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Abstract. The Network Testbed Mapping Problem is the problem of
mapping an emulated network into a test cluster such as Emulab or DE-
TER. In this paper, we demonstrate that the Network Testbed Mapping
Problem is NP-complete when there is constrained bandwidth between
cluster switches. We demonstrate that the problem is trivial when band-
width is unconstrained, and note that a number of new proposals for
data center networking have removed this barrier. Finally, we consider
new heuristics in the bandwidth-limited case.
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1 Introduction

The Network Testbed Mapping Problem is the fundamental combinatiorial prob-
lem faced by network test environments such as Emulab [10] and DETER [1].
This is the problem of embedding instances of an emulated or virtual test net-
work, which consist of a collection of nodes, links, and LANs, onto a physical
cluster using virtual LANS so that the inter-node bandwidth requirements of
the test network is satisfied. This problem is thought to be difficult, since inter-
node bandwidth in a typical cluster often depends on the relative placement
of the nodes within the cluster. Nodes which are placed on the same switch
have sufficient bandwidth with adequately provisioned switches; however, since
switch-switch bandwidth is typically much less than the aggregate bandwidth
each switch allocates to its attached nodes, nodes attached to different switches
in the data center have limited inter-node bandwidth.

For this reason, network testbed mapping is typically solved by heuristic
methods. For example, Emulab and DETER use simulated annealing, a proba-
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bilistic hill-climbing algorithm originally used for VLSI placement in the 1980’s.
Simulated annealing, described below, works by starting from some solution
and attempting to find a better, lower cost, solution. In this, it is similar to
a large number of perturbative or progressive-improvement solutions. It differs
from many in that it permits “hill-climbing” perturbations which temporarily
lead to a worse solution but ultimately yield a superior solution. The intuition
is that pure improvement perturbative methods such as the Greedy method find
only local optima; permitting occasional “upward” moves which find a poorer
solution offers the prospect of finding a better global solution than one can find
from pure improvement methods.

The attraction of perturbative methods in general is that a perturbative
algorithm works on any combinatiorial optimization problem. All one needs is
a metric to measure the quality of a solution, an initial solution, and an ablity
to move from one solution to another; given these three elements, the algorithm
iterates repeatedly and eventually produces a better solution.

For example, in the case of the network testbed mapping problem, the initial
solution is an assignment of nodes to switches; the metric is the deficit in actual
vs. desired inter-node bandwidth; and a move is the exchange of pairs of nodes
or the reassignment of a single node to a switch.

Given how simple perturbative methods are to use, one might wonder why
they are not universally used. The answer is that the generality of perturbative
methods means that they can only give fairly weak guarantees of solution qual-
ity. Despite the best efforts of many theorists, simulated annealing only gives
stochastic assurances of quality, and the characteristics of the solution space
on which simulated annealing works well is largely conjectural. Sorkin [14] per-
suasively argued that simulated annealing was likely to do well on self-similar
solution spaces, but one cannot a priori determine which problems or instances
have self-similar solution spaces.

Furthermore, it is easy to demonstrate hard problems for which simulated
annealing will not do well. Consider, for example, an instance of SAT[6] with
relatively few satisfying assignments. Starting from a random assignment, the
odds that simulated annealing’s random exploration of the solution space will
find a satisfying assignment in reasonable time is vanishing; and in the case of
an unsatisfiable instance, simulated annealing will prove nothing until it has
explored the entire space.

Simulated annealing has proven to be succesful in testbeds at the scale of
Emulab and DETER[12]. However, recent data suggests that it may not scale
well in significantly larger settings [8][3]. Other interesting approaches have been
proposed in the recent literature, notably [11], who exploited the fact that in
many network graphs isomorphic subgraphs are detected. [16] broke the ground
of observing that modification of the underlying substrate network can make the
problem more tractable. In this paper, we show that some classes of underlying
network substrate make this problem easy.

Given that the next generation of testbeds is projected to handle emulated
test networks more than an order of magnitude larger than Emulab or DETER,
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this problem is worth revisiting. In particular, we would like to investigate the
following questions:

1. When is Network Testbed Mapping NP-hard? It is widely believed to be
hard, but to date the reductions appearing the literature have been sketches
in papers devoted to heuristic development. While this is quite common, it
doesn’t tell us precisely why NTM is hard, which often illustrates where and
when it can be solved.

2. Though Network Testbed Mapping is NP-hard, are there any circumstances
under which it is easy? Can we design and engineer our range cluster net-
works to make it easy?

3. Though Network Testbed Mapping is NP-hard, is it amenable to non-
perturbative methods which can give stronger guarantees of the relative qual-
ity of solutions as compared to simulated annealing? For example, some vari-
ants of VLSI placement can be solved by the Linear Programming with Ran-
domized Rounding[15] technique, which can give strong probabilistic guar-
antees. While approximation and probabilistic techniques typically are not
conserved across polynmial reductions (or else every problem in NP would
be easy to approximate, a strong and manifestly false result), often the na-
ture of a reduction may provide a heuristic guide to good approximation and
probabilistic techniques.

In this paper we consider these questions.

2 The Network Testbed Mapping Problem

The formal network testbed mapping problem is a simplification of the actual
mapping problems solved within real testbeds. We assume, e.g., that all nodes
are homogenous which means we can freely assign nodes to any switch. We ignore
details of the interconnect fabric between the physical switches, assuming that
each switch has a dedicated connection of some bandwidth to every other switch.
These two assumptions simplify the problem to enable us to prove theorems
about it, without assuming the problem away.

For example, one can easily capture heterogeneity of nodes by making the
capacity (maximum port count) of each switch a vector, as opposed to scalar,
quantity. The independence of inter-switch bandwidth is certainly a simplifying
assumption, but for the purposes of complexity results it is unnecessary to intro-
duce a more sophisticated model in the problem description – if this formulation
of the problem is hard, then the general problem will be as well. Furthermore,
the simplified problem generalizes very naturally to the general problem, as will
be seen below.

Problem 1 The Network Testbed Mapping Problem. Given: A network
of switches, s1, ..., sn with (port) capacities C1, ..., Cn and interswitch bandwidth
capacities B11, ...B1n, B21, ..., Bnn, and a test network of nodes N1, ..., Nm with
internode bandwidth requirements b11...bmm. Question: is there an injective as-
signment A : N → s such that:
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|A(u) = i| ≤ Ci ∀i, 1 ≤ i ≤ n (1)

and: ∑

A(u)=i,A(v)=j

buv ≤ Bij ∀i, j (2)

(Where the summation is taken over all A(u),A(v) satisfying the equalities.) We
say any mapping that satisfies (1) and (2) is feasible.

The capacity of a switch is the number of edge nodes to which it can connect; the
bandwidth capacity of a pair of switches is the total bandwidth between them.
The two conditions on the problem are therefore that the assignment function
not assign too many nodes to any switch, and the total assigned bandwidth
between any pair of switches doesn’t exceed the available bandwidth between
that pair of switches. (We note that this formulation of the problem identifies
only one edge link per edge node. In practice, a real test cluster would support
n edge links per edge node. If we assume that the physical test cluster wiring
connects all links from an edge node to a single switch, then the problem is
unchanged. The formulation generalizes easily by permitting A(u) to be a fixed
sized set for each u, where |A(u)| is the number of outgoing connections from
u. The bandwidth constraint 2 becomes slightly messier, since there are now
multiple paths between u and v. In practice, one cannot discuss this sensibly
without some knowledge of the routing discipline used in the multiple path case.
If routing between terminals is deterministic, as it usually is, then one can treat
each NIC of each node as a separate node).

Remark 1 The definition of network testbed mapping can extend to the conven-
tional tree-of-switches network in a data center. Each switch in a tree-of-switches
network has an upward bandwidth capacity Ui, a downward bandwidth capacity
Di, a set of descendant switches ci, and a set of switches ri for which it is the
least common ancestor. The second constraint equation (2) in NTM is replaced
by a pair of constraints, where the upward capacity must exceed the total band-
width exiting the tree rooted at this switch. Formally, let

ui =
∑

A(u)∈ci,A(v) 6∈ci

buv

Then: Ui ≥ ui. Similarly, the downward capacity must exceed the total bandwidth
exiting the sub-tree + the total bandwidth passing through this switch as the root
switch. Formally, let

di =
∑

A(u)∈ri,A(v)∈ri

buv

then
Di ≥ ui + di

where ui is defined as above.

Observation 1 NTM is in NP
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Proof. Given an assignment A, conditions (1) and (2) are checked in linear time
straightforwardly.

We will now demonstrate that NTM is NP-hard, by reducing the known
NP-hard problem Minimum Graph Bisection.

Problem 2 Minimum Graph Bisection. Given: an unweighted, directed graph
G(V, E), integer K. Question: is there a partition of V into sets V1, V2, ||V1| −
|V2|| ≤ 1, such that:

|(v1, v2) ∈ E|s.t.v1 ∈ V1, v2 ∈ V2 ≤ K

See, for example, http://tracer.lcc.uma.es/problems/bisect/bisect.htm.

Theorem 1 Network Testbed Mapping is NP-complete.

Proof. We reduce Mimimum Graph Bisection. Given an instance G(V, E), in-
teger K of Minimum Graph Bisection, derive an instance of Network Testbed
Mapping as follows. We define two switches, s1 and s2, with capacities C1 =
⌊(|V |/2)⌋, C2 = ⌈(|V |/2)⌉, and interswitch bandwidth capacities B12 = B21 =
K. Our test network of nodes is N1, ..., N|V | (one node per graph node), with
buv = 1 if (u, v) is an edge in E, buv = 0 otherwise.

Plainly, the derivation of an instance of Network Testbed Mapping is linear.
Let A be the assignment which solves the Network Testbed Mapping instance.
Let V1 = {u|A(u) = 1}, V2 = {v|A(v) = 2}. V1 and V2 are a bisection of V , and
V1 and V2 are derived in linear time from A. Further,

∑

A(u)=1,A(v)=2

buv ≤ K

since A is a solution to the Network Testbed Assignment problem, we have:

|(u, v)|u ∈ V1, v ∈ V2 ≤ K

so (V1, V2) is a solution to the Minimum Graph Bisection instance

This suffices to show that the Network Testbed Mapping is NP-complete. In
the next section, we will consider special cases where the problem is easy, and
following that we will consider approximation and heuristic algorithms for the
general case.

3 Polynomial-Time Special Cases

The reduction in the previous section permitted switches of arbitrary capacity
and outgoing bandwidth. In practice, of course, switches have finite capacity and
interswitch bandwidth is largely a function of the network topology. Further,
for many network topologies, such as the common tree-of-switches fabric we
discussed earlier, interswitch bandwidth is not independent but competitive.
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Some network topologies, however, permit easy solution of the Network
Testbed Assignment problem. We characterize this set here.

In this discussion, we will assume network fabrics constructed from homoge-
neous switches with a specific bandwidth capacity per port, and the same port
bandwidth is used on the network interface cards (NICs) of the various nodes.
This simplification, and appropriate choice of units permits us to take Bij as
a non-negative integer and 0 ≤ buv ≤ 1, and to take a node as equivalent to a
unit of bandwidth. This has no substantive effect on the results below, but does
permit us to state the results clearly and without introducing spurious constants.

Definition 1 A network fabric is said to be bandwidth-unconstrained if and
only if:

1. Inter-switch bandwidth capacities are independent; assigning bandwidth be-
tween one pair of switches doesn’t affect available bandwidth between a dif-
ferent pair

2. For each pair of switches i, j:

Bij ≥ max(Ci, Cj)

where Bij and Ci are taken from the definition of the Network Testbed Mapping
problem.

Several scalable network fabrics have been proposed in the literature recently,
notably the data center networks proposed by Al-Fares et al. [2] and by Scott et
al. [13]. These conditions make network testbed mapping trivial.

Theorem 2 Consider any Network Testbed Mapping problem where the fabric
is bandwidth unconstrained, in particular Bij ≥ max(Ci, Cj) for all i, j. Every
assignment A : N → S such that |A(u) = i| ≤ Ci ∀i is feasible.

Proof. The constraint |A(u) = i| ≤ Ci merely says that we can’t assign more
nodes to a switch than it can take, so consider any assignment A that meets this
constraint. We must show for any pair of switches i, j, that:

∑

A(u)=i,A(v)=j

buv ≤ Bij

But this is trivial. Under our notational convention, 0 ≤ buv ≤ 1 for all u, v, so:
∑

A(u)=i,A(v)=j

buv ≤ |A(u) = i,A(v) = j|

and the constraint |A(u) = i| ≤ Ci ∀i implies |A(u) = i,A(v) = j| ≤
max(Ci, Cj), so:

∑

A(u)=i,A(v)=j

buv ≤ |A(u) = i,A(v) = j| ≤ max(Ci, Cj)

and the fact that the bandwidth is unconstrained ensures:

max(Ci, Cj) ≤ Bij
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This theorem strongly motivates the use of scalable network architectures as
building blocks for network testbeds.

4 Heuristic Approaches

The premise of Theorem 2 is in fact stronger than necessary. It is simply a
premise that can be stated entirely in terms of cluster topology, independent
of the details of the test network to be embedded. One can achieve the same
objective by significantly underpromising bandwidth to embedded nodes. In par-
ticular, if

max
u,v

buv ≤ min
i,j

Bij

max(Ci, Cj)
(3)

then any assignment is feasible.
The proof is quite similar to the proof of Theorem 2. In fact Theorem 2 is

the special case of (3) where:

max
u,v

buv ≤ 1 ≤ min
i,j

Bij

max(Ci, Cj)

Since by convention
max
u,v

buv ≤ 1

and the premise of Theorem 2 is

1 ≤ min
i,j

Bij

max(Ci, Cj)

These two inequalities are sufficient to maintain the general inequality needed for
the theorem, but not necessary. Indeed, one can ensure the general invariant by a
variety of means. The general invariant is a restriction of bandwidth demands of
the test network relative to the bandwidth capacity of the cluster. For example,
the DieCast system of Gupta et al.[7] articially enhances the relative capacity
of a switch infrastructure to a test network by slowing down the test network’s
system clocks.

5 Network Testbed Mapping on a Leaf DAG

An interesting topology for network testbed mapping is a variant of a tree called
a leaf Directed Acyclic Graph, or leaf DAG. A leaf DAG is a multi-rooted directed
acyclic graph where internal nodes have a single parent, but leaves are permitted
to have multiple parents. This specific class of topologies is often chosen for
data center networks, because it permits alternate paths from the leaves while
retaining the autoconfiguration properties of standard Ethernet networks. The
Emulab topology, for example, is a leaf DAG [4]. It is reproduced in Figure 1.
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Fig. 1. Emulab Topology

The switches in this figure form a tree of depth three; Cisco8 is the root switch,
with Cisco3 and Cisco5 as its (switch) children. Cisco1 and Cisco4 are children
of Cisco3. Each switch has leaves attached. The network is a leaf DAG because
pc201-210 and pc241-360 are multihomed, attached to both Cisco8 and Cisco5.

The reduction given above suggests a strong similarity between the network
testbed mapping problem and the graph partitioning problem. The latter prob-
lem has been studied extensively, particularly in the field of VLSI placement.
The first procedure to be suggested was the Kernighan-Lin procedure [9]. This
procedure bipartitioned a graph to minimize the weight of the edges crossing
between the two partitions. It is shown in Figure 2. This procedure requires the
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computation of the gain to be obtained by interchanging a pair of nodes v1, v2

where v1 ∈ V1 and v2 ∈ V2. The gain is simply the change in the sum of the
weights of the edges crossing the partition. An invariant of this procedure is that
each node can be moved at most once, and hence we must differentiate between
those nodes that have been moved and those that have not. Hence there are
four sets of nodes in this procedure; V1, the set of unmoved nodes on the left
side of the partition, U , the nodes on the left side of the partition that were
moved from the right, and the corresponding sets V2 and V on the right side of
the partition. So the gain from exchanging v1 and v2 is the weight of the edges
that crossed the partition before the exchange minus the edges that crossed the
partition after the exchange. The sum before exchange is just:

∑

v∈V2

⋃
V

w(v1, v) +
∑

u∈V1

⋃
U

w(v2, u) − w(v1, v2)

with the subtraction of w(v1, v2) to eliminate double-counting. Similarly, the
sum after exchange is just:

∑

v∈V2

⋃
V

w(v2, v) +
∑

u∈V1

⋃
U

w(v1, u) − w(v1, v2)

The total gain, Gv1,v2
, is just the difference:

Gv1,v2
=

∑

v∈V2

⋃
V

(w(v1, v) − w(v2, v)) +
∑

u∈V1

⋃
U

(w(v2, u) − w(v1, u)) (4)

The Kernighan-Lin procedure has been well-studied. Its cost is dominated
by the need to recompute the potential gain at each step. Assuming fixed, low
degree for each node in the graph, computing the gain for each pair is a constant-
time operation. Since there are O(n2) pairs, where n is the number of nodes in
the graph, each iteration takes time O(n2). Each iteration reduces the size of V1

and V2 by one node each; there are O(n/2) nodes initially in each partition, the
algorithm is O(n3).

The algorithm in Figure 2 may be iterated so long as cost improves; in this
case the global runtime is O(cn3), where c is the initial partition cost.

In 1982, Fidducia and Mattheyses improved the performance of the Kernighan-
Lin procedure to linear time[5]. Fidducia and Mattheyses made two key innova-
tions to improve the performance of Kernighan-Lin. First, Fiduccia-Mattheyses
does not exchange nodes as Kernighan-Lin does, but simply moves individual
nodes from one side to another. The sides alternated to keep the partition bal-
anced. Second, the gain for moving each node is precomputed, and nodes are
stored in an array indexed by the gain for moving the node. This permits efficient
selection of the best node to move. The valid indexes of the array are −dw, ..., dw,
where d is the maximum degree of a node and w is the maximum edge weight.
In the case of VLSI design (specifically, VLSI placement), which inspired the
Fiduccia-Mattheyses procedure, typically w = 1 and d was guaranteed small
due to physical considerations.
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KernighanLin(G, V1, V2):

U = V = ∅
foreach pair v1, v2, v1 ∈ V1, v2 ∈ V2

gain(v1, v2) = Gv1,v2

bestCost =
∑

v1∈V1,v2∈V2

w(v1, v2)

bestPartition = V1, V 2
currentCost = bestCost

while V1 6= ∅ and V2 6= ∅
choose v1 ∈ V1, v2 ∈ V2 such that gain(v1, v2) is maximized

V1 = V1 − v1, V2 = V2 − v2

U = U + {v2}, V = V + {v1}
currentCost = currentCost - gain(v1, v2)

if currentCost < bestCost

bestPartition = (V1

⋃
U, V2

⋃
V )

bestCost = currentCost

foreach pair v1, v2, v1 ∈ V1, v2 ∈ V2

gain(v1, v2) = Gv1,v2

return bestPartition

Fig. 2. Kernighan-Lin Algorithm

When nodes are moved, only the gain of neighbors need to be updated, and
the neighbors themselves need to be moved to the appropriate list. Assuming
bounded degree, gain updates can be computed in constant time. Careful atten-
tion to data structures permits the move operation to be done in constant time.
The procedure is shown in Figure 3.

As with Kernighan-Lin, the Fiduccia-Mattheyses procedure can be iterated
while it continues to improve cost. The total complexity for the original proce-
dure is bilinear in the graph size and the initial cost.

We can adapt the Fidducia-Mattheyses procedure to the network testbed
mapping problem. Two significant modifications must be made to the algorithm:

1. The original procedure assumed that both the degree of each node and the
weight of each edge were bounded by small constants. The former assumption
holds in the network testbed mapping problem (if we treat a LAN as a single
large node); the latter does not. In most network testbed mapping instances,
internode bandwidth can be specified to any value up to one gigabit a second.
Even if we make the simplifying assumption that bandwidth is only specified
in units of a megabit a second, that still gives us a gain array on the order of
several thousand entries, almost all empty, and this size cannot be neglected
in considering the complexity of the algorithm

2. The Fidducia-Mattheyses procedure assumed that each node must reside on
only one side of the partition. For leaf-DAGs, this isn’t the case; in particular,
referring to Figure 1, we see that we can assign up to 130 nodes to both sides
of the root partition (represented by the switch Cisco8).
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FidduciaMattheyses(G, V1, V2):

U = V = ∅
foreach node v ∈ G:

g = gain from moving v across the partition

add v to gain[g]

currentCost =
∑

u∈V1,v∈V2

w(u, v)

bestCost = currentCost

bestPartition = (V1, V2)

while V2 6= ∅ and V1 6= ∅:
choose the highest gain node u from V1 and move it into V

update the gains of each neighbor v of u

choose the highest gain node s from V2 and move it into U

update the gains of each neighbor t of s

currentCost = currentCost - (gain(u) + gain(s))

if currentCost < bestCost:

bestCost = currentCost

bestPartition = (V1

⋃
U, V2

⋃
V )

return bestCost, bestPartition

Fig. 3. Fidducia-Mattheyses Procedure

In order to cope with these two changes to the underlying use case of the
procedure, we offer two modifications to the Fidducia-Mattheyses procedure.

1. We replace the array of gain by an exponential trie. This data structure,
fundamentally a tree indexed by each digit of the magnitude of the gain, gives
a guarantee of O(log dw) to find the node of maximal gain and O(log dw)
for trie updates, giving an algorithm with a total complexity of O(n log dw)
and space O(n + log dw). The conventional Fidducia-Mattheyses procedure
has a time complexity of O(ndw) and a space complexity of O(n + dw).
This suffices to make the Fidducia-Mattheyses procedure efficient when dw
is large.

2. In addition to moving nodes, we permit a further operation: clone. The clone
operation assigns a node to both sides of the partition, exactly as required
for a leaf DAG. When a node is assigned to both sides of a partition, none of
its edges cross the partition; essentially, for purposes of subsequent partition
calculations, the node has been deleted from the graph. This is done in a
preprocessing step, by deleting the cloned nodes from the initial partitions
V1, V2. A further parameter, C, gives the total number of cloned nodes.
Cloning is incorporated directly into the Fidducia-Mattheyses algorithm.
The clone gain of a node is set equal to its weighted degree. Nodes of highest
weighted degree are eliminated successively from the partition V1, V2, and the
clone gain recomputed after each deletion. Further, other nodes are moved
from side to side during this process to ensure that the invariant – |V1

⋃
U | =

|V2

⋃
V | is maintained. At each deletion, C is decremented. When it reaches

zero, the preprocessing step halts, and the conventional Fidducia-Mattheyses
procedure resumes.
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The revised Fidducia-Mattheyses procedure is shown in Figure 4. The first
revision, to accomodate a large range of gain values, is left opaque here for
reasons of brevity and clarity. The cloning operation appears as a preprocessor
step.

FidduciaMattheysesWithCloning(G, V1, V2, C):

U = V = ∅
sortedNodes = v ∈ G sorted in decreasing order by total connections

place top C nodes in sortedNodes into both U and V and delete from V1, V2, G

foreach node v ∈ G:

g = gain from moving v across the partition

add v to gain[g]

while |V1| > |V2| − 1:
choose node v from V1 with highest gain, move to V

recompute gains of neighbors

while |V2| > |V1| − 1:
choose node u from V2 with highest gain, move to U

recompute gains of neighbors

(S, T ) = FidduciaMattheyases(G, V1, V2)

return (S
⋃

U, T
⋃

V )

Fig. 4. Fidducia-Mattheyses Procedure with Cloning

Given the partitioning procedure, the assignment problem on a leaf DAG is
straightforward; one simply partitions at the root, and recursively partitions at
each subsequent level.

6 Experiments

A number of preliminary experiments were run using the revised Fidducia-
Mattheyses procedure, without cloning, in Python 2.6. Great care should be
taken in interpreting these results. Runtimes are quite short, especially in com-
parison to the Simulated Annealing procedures in the literature. However, it
should be noted that the revised Fidducia-Mattheyses procedure does only a
subset of the actions of the standard mapping procedures. In particular, it does
not consider heterogeneity, nor multihoming. We view this procedure less as a
replacement for the standard SA procedures, than as a preprocessor to help the
SA procedure start from a known, fairly good solution.

In the first set of experiments, a set of structured graphs were constructed,
with known partition properties. For these graphs, the weight of each node was
set to one, and edges were assigned as follows for nodes v0, ..., vn

w(vi, vi+1) = 10, i = 1 mod 2, i < n/2

w(vi, vi+2) = 50, i = 1 mod 2, i < n/2 − 1
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w(vi, vi+3) = 50, i = 1 mod 2, i < n/2 − 2

w(vi, vi+1) = 50, i = 1 mod 2, n > i ≥ n/2

w(vi, vi+2) = 10, i = 1 mod 2, n − 1 > i ≥ n/2

w(vi, vi+3) = 10, i = 1 mod 2, n − 2 > i ≥ n/2

The intent in this case was to construct a set of nodes with a known best par-
tition. In particular, the outdegree of each node in this graph is four, and the
best partition is 120.

We obtained the following results on the structured graph experiment, for a
single partition. In all experiments, the maximum capacity of each side of the
partition was set to 60% of the total graph weight.

The implementation was done in Python 2.6 under Windows Vista. All times
for all experiments were measured on an HP Elitebook 2530p laptop. Times re-
ported are user time, measured with the builtin os.times() function in Python.
In all experiments, we report the number of nodes in the graph (the column
MaxNum), the number of iterations of the Fidducia-Mattheyses procedure re-
quired for convergence, the total time, the initial partition weight, the final (post
F-M procedure weight), and the total improvement.

MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 4 0 1480 60 95.95
200 4 0 2670 120 95.51
300 6 0 4080 110 97.30
400 5 0 5870 110 98.13
500 6 15.6 6050 170 97.19
600 5 0 8220 150 98.18
700 7 0 10260 170 98.34
800 7 0 11390 150 98.68
900 6 15.6 13490 470 96.52

1000 7 15.6 15820 160 98.99

Fig. 5. Results for the Structured Graph Experiment
.

These results are somewhat promising, but the graphs involved are highly
structured and artificial. To see how the procedure performs on less structured
graphs, we ran two more sets of experiments. For a second set of experiments,
we ran on a sequence of random graphs, where each node was given a random
number of connections, exponentially distributed with a mean of five connections
per node. Weights were randomly given, again with an exponential distribution
with a mean of 50. Results are given in figure 6.

These results still show improvement over a random distribution, but they
are not nearly as dramatic as the structured graph results.

For a third set of experiments, we constructed random graphs using a nor-
mal distribution of connections (mean 5, standard deviation 1) with connection
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MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 3 0 10495 3282 68.73
200 5 15.600 23290 8934 61.64
300 3 0 32534 13959 57.09
400 6 15.600 45520 19429 57.32
500 4 31.200 55782 23103 58.58
600 14 78.001 70979 30760 56.66
700 6 15.600 76513 32958 56.92
800 5 0 87914 36076 58.96
900 4 46.8 105298 44836 57.42

1000 5 62.4 116133 50541 56.48

Fig. 6. Results for the Exponential Random Graph Experiment
.

weights normally distributed (mean 50, standard deviation 10). The results are
shown in Figure 7

MaxNum Iterations Time (ms) Initial Weight Final Weight % Improvement

100 7 31.2 11243 5579 50.38
200 11 15.6 22190 10830 51.19
300 5 15.6 32758 16833 48.61
400 6 0 44414 22254 49.89
500 4 15.6 55008 28793 47.66
600 6 15.6 69878 34143 51.14
700 5 15.6 76520 39243 48.72
800 6 62.4 86433 44697 48.29
900 7 31.2 101490 52529 48.24

1000 8 31.2 111873 55381 50.50

Fig. 7. Results for the Normal Random Graph Experiment
.

Results are somewhat promising, and the relatively low runtimes even for
large graphs indicates that this technique has some promise, perhaps as a pre-
processor to the standard simulated annealing technique.

As a final experiment, we continued a full partition recursively of the network,
until we reached 12 nodes in a partition – a number arbitrarily set as the notional
capacity of a switch. We then summed the total edge weight of connections which
crossed a partition, effectively the total interswitch bandwidth of the fabric. We
measured this for both a random assignment of nodes to switches in the tree,
and then a partition using Fidducia-Mattheyses. The results are presented in
Figure 8

The results are reflective of the individual partition experiments: the Fidducia-
Mattheyses procedure is effective on structured graphs, and less so on random
graphs.
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Structured Graph Random Exponential Random Normal

MaxNum Random Fidducia Imprvmnt Random Fidducia Imprvmnt Random Fidducia Imprvmnt

100 24100 3840 84.07 104752 85942 17.96 112117 95622 14.71
200 67390 7560 88.78 295521 259936 12.04 306664 281520 8.20
300 112620 13560 87.96 540842 400591 25.93 533112 408881 23.30
400 166990 20600 87.66 879114 783680 10.86 804577 753200 6.39
500 225380 38200 83.05 1152150 845132 26.65 1129426 906998 19.69
600 271800 30960 88.61 1312668 1061238 19.15 1311184 1083681 17.35
700 318740 60200 81.11 1573438 1359245 13.61 1536886 1388424 9.66
800 409090 43720 89.31 2096036 1928859 7.98 1933719 1832996 5.21
900 495840 142360 71.29 2617836 2082327 20.46 2439612 2024681 17.01

1000 556160 77210 86.12 2693960 2032458 24.56 2669548 2251410 15.66

Fig. 8. Total Bandwidth Experiments for All Graph Classes
.

7 Future Work

While a formal proof of the complexity of the network testbed mapping problem
is important, future work remains in characterizing variants of the problem.
In particular, the complexity bounds on solving generalizations of this problem
for federations of testbed clusters will ultimately be relevant to the scalability
of algorithms or heuristics for automatically mapping test networks onto large,
constrained federations.
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