition. For parameters ϕ ∈Frml and M ∈M↓, the result M ′ satisfies
M ′ vϕ M ∧ (((ShrinkM)M |= ϕ) ≡M ′ = M) .

Algorithm Refine. The constructive function Refine : Frml→ (M↓ →M↓) is
defined as follows, given (6), (7), Lemma 3.6, and the Preconditions:

∀ϕ∈Frml,M ∈M↓: (Refine ϕ)M = (GrowM ◦ FiniteRefine ϕ ◦ ShrinkM)M .

Correctness follows from Prop. 3.8 and Prop. 3.10 whereN ′=(FiniteRefine ϕ)N ,
N=(Shrink M)M . For finite models, the complexity of Refine is polynomial if
that of FiniteRefine is polynomial. For well-structured infinite models, symbolic
forms of the functions Shrink and Grow can be used; see § 2.4.5 and Lemma 3.6.

Maximal Refinements. The image-maximal inverse GrowM yields the largest
possible model given Prop. 3.8. Hence Refine generates a maximal correctly
refined model if FiniteRefine does it. However various finite-state refinement
algorithms do not yield maximal models, e.g., they may exclude legitimate non-
determinism. The latter issue is outside the scope of the present work.

If Shrink and Grow are defined as bidirectional functions then GrowM is a
right-inverse of ShrinkM [6]. This does entail the Postcondition but not Prop. 3.8.

Abstract Verification. Let Check : Frml→(M↓→Bool) where (Check ϕ)M =
(FiniteCheck ϕ ◦ ShrinkM)M assuming (FiniteCheck ϕ)M ≡ (M |= ϕ) . Then
(Check ϕ)M ≡ (M |= ϕ) . So Check allows verifying models; see e.g. [1]. The
preconditions of Check are those of Refine except for simple changes in (H4).
The function FiniteCheck ϕ may have a lower complexity than FiniteRefine ϕ.

4 A Summary of Typical Applications

Due to limited space we merely sketch a few applications; proofs are omitted.

Determining Minimum-Cost Paths. This example was considered in § 1.
Given a model M = (G,A), an M -path is a path of G. For any Z ⊆ Q, the

set of M -paths from x to some z ∈ Z is denoted by Paths(x,G,Z).
Consider two models M and M ′, a bisimulation class B and a B-bisimulation

relation R for (M,M ′). Let x0, x
′
0 be any states of M,M ′ such that x0Rx

′
0.

Then clearly for every M -path x0 . . . xi . . . xn, there is an R-bisimilar M ′-path
x′0 . . . x

′
i . . . x

′
n, i.e.,

∧
i=0...n xiRx

′
i, and for any M ′-path from x′0 there is a cor-

responding R-bisimilar M -path starting in x0. See also Lemma 7.5 in [1].
Let Mmcp be the set of models (G, (Z, g, V)) where G = (Q,T) may be

infinite, Z : Q→ Bool represents the subset Q−Dom(T) (for brevity we therefore
write Z = Q − Dom(T)), g : T → R+ is a total edge-cost function such that
Im(g) is finite, and V : Q → R+ is the value function for M such that V is
total and ∀x ∈ Q : V (x)

.
= min{cost(p) | p ∈ Paths(x,G,Z)} where cost(p) is

the cumulative cost of p. Obviously, V (x) = 0 iff Z x = true. In this application
refinement is thus expressed by the removal of edges but not of nodes. Indeed Z
is reachable from every x ∈ Q since V (Q) ⊆ R+ . If needed, Q is first replaced
by the set of Q-nodes from which Z is reachable.

The Bmcp-bisimulation equivalences are generated by the map

Fg
.
= λM :Mmcp .λE :Q2. Wg(E) ∩ Fbasic(E),

Wg(E)
.
= { (x, x′) | ∀y, y′ :xTy ∧ x′Ty′ ∧ yEy′ ⇒ g(x, y) = g(x′, y′)}.

The bisimulation algorithms in § 2.4.4-5 can be used. TheMmcp-compatibility of
Bmcp is proved using Lemma 2.2 and the above construction of bisimilar paths.
Model quotients are independent of V since Fg is independent of V .

A model M is optimal iff ∀x ∈ Q : ϕmcp x where ϕmcp is defined by ϕmcp x ≡̇
∀p ∈ Paths(x,G,Z) : cost p = V (x). Regarding submodels, M ′ ⊆ M if Q′ =
Q,T ′ ⊆ T,Z ′ = Z. So g′ = g↓T ′ and V ′ = V ↓Q′ = V given Q′ = Q . By
definition ofMmcp-models, V ′ is the value function for M ′. Hence the optimality
of M ′ entails its optimality w.r.t. M since ∀x ∈ Q : V ′(x) = V (x).

The Mmcp-admissibility of ϕmcp has been proved. So Refine ϕmcp is appli-
cable. As well known, the complexity of FiniteRefine ϕmcp is polynomial.

Illustration. We illustrate the above mcp-application. Here [a, b] stands for the
closed interval {x | x ∈ R∧a ≤ x ≤ b} . Thus the set [a, b] is infinite when a < b.
The (half-)open intervals]a, b], [a, b[and]a, b[are defined analogously.

Consider M = ((Q,T), (Z, g, V)) where Q = [0, 4], the map V may remain
implicit, T = {(x, y) | x ∈ [0, 1] ∧ y = x + 3 ∨ x ∈ [0, 3[∧y = x + 1}, Z = [3, 4]
and g = (T → {10, 5}) ∩ {((x, y), c) | y = x+ 3 ∧ c = 10 ∨ y = x+ 1 ∧ c = 5}.

First, M is reduced to N
.
= (ShrinkM)M = M/Red(M) using Fg. Let

N = ((QN , TN), (ZN , gN , VN)), X0 = {0}, X1 =]0, 1[, X2 = {1}, X3 =]1, 2[and
X4 = [2, 3[. We obtain QN = {X0, X1, X2, X3, X4, Z}, ZN = {Z} and

TN = {(X0,X2),(X0, Z),(X1,X3), (X1, Z),(X2, X4),(X2,Z),(X3,X4),(X4,Z)} ,
gN = (TN→{10, 5}) ∩ {((X,Y), c) | (X 6=X4 ∧ Y =Z) ≡ (c = 10)} ,
VN = {(X,c) |X=Z ∧ c=0 ∨X=X4 ∧ c = 5 ∨X∈{X0,X1,X2,X3} ∧ c=10} .

Second, FiniteRefineϕmcp is applied to the finite quotient N . The result
is N ′ = ((QN , T

′
N), (ZN , g

′
N , VN)) where T ′N = TN − {(X0, X2), (X1, X3)} and

g′N = gN↓T ′N . By construction we have N ′ vϕmcp
N .

Third, the optimal N ′ is expanded to (GrowM)N ′ = N ′\Red(M) . The
result is M ′ = ((Q,T ′), (Z, g′, V)) where T ′ = {(x, y) | x ∈ [0, 1] ∧ y = x +
3 ∨ x ∈ [1, 3[∧ y = x + 1} and g′ = g↓T ′ . Indeed X0 ∪ X1 ∪ X2 = [0, 1] and
X2 ∪ X3 ∪ X4 = [1, 3[. By construction, M ′ vϕmcp

M . Note T ′(1) = {4, 2} .
Thanks to the above expression for VN it is easy to derive an expression of V ,
namely V = {(x, c) | x ∈ [3, 4] ∧ c = 0 ∨ x ∈ [2, 3[∧ c = 5 ∨ x ∈ [0, 2[∧ c = 10} .

The bisimulation map Fg could be replaced by another one such that the
equivalence of any nodes x and y entails V (x) = V (y) (see [7, 15]). This could
help in obtaining finitary equivalences. However the function V should then be
computed symbolically before reducing any given infinite model.

Generalization to a Family of Optimal Control Problems. A (selective
and complete) dioid is a complete idempotent semiring (S,⊕,⊗, 0, 1), where S
is a set of measures of some sort, ⊗ accumulates measures, ⊕ selects optimal
measures, 0 and 1 are the neutral elements of ⊕ and ⊗ , ⊗ is distributive w.r.t.
⊕ , and the natural order a ≤ b ≡̇ a ⊕ b = b is linear. Various optimization
problems are formalized using dioids D, e.g., the shortest-paths problem where
D = (R+

0 ∪ {∞},min,+,∞, 0), the maximum capacity problem where D =
(R∪{±∞},max,min,−∞,∞), and related problems for Markov chains. See [9].

The mcp -example has been generalized to the class Moptim of dioid-based
models and the corresponding adaptation ϕoptim of ϕmcp. Hence Refine ϕoptim

is applicable. Incidentally, Check ϕoptim too is applicable; see § 3.3.

The complexity of FiniteRefineϕoptim is polynomial in the case of Moptim -
models based on dioids with 1 as greatest element wrt. ≤ , see [9] again. This
is equivalent to a ≤ b ⇒ a ⊗ c ≤ b for all a, b and c, so extending a path
cannot improve its cost. For instance the dioids (R+

0 ∪ {∞},min,+,∞, 0) and
(R ∪ {±∞},max,min,−∞,∞) shown above have this property, contrary to the
dioid (R+

0 ∪ {∞},max,+, 0, 0) used in the longest-paths problem. However, this
property is not a necessary condition for polynomial complexity.

Application to a Family of Temporal Properties. We consider the tempo-
ral properties expressed in the logic CTL∗. Let be given a finite set P of atomic
propositions. The P -based class Mtemp is the set of models ((Q,T), (Qinit, L))
where ∀x ∈ Q : T (x) 6= ∅, the map Qinit : Q → Bool characterizes a set of
initial states, and the map L : Q → 2P is total [1, 2]. The Btemp-bisimulation
equivalences are determined by the auxiliary equivalence Wtemp

.
= Q2∩{(x, x′) |

L(x) = L(x′)}. We assume that Qinit in the given M defines an E-closed set for

any equivalence E ∈ B(M)
temp . The bisimulation algorithms in § 2.4.3 and § 2.4.5

can be used and the Mtemp-compatibility of Btemp is easily checked.
The good news is that all CTL∗-formulae are Mtemp-admissible (Thm. 14

in [2]). Hence for each CTL∗-formula ϕ , Refine ϕ is applicable. The bad news is
that the time complexity of FiniteRefine ϕ is at least exponential in the size of
ϕ , like that of ϕ-satisfiability. This complexity remains exponential if ϕ belongs
to the less general logics LTL or CTL. See e.g. [1].

5 Related Work and Conclusion

Related Work. In [7], a problem of optimal stochastic control is tackled with
the help of a dedicated bisimulation. In [12], a design method for supervisory
control is developed. It uses bisimulations, is applied to qualitative properties,
and involves polynomials as symbolic representations of sets. To study the ap-
plicability of our approach to these problems would be worthwhile.

Conclusion. The proposed method reduces the refinement of models to that
of finite abstract ones. It involves a restricted expansion which maps refined
abstract models back to maximal submodels. It can be used for quantitative or
qualitative goals and for models which are very large but finite or infinite but
well-structured. Its usefulness depends on various factors which need further
examination: each considered design problem must be defined in terms of a
model classM , anM-compatible bisimulation class, and anM-admissible goal
formula; very large models must collapse to drastically smaller quotient models;
we should know efficient algorithms for solving finite-state problem instances.

References

1. Ch. Baier, J.-P. Katoen, Principles of model checking, MIT Press, 2008.

2. E.Clarke, O. Grumberg, D. Peled, Model checking, MIT Press, 3rd ed., 2001.

3. P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. 4th Symp.
Principles of Programming Languages: 238–252. ACM, New York, 1977.

4. M. Erné, J. Koslowski, A. Melton and G. Strecker, A primer on Galois connections.
In: S. Andima et al. (eds.), Papers on general topology and its applications. 7th
Summer Conf. Wisconsin. Annals New York Acad. Sci. 704, New York (1994),
103–125.

5. J.-C. Fernandez, An implementation of an efficient algorithm for bisimulation
equivalence; Sci. Computer Programming 13(2–3):219-236, 1989.

6. J.N. Foster, M.B. Greenwald, J.T. Moore, B.J. Pierce, A. Schmitt, Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem; ACM Trans. Programming Languages and Systems 29(3): Article 17, 65
pages, 2007.

7. R. Givan, Th. Dean, M. Greig, Equivalence notions and model minimization in
Markov decision processes, Artificial Intell. J. 147(1-2): 163-223, 2003.

8. R. Glück, B. Möller, M. Sintzoff, A semiring approach to equivalences, bisimula-
tions and control, Conf. Relational Methods in Computer Sci. and Applications of
Kleene Algebra, LNCS 5827: 134-149, Springer, 2009.

9. M. Gondran, M. Minoux, Graphs, dioids and semirings: new models and algo-
rithms, Springer, 2008.

10. T.A. Henzinger, R. Majumdar, J.-F. Raskin, A classification of symbolic transition
systems, ACM Trans. Computational Logic 6 (2005) 1–32.

11. P. Kanellakis, S. Smolka, CCS expressions, finite state processes, and three prob-
lems of equivalence, Information and Computation 86 (1990) 43–68.

12. H. Marchand, S. Pinchinat, Supervisory control problem using symbolic bisimula-
tion techniques, Proc. Amer. Control Conf., Vol.6, 4067–4071, 2000.

13. R. Milner, A calculus of communicating systems. Extended reprint of LNCS 92.
University of Edinburgh, Laboratory for Foundations of Computer Science, Report
ECS-LFCS-86-7, 1986

14. R. Milner, Operational and algebraic semantics of concurrent processes. In: J. van
Leeuwen (ed.), Formal models and semantics, Handbook of Theoretical Computer
Sci., Vol.B: 1201–1242, Elsevier, 1990.

15. M. Sintzoff, Synthesis of optimal control policies for some infinite-state transition
systems, Conf. Maths of Program Construction, LNCS 5133: 336–359, Springer,
2008.

