
BIQINI – A Flow-based QoS Enforcement Architecture
for NGN Services

Christoph Egger, Marco Happenhofer, Joachim Fabini and Peter Reichl

Vienna University of Technology
Institute of Broadband Communications

Favoritenstr. 9/E388,
A-1040 Vienna, Austria

Telecommunications Research Center
Vienna (FTW)

Donau-City-Straße 1,
A-1220 Vienna, Austria

{christoph.egger, marco.happenhofer,

joachim.fabini}@tuwien.ac.at, reichl@ftw.at

Abstract. Novel mobile cellular access network technologies like Long Term
Evolution (LTE) promise capacities exceeding the ones of existing 3G networks
by at least one order of magnitude. This evolution will enable the deployment
of services which, due to their capacity requirements, are currently restricted to
fixed access networks. On the other hand, packet-switched-only architectures
raise the need for a reliable and accurate management of these high access
capacities, particularly service-specific Quality of Service (QoS) enforcement,
in order to prioritize real-time (voice) services and safeguard a satisfactory
Quality of Experience (QoE) to the user.
In this paper we present the concept and architecture of a flow-based QoS
enforcement architecture called BIQINI which has been developed at the
Telecommunications Research Center Vienna (FTW). It consists of a standard-
compliant Policy and Charging Rules Function (PCRF) which is supported by
an emulated Policy Enforcement Function (PCEF). Extending the FOKUS
OpenSource IMS testbed as well as other session-based signaling frameworks,
BIQINI’s emulated enforcement component enables inexpensive but highly
realistic tests on real-time voice and -video traffic, supporting impairments like
delay, jitter, loss, and link capacity limitation out-of-the-box. In addition,
BIQINI can interface with external policy repositories, thus providing a
versatile playground for testing rules and policies in an emulated, realistic
environment for real media streams.

Keywords: QoS, IP Multimedia Subsystem, Policy, Policy Enforcement

1 Introduction

Driven mainly by the high capacities available in fixed access networks, the
imminent end-of-life of circuit-switched equipment, and the huge expectations
concerning OPEX (operational expenses) reduction when operating one single IP-
based platform, the replacement of circuit-switched voice networks by packet-
switched data networks is currently experiencing a strong progress. However, the

architectural requirements of such large-scale carrier-grade IP-based
telecommunication systems exceed the complexity of plain IETF SIP networks by
orders of magnitude in order to enable satisfactory user experience already for the
most important basic service, which is still voice. In this context, the IP Multimedia
Subsystem (IMS), standardized by the 3rd Generation Partnership Project (3GPP), has
become an important candidate architecture for the access-agnostic covering of all
relevant aspects from signaling to media, from QoS reservation to security, charging
and billing. Recently, several standardization bodies, namely 3GPP, 3GPP2, ETSI
TISPAN and PacketCable, have joined their forces to define an interoperable
Common IMS platform, agreeing to maintain one single set of 3GPP standards
starting with 3GPP Release 9. Moreover, recognizing the need for interoperability and
lower IMS complexity, main IMS vendors and operators have engaged in initiatives
like One Voice[11] and Rich Communication Suite Initiative (RCSI)[12], defining
minimum mandatory sets for IMS system- and service-level capabilities and features.

Released under the GNU Public License in 2006, the Fraunhofer FOKUS Open
Source IP Multimedia Subsystem Core (OpenSource IMS) implementation has
become a cornerstone of the scientific and industrial IMS research community.
OpenSource IMS offers a generic, extensible 3GPP Release 7 IMS core network
reference implementation, including signaling and security features as well as
modules supporting the extension by means of additional interfaces (reference points).
However, today’s fixed and upcoming Next Generation Mobile Network (NGMN)
access technologies and –services, which require network capacities exceeding the
ones of existing 3G networks by an order of magnitude, mandate the use of adequate
service-specific QoS enforcement mechanisms to maintain a Quality of Experience
(QoE) similar to the one guaranteed by circuit-switched voice services. Despite of this
urgent need, this function is not implemented by OpenSource IMS.

Therefore, this apparent gap has been addressed within the application-oriented
project BACCARDI (Beyond Architectural Convergence: Charging, SeCurity,
Applications, Realization and Demonstration of IMS over fixed and wireless
networks) which has been conducted at the Telecommunications Research Center
Vienna (FTW) during the years 2008 and 2009. As a result, the BACCARDI IMS
QoS Implementation Initiative (BIQINI) has designed and implemented a QoS
enforcement function which extends the OpenSource IMS by means of a generic,
extensible, 3GPP Release 7 conforming Policy and Charging implementation and the
corresponding interfaces. Main parts of the BIQINI concept and implementation have
been contributed by the Institute of Broadband Communications (IBK), Vienna
University of Technology, with support of FTW and the associated industry project
partners Alcatel-Lucent Austria, Kapsch CarrierCom, mobilkom austria, and Telekom
Austria.

The main aim of BIQINI is to provide a highly flexible QoS playground and multi-
purpose plug-in for policy repositories, implementing a complex, stateful rules
function, supporting active network capacity management as well as the PCC push
model. With respect to this feature, BIQINI’s Policy Enforcement component extends
OpenSource IMS to become a reliable testing platform for Quality of Experience
(QoE) for real-time multimedia streams. Note, however, that BIQINI does not depend

on OpenSource IMS, and instead supports integration with other SIP or non-SIP
session-based signaling protocols as well.

In this paper we argue that BIQINI provides a clear advancement compared to the
current state of the art, most notably the open source Policy and Charging Control
Framework (PCC) published by a group of the University of Capetown (UCT) [9][10]
in 2007. In contrast to BIQINI, the UCT PCC operation relies on stateless gate
opening and closing, moreover its architectural framework is relatively limited with
respect to scalability, extensibility and active link capacity management.

Within the open source community, in November 2009 the NGN working group of
Fraunhofer FOKUS has announced an Evolved Packet Core (EPC) implementation
which is supposed to include a PCC. However neither the detailed concept nor the
implementation of OpenEPC has been released so far. Likewise, Fraunhofer FOKUS’
Policy and Charging Control Architecture (PoCCA) is maintained as closed source,
being presented briefly in [3] which focuses mainly on rule processing. .

To the best of our knowledge, these three contributions already conclude our
account of current related work. In contrast, commercial PCC solutions are offered by
various IMS vendors. However, two factors are prohibitive in deploying these
implementations in applied IMS research at universities or other non-profit
institutions: from a technical point of view, these implementations are closed source,
which hinders additions and modifications at source code level, whereas the cost
factor of PCRFs and particularly of PCEFs provides a huge barrier for IMS-related
research activities.

The remainder of this paper is structured as follows: in Section 2, a brief survey of
related architectures and open source routing and traffic control tools is provided.
Section 3 describes the fundamental concepts and the architecture of the BIQINI
implementation, whereas in Section 4 we present some results for selected traffic
scenarios. Section 5 concludes the paper with a brief summary and outlook.

2 QoS Enforcement Architectures and Tools

Having recognized that the promotion of three diverging IMS standards for mobile,
fixed and cable networks, respectively, entails the severe danger of an overall IMS
failure, 3GPP has agreed in 2007 together with other involved standards
organizations, notably ETSI TISPAN for fixed networks and PacketCable for cable
networks, to harmonize their corresponding standardization activities. Starting with
3GPP Release 8, the 3GPP therefore develops and promotes a Common IMS
architecture which conforms to the requirements of all three standardization bodies,
whereas in 3GPP Release 7, main QoS-related interfaces (reference points),
particularly Rx/Gx for 3GPP and Gq’/Re for the Resource and Admission Control
Subsystem (RACS), are not yet harmonized.

As a consequence, the 3GPP Release 7 PCC compliant BIQINI architecture aims at
merging the commonalities of the 3GPP and TISPAN architectures towards the

framework for policy based admission control [4], which has been defined by the
IETF as shown in Figure 1. Here, the Application Function (AF) is positioned within
the SIP signaling path, having access to all requests for certain services along with
their detailed media descriptions. The AF is responsible to query the Policy Decision
Point (PDP), which decides if a specific request is granted or rejected, depending on
policies, rules, request information and user profile(s). In case the service request is
granted, a request with rules that should be activated is sent to the Policy Enforcement
Point (PEP). The PEP enables the requested service flow according to the
specifications sent by the PDP.

Figure 1: IETF Architecture of Policy-based Admission Control

As far as NGN QoS enforcement is concerned, the standardization bodies 3GPP,
(targeting mobile networks) and ETSI TISPAN (focusing on fixed NGN networks)
have designed their own architectures, depending on the particular access network
requirements. In the case of 3GPP, this architecture is called Policy and Charging
Control (PCC) [6]. Figure 2 depicts main functions in this architecture which can be
easily mapped to layers and functions in the previously presented IETF architecture.

Figure 2: 3GPP PCC Architecture

On the other hand, as mentioned earlier, ETSI TISPAN has developed its own
architecture for QoS enforcement which is called Resource and Admission Control
Subsystem (RACS) [7] and illustrated in Figure 3.

Figure 3: ETSI TISPAN RACS Architecture

In order to merge these two architectural approaches into a common open source
framework and considering the focus on access networks, BIQINI does currently not
include an Interconnection Border Control Function (IBCF), nor a Core or
Interconnect Border Gateway Function (C-BGF or I-BGF). Charging functionality
has been included but interfaces have not been implemented yet. Furthermore we
have decided to integrate and harmonize PCRF, Service Policy Decision Function (S-
PDF) and Access Resource and Admission Control Function (A-RACF) into one
component, namely the Policy Decision Point (PDP). ETSI-defined Resource Control
Enforcement Function (RCEF) and 3GPP-specific PCEF functionalities have been
merged into a Policy Enforcement Point (PEP) component. The resulting architecture
is aligned to the IETF recommendation [4] based on three components: AF, PDP and
PEP.

BIQINI is heavily relying on advanced routing and traffic control tools provided by
the open source operating system Linux, most notably several system tools which
support IP traffic queuing configuration. A detailed description of routing, switching,
bandwidth management, queuing and IP security functions in Linux systems can be
found in [5], in the rest of this section we will only provide an in-depth view on the
default Linux command-line application for queuing configuration which is called
traffic control (tc) and supports the modification of the queuing strategies to be used
for outgoing and incoming IP packets on specific network interfaces.

In tc, the different queuing types and –strategies are denoted as queuing
disciplines. After setting up new queuing disciplines, IP packets must be assigned to
certain queues using so-called filters which match the IP packets against specific
patterns, corresponding to certain fields or byte sequences in the packet. Examples of
these patterns include, e.g., source IP address, ports or any other field in the IP header.
Upon successful match, the specific IP packet will be assigned to the corresponding
queue. Note that a queuing discipline can, for instance, realize bandwidth
management, reorder packets, delay packets, modify packets, etc., depending on the
selected queuing discipline. A list of supported and implemented queuing algorithms
can be found in [5].

The BIQINI implementation combines several queuing disciplines to realize QoS
enforcement. The classful Hierarchical Token Bucket (HTB) algorithm manages the
reserved bandwidth by allocating requested bandwidth to microflows. The queuing
discipline dsmark manipulates the DSCP field of IP packets, marking all IP packets
queued in a specific dsmark queue using a specified DSCP value.

BIQINI uses the queuing discipline netem for implementing realistic access
network emulation. The netem algorithm can delay, reorder, drop, and duplicate IP
packets. By setting up several netem queuing disciplines, with different delay and loss
values for distinct DSCP marking emulates a DiffServ[2] network.

Finally, selective rejection or dropping of IP packets can be configured using the
ipTables utility. A rule in ipTables describes traffic patterns and defines
corresponding actions for this traffic, e.g., drop, reject, or accept. The traffic can be
categorized by means of ports, addresses, protocol numbers, flags, etc. Similar to
common firewalls, ipTables supports default rules for packets that cannot be matched

to a rule. In most cases it is preferable to drop or reject all traffic that is not explicitly
accepted by a rule.

3 BIQINI – Architecture and Basic Concepts

Based on the survey of related architectures provided in the previous section, we
will now present the key concepts and the resulting architecture adopted for the
BIQINI QoS enforcement framework in detail.

3.1 Architecture

The basic architecture of the BIQINI implementation is sketched in Figure 4. In the
depicted scenario, the QoS enforcement is applied on an access link which on both
ends is protected by respective PEPs. Whereas PEP 1 on the user side ensures that the
micro-flow from the user agent to the core is scheduled correctly such that the service
requirements (e.g. bandwidth) are fulfilled, PEP 2 on the core side is performing the
same task for the opposite traffic direction. Note that, if PEP 1 were not installed, the
user could use the access link excessively with other services, for instance sending
extremely large emails or uploading huge amounts of data. Such bandwidth
consuming services could then severely reduce the quality of real time services like
voice communication. Thus, PEP 1(included in e.g., Customer Premises Equipment
(CPE)) ensures proper bandwidth usage in the uplink direction. The finding that a
layer-3-QoS enforced access links must be protected on both ends (therefore
extending the 3GPP and TISPAN architectures) is an essential outcome of the BIQINI
project. Otherwise QoS enforcement cannot protect uplink and downlink
simultaneously, bearing the risk of QoS degradation. This architecture is similar to
[1], which covers a study of enforcing QoS on Customer Premise Networks (CPN)
and supports the realistic asymmetrical modeling of impairments on access links.

Figure 4: Architecture of BIQINI QoS Enforcement for Access Links

When no GGSN or DSLAM is available, the characteristics of a specific access
network (e.g., ADSL or 3G) can be accurately emulated from the point of view of a
layer 3 protocol with the NetEm instance depicted in Figure 4 [14]. This is done by
means of the Linux netem queuing discipline.

In order to differentiate between different service classes, we also have installed a
netem instance on the PEPs. To be more specific, a microflow of the class “realtime
conversational” needs low delay values and loss rates. In this case, our PEPs have to
guarantee that the service receives the correct QoS on the access link. To realize this,
the PEPs have to mark the IP packets with the correct DSCP value corresponding to
this service class and handle it correspondingly. When the packets traverse the core
network, DiffServ enabled router can determine which service class is to be used for a
specific packet. As an example, we suggest to use the DSCP class 0x03 for realtime
conversations. Thus, both PEPs have to mark packets of this class with the DSCP
value 0x03, and at the same time the netem at the access link has to assign packets
with DSCP value 0x03 to the queuing system handling realtime conversation, which,
on its part, must realize low delay values and loss rates. On the other hand, best effort
traffic could receive for instance the DSCP marking 0x00, which causes netem to
treat such IP packets with a delay of several hundreds of msec and loss rates of 2%
and beyond.

In our overall QoS architecture, the PEPs are responsible for realizing bandwidth
management. To this end, each incoming flow is shaped according to the installed
rules. Flows that utilize too much bandwidth are queued at the PEP, thus increasing
the corresponding delay value. In the worst case, this may lead to dropping the
packets as soon as the queue is filled.

Our PEPs can be configured with or without ipTables (see section 2). In the case of
a configuration without ipTables, any traffic is admitted but marked at the PEP as best

effort traffic. Therefore, netem treats this traffic with lowest quality. However, if
services are enforced through the PDP, they are marked at the PEP with a different
(“better”) DSCP value and are treated with higher priority. Additionally, the PEP also
ensures that the enforced services can utilize their required bandwidth.

The communication between AF, PDP and PEP is realized using the Diameter [8]
protocol. More specifically, the AF utilizes AA-Requests (AAR) and AA Answer
(AAA) messages over the Rx interface to transport authorization requests to the PDP,
whereas a Session Termination Request (STR) terminates a session. The
communication between PDP and PEP is realized over the Gx interface and uses Re-
AuthRequests (RAR) and Re-Auth Answer (RAA) messages. Figure 5 illustrates the
Diameter messages employed.

Figure 5: Message Flow between AF, PDP and PEP

3.2 PDP – Policy Decision Point

As already mentioned previously, the PDP is the specific component that is
responsible for translating the media-specific data of a service request (like codec and
media type) to QoS-specific parameters (like bandwidth and delay requirements). In
order to realize this task, the PDP uses rules from an external rules repository, which
allows deriving the appropriate QoS parameters from service specific and user
specific data.

Our implementations of the Rx and Gx interfaces are based on the jDiameterPeer
due to the Fraunhofer FOKUS group. On top of it we have built a basic logic, which
is able to handle incoming messages, to keep pointers to the corresponding state
machines and to forward messages to the Rx and Gx interfaces. We have

implemented the resulting state machine (depicted in Fig. 6) as well as “dummy”
interfaces to a Subscription Policy Repository (SPR), which handles user and domain
policies. Additionally, our implementation provides references to the PEP instances
which have to be used for each subscriber.

One of the main tasks of the PDP consists of mapping all requests to sessions, thus
enabling the storage of a consistent state for each session. In this context, messages
received by the Policy Decision Point (PDP) can be subdivided into preliminary
service information messages and final service information messages. Whereas final
service information messages install rules at the PEP, preliminary information
messages only check if a requested service meets the corresponding policies and if
there are enough resources available.

The resulting state machine includes therefore the following set of states:

 Receiving: waiting for incoming AAR message
 Accepted PRE: received a AAR with Service-Type AVP set to

PRELIMINARY_SERVICE_INFORMATION
 Rejected: Service information received with not acceptable content (either

due to policy or insufficient resources)
 Accepted Final: received AAR with Service-Type AVP set to

FINAL_SERVICE_INFORMATION
 Committed: enforcing the rules at the PEP successful
 Closing: received STR from the AF, trying to terminate session at the PEP
 Failed: enforcing the rules at the PEP failed
 Terminated: Session successfully terminated

Note that in Fig. 6, a sequence of black (dashed) arrows depicts the traversal through
the states, if the initial request already contains the final service information and if the
installing of the rules at the PEP works properly. Blue arrows (dash-dotted) indicate
that the initial request contains only preliminary service information, and a second
request is sent to install the rules at the PEP. Red arrows (dotted) are used if either the
request coming from the AF is not acceptable or the installation of rules at the PEP
has failed. In order to maintain the clarity of presentation, the three states necessary
for a session update are not shown in the diagram. Note that for each session handled
at the PDP, a new state machine is created in order to deal with the corresponding
messages.

Figure 6: PDP State Machine

3.3 PEP – Policy Enforcement Point

The Policy Enforcement Point (PEP) is responsible for detecting microflows and
processing them according to the configured QoS parameters. Both processes
(detection and processing) are defined by rules which are received via the Gx
interface from the PDP.

Figure 7: Interface Cards and Queuing at the PEP

Our implementation is realized with Java, reusing the jDiameter stack already
introduced. The detection and enforcement process is realized by Linux tools like tc
and ipTables. The PEP stores the current state and configuration of each rule and
tracks the bandwidth consumption in the PEP Rules Management module for

charging. For a comprehensive illustration of the main PEP components we refer to
Figure 7.

The PEP works an intermediate component between the communicating hosts. In
order to be fully transparent for IP traffic, it is essential to configure the PEP as a
bridge. With Linux, this requires two interface cards at the host, one towards the user
agent and one towards the core network. The queuing is always realized at the
sending interface, whereas QoS enforcement for traffic directed to the user agent can
only be realized on the interface card towards the user agent (i.e. downlink). Similarly
traffic directed to the core network can only be treated at the interface card towards
the core network (i.e. uplink). In our implementation, we use the Linux system tool
brctl to configure a Linux host with two interface cards as a bridge.

Additionally, we have decided to reuse the concepts for installing, modifying and
removing of rules by means of the Diameter protocol from the 3GPP PCC
architecture, where these rules are called “charging rules” and include four main
aspects:

 Each rule has a unique identifier (Charging Rule Name), which is mainly
necessary to be able to remove a certain rule.

 Each rule is responsible for a certain microflow characterized by a flow
description using the following parameters: source IP address, destination
port, destination IP address and protocol number. In the case of a
bidirectional flow, two such flow descriptions are required.

 The third part of a rule contains QoS information which is described in
terms of the guaranteed bit rate, the maximally requested bandwidth and
the traffic class (like streaming, realtime conversational, etc.). The traffic
class is used to set the DSCP value properly.

 The last part in the charging rule concerns charging information. As our
implementation currently is prepared for charging but does not implement
charging interfaces, any information contained in this part is ignored.

Altogether, these four parts are encoded as so-called Charging Rule Definition AVPs,
see Figure 8.

[Charging-Rule-Install]
 [Charging-Rule-Definition]
 [Charging-Rule-Name] Video-Rule;12345
 [Flow-Description]
 permit out 17 from 10.0.0.1 to 10.0.0.6 10001
 [Flow-Description]
 permit in 17 from 10.0.0.6 to 10.0.0.1 3400
 [Flow-Status] ENABLED (3)
 [QoS-Information]
 [QoS-Class-Identifier] 1
 [Max-Requested-Bandwidth-UL] 175000
 [Max-Requested-Bandwidth-DL] 175000
 [Guaranteed-Bitrate-UL] 150000
 [Guaranteed-Bitrate-DL] 150000
 [Online] DISABLE_ONLINE (0)
 [Offline] ENABLE_OFFLINE (1)
 [Metering-Method] DURATION (0)
 [AF-Charging-Identifier] chargingid987654321

Figure 8: Example of a Charging Rule Definition

After starting the PEP, some generic rules have to be installed first (for example
signaling traffic should be able to pass under all circumstances). Such predefined
rules are stored in the configuration file of the PEP and are activated automatically.
As an alternative option, a Charging Rule Command triggered by the PDP can also
install these rules.

After receiving an installation request via the Gx interface, the PEP has to
configure the bandwidth management (realized with the HTB queuing discipline, see
section 2) and activate the firewall for the respective microflow. The rate and ceil
parameters of the tc command are configured by the guaranteed bit rate and Max-
Requested Bandwidth value of the QoS Information AVP, which has to be completed
both for the uplink and downlink direction in the case of a bidirectional microflow. To
realize DiffServ marking, we add a dsmark queuing discipline and configure a DSCP
value that fits to the traffic class. In the next step, the firewall is informed by the
ipTables command that this microflow has to be allowed to pass through. As
mentioned before, it is also possible to run the PEP without gate blocking. By using
the tc queuing system HTB, it is guaranteed that a certain microflow cannot exceed
the reserved maximum requested bandwidth. If too much traffic should be injected
into the network, the PEP will shape the traffic according to the installed rules.
Additionally, the currently used bandwidth and the total amount of sent bytes are
observed for each microflow. These data could be used in later releases to realize
flow-based charging. Note that we do not use these data to infer a bearer loss, as
individual services could generate traffic patterns with no data sent over a long period
of time that would wrongly be detected as bearer loss.

4 Results

We have tested the BIQINI QoS enforcement framework for various typical
scenarios including voice and triple play applications in combination with an Open
Source IMS testbed. For background load generation, we have used the Jperf
frontend, which relies on the functionality of the Iperf traffic generator [13]. The
chosen scenarios illustrate the reduction of best effort Constant Bit Rate (CBR) Jperf
UDP traffic due to a realtime session, which has been signaled using IMS and
enforced using BIQINI. Figures 9, 10 and 11 depict the goodput and jitter of a Jperf
best effort stream for three typical cases:

 Scenario 1: 400 kbps best effort traffic is sent over the bridge, while after 15 sec
the PEP is activated and consequently throttles down the traffic to 200 kbps, see
Fig. 9 top.

 Scenario 2: The 200 kbps traffic is running in the background, while after 60 sec a
CBR G.711 call starts for a limited duration of 12 sec, which needs about 82 kbps
(excluding IP headers), see Fig. 9 middle. Note that the maximal bandwidth has
been chosen in order to illustrate the impact of the G.711 call, which needs nearly
half of the bandwidth available at Jperf.

 Scenario 3: A Variable Bit Rate (VBR) HD video stream consumes varying
bandwidth depending e.g. on the amount of motion within subsequent frames and
thus reduces the Jperf best effort traffic accordingly. In contrast to constant bit rate
(CBR) voice streams, allocation of the maximum required bandwidth for VBR
video streams leads to a significant waste of resources. This demonstrates one
important BIQINI feature: due to the use of tc’s HTB queuing discipline, the PEP
does not reserve the maximum bandwidth required for the video stream. However,
it adapts dynamically and automatically to the video stream’s effective bandwidth
consumption up to a specified maximum limit of the prioritized traffic.

Figure 9: Three Typical JPerf Scenarios: Reserved Bandwidth (Sc. 1, top),
CBR voice call (Sc. 2, mid), VBR HD video call (Sc. 3, bottom)

5 Conclusions and Future Work

This paper presents the fundamental concepts and the architecture of the BIQINI
QoS framework. Intended to serve as an add-on to the FOKUS Open Source IMS
testbed, it is well suited for use also with other session-based signaling protocols like
plain IETF SIP. The implementation comprises a Policy Decision Point (PDP) as well
as an emulated Policy Enforcement Point (PEP) enabling transparent, realistic and
automated QoS and QoE trials. BIQINI realizes the reference points Rx and Gx
specified by 3GPP and provides a policy interface which can be used to experiment
with various policy repositories.

One important limitation of the emulated PEP concerns the delay between
activation and reaction (i.e. QoS enforcement). In our experience, this delay can
amount up to one second which we, however, consider to be acceptable for a
prototype implementation.

As future work we plan to publish the BIQINI source code under the GNU Public
License as a relevant enhancement of the current functionality of the Open Source
IMS testbed. Moreover, recent projects at the FTW Vienna with specific focus on
policies and services in IMS and non-IMS environments have started to extend
BIQINI’s policy repository by interfacing with semantic policy engine
implementations.

6 Acknowledgement

Part of this work has been funded in the framework of the Austrian COMET
competence program supported by the Austrian government and the City of Vienna.
The authors would like to thank their colleagues Hannes Weisgrab, Ronald Fischer,
Joachim Zeiss (FTW), Franz Edler (Alcatel-Lucent Austria) and Wolfgang
Brandstätter (Telekom Austria) for their invaluable help with the implementation and
all BACCARDI colleagues for their continuous support and enthusiasm. We
gratefully acknowledge the tremendous support of our industrial project partners in
BACCARDI, namely Alcatel Lucent Austria, Kapsch CarrierCom, mobilkom austria,
and Telekom Austria.

References

1. “Telecommunications and Internet converged Services and Protocols for Advanced
Networking (TISPAN); Remote CPN QoS Control; Study on CPN - RACS Interaction”,
ETSI TR 182 031 (Draft version)

2. S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for
Differentiated Services”, IETF 1998, RFC 2475

3. A. Diez, F. Gouveia, M. Corici, T. Magedanz, “The PCC Rule in the 3GPP IMS Policy
and Charging Control Architecture”, IEEE Globecomm, New Orleans, December 2008

4. R. Yavatkar, D Pendarakis, R. Guerin, “A Framework for Policy-based Admission
Control”, IETF 2000, RFC 2753

5. “Linux Advanced Routing and Traffic Control”, www.lartc.org
6. “3rd Generation Partnership Project; Technical Specification Group Services and System

Aspects; Policy and charging control architecture”, TS 23.203 Release 8.0.0
7. “Telecommunications and Internet converged Services and Protocols for Advanced

Networking (TISPAN); Resource and Admission Control Sub-System (RACS):
Functional Architecture”, ETSI 282 003 V2.0.0

8. P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arrko, “Diameter Base Protocol”, IETF
2003, RFC 3588

9. D. Waiting, R. Good, R. Spiers, N. Ventura, “Open Source Development Tools for IMS
Research“, in Proceedings of the 4th International Conference on Testbeds and research
infrastructures for the development of networks & communities, 2008

10. Good, R. Ventura, N.: An end to end QoS management framework for the 3GPP IP
multimedia subsystem. IEEE International Conference on Communications and
Telecommunications 2007, ICT-MICC 2007, Malaysia, 605--610 (2007)

11. “One Voice Initiative”, Version 1.0.0, http://news.vzw.com/OneVoiceProfile.pdf.
12. The GSM Association: “Rich Communication Suite Initiative”,

http://www.gsmworld.com/our-work/mobile_lifestyle/rcs/index.htm.
13. National Laboratory for Applied Network Research (NLANR). Iperf Performance

Measurement Tool, http://dast.nlanr.net/Projects/Iperf
14. J. Fabini et al: "Generic Access Network Emulation for NGN Testbeds" in Proceedings of

the 4th International Conference on Testbeds and Research Infrastructure for the
Development of Networks & Communities (TRIDENTCOM 2008), Innsbruck, Austria,
Paper ID 3135 (2008).

