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Abstract.  Novel mobile cellular access network technologies like Long Term 
Evolution (LTE) promise capacities exceeding the ones of existing 3G networks 
by at least one order of magnitude. This evolution will enable the deployment 
of services which, due to their capacity requirements, are currently restricted to 
fixed access networks. On the other hand, packet-switched-only architectures 
raise the need for a reliable and accurate management of these high access 
capacities, particularly service-specific Quality of Service (QoS) enforcement, 
in order to prioritize real-time (voice) services and safeguard a satisfactory 
Quality of Experience (QoE) to the user.  
In this paper we present the concept and architecture of a flow-based QoS 
enforcement architecture called BIQINI which has been developed at the 
Telecommunications Research Center Vienna (FTW). It consists of a standard-
compliant Policy and Charging Rules Function (PCRF) which is supported by 
an emulated Policy Enforcement Function (PCEF). Extending the FOKUS 
OpenSource IMS testbed as well as other session-based signaling frameworks, 
BIQINI’s emulated enforcement component enables inexpensive but highly 
realistic tests on real-time voice and -video traffic, supporting impairments like 
delay, jitter, loss, and link capacity limitation out-of-the-box. In addition, 
BIQINI can interface with external policy repositories, thus providing a 
versatile playground for testing rules and policies in an emulated, realistic 
environment for real media streams.   
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1 Introduction 

Driven mainly by the high capacities available in fixed access networks, the 
imminent end-of-life of circuit-switched equipment, and the huge expectations 
concerning OPEX (operational expenses) reduction when operating one single IP-
based platform, the replacement of circuit-switched voice networks by packet-
switched data networks is currently experiencing a strong progress. However, the 



architectural requirements of such large-scale carrier-grade IP-based 
telecommunication systems exceed the complexity of plain IETF SIP networks by 
orders of magnitude in order to enable satisfactory user experience already for the 
most important basic service, which is still voice. In this context, the IP Multimedia 
Subsystem (IMS), standardized by the 3rd Generation Partnership Project (3GPP), has 
become an important candidate architecture for the access-agnostic covering of all 
relevant aspects from signaling to media, from QoS reservation to security, charging 
and billing. Recently, several standardization bodies, namely 3GPP, 3GPP2, ETSI 
TISPAN and PacketCable, have joined their forces to define an interoperable 
Common IMS platform, agreeing to maintain one single set of 3GPP standards 
starting with 3GPP Release 9. Moreover, recognizing the need for interoperability and 
lower IMS complexity, main IMS vendors and operators have engaged in initiatives 
like One Voice[11] and Rich Communication Suite Initiative (RCSI)[12], defining 
minimum mandatory sets for IMS system- and service-level capabilities and features. 

Released under the GNU Public License in 2006, the Fraunhofer FOKUS Open 
Source IP Multimedia Subsystem Core (OpenSource IMS) implementation has 
become a cornerstone of the scientific and industrial IMS research community. 
OpenSource IMS offers a generic, extensible 3GPP Release 7 IMS core network 
reference implementation, including signaling and security features as well as 
modules supporting the extension by means of additional interfaces (reference points). 
However, today’s fixed and upcoming Next Generation Mobile Network (NGMN) 
access technologies and –services, which require network capacities exceeding the 
ones of existing 3G networks by an order of magnitude, mandate the use of adequate 
service-specific QoS enforcement mechanisms to maintain a Quality of Experience 
(QoE) similar to the one guaranteed by circuit-switched voice services. Despite of this 
urgent need, this function is not implemented by OpenSource IMS.  

Therefore, this apparent gap has been addressed within the application-oriented 
project BACCARDI (Beyond Architectural Convergence: Charging, SeCurity, 
Applications, Realization and Demonstration of IMS over fixed and wireless 
networks) which has been conducted at the Telecommunications Research Center 
Vienna (FTW) during the years 2008 and 2009. As a result, the BACCARDI IMS 
QoS Implementation Initiative (BIQINI) has designed and implemented a QoS 
enforcement function which extends the OpenSource IMS by means of a generic, 
extensible, 3GPP Release 7 conforming Policy and Charging implementation and the 
corresponding interfaces. Main parts of the BIQINI concept and implementation have 
been contributed by the Institute of Broadband Communications (IBK), Vienna 
University of Technology, with support of FTW and the associated industry project 
partners Alcatel-Lucent Austria, Kapsch CarrierCom, mobilkom austria, and Telekom 
Austria.  

The main aim of BIQINI is to provide a highly flexible QoS playground and multi-
purpose plug-in for policy repositories, implementing a complex, stateful rules 
function, supporting active network capacity management as well as the PCC push 
model. With respect to this feature, BIQINI’s Policy Enforcement component extends 
OpenSource IMS to become a reliable testing platform for Quality of Experience 
(QoE) for real-time multimedia streams. Note, however, that BIQINI does not depend 



on OpenSource IMS, and instead supports integration with other SIP or non-SIP 
session-based signaling protocols as well.  

In this paper we argue that BIQINI provides a clear advancement compared to the 
current state of the art, most notably the open source Policy and Charging Control 
Framework (PCC) published by a group of the University of Capetown (UCT) [9][10] 
in 2007. In contrast to BIQINI, the UCT PCC operation relies on stateless gate 
opening and closing, moreover its architectural framework is relatively limited with 
respect to scalability, extensibility and active link capacity management.  

Within the open source community, in November 2009 the NGN working group of 
Fraunhofer FOKUS has announced an Evolved Packet Core (EPC) implementation 
which is supposed to include a PCC. However neither the detailed concept nor the 
implementation of OpenEPC has been released so far. Likewise, Fraunhofer FOKUS’  
Policy and Charging Control Architecture (PoCCA) is maintained as closed source, 
being presented briefly in [3] which focuses mainly on rule processing. . 

To the best of our knowledge, these three contributions already conclude our 
account of current related work. In contrast, commercial PCC solutions are offered by 
various IMS vendors. However, two factors are prohibitive in deploying these 
implementations in applied IMS research at universities or other non-profit 
institutions: from a technical point of view, these implementations are closed source, 
which hinders additions and modifications at source code level, whereas the cost 
factor of PCRFs and particularly of PCEFs provides a huge barrier for IMS-related 
research activities.  

The remainder of this paper is structured as follows: in Section 2, a brief survey of 
related architectures and open source routing and traffic control tools is provided. 
Section 3 describes the fundamental concepts and the architecture of the BIQINI 
implementation, whereas in Section 4 we present some results for selected traffic 
scenarios. Section 5 concludes the paper with a brief summary and outlook. 

2 QoS Enforcement Architectures and Tools 

Having recognized that the promotion of three diverging IMS standards for mobile, 
fixed and cable networks, respectively, entails the severe danger of an overall IMS 
failure, 3GPP has agreed in 2007 together with other involved standards 
organizations, notably ETSI TISPAN for fixed networks and PacketCable for cable 
networks, to harmonize their corresponding standardization activities. Starting with 
3GPP Release 8, the 3GPP therefore develops and promotes a Common IMS 
architecture which conforms to the requirements of all three standardization bodies, 
whereas in 3GPP Release 7, main QoS-related interfaces (reference points), 
particularly Rx/Gx for 3GPP and Gq’/Re for the Resource and Admission Control 
Subsystem (RACS), are not yet harmonized. 

As a consequence, the 3GPP Release 7 PCC compliant BIQINI architecture aims at 
merging the commonalities of the 3GPP and TISPAN architectures towards the 



framework for policy based admission control [4], which has been defined by the 
IETF as shown in Figure 1. Here, the Application Function (AF) is positioned within 
the SIP signaling path, having access to all requests for certain services along with 
their detailed media descriptions. The AF is responsible to query the Policy Decision 
Point (PDP), which decides if a specific request is granted or rejected, depending on 
policies, rules, request information and user profile(s). In case the service request is 
granted, a request with rules that should be activated is sent to the Policy Enforcement 
Point (PEP). The PEP enables the requested service flow according to the 
specifications sent by the PDP. 

 

 

Figure 1: IETF Architecture of Policy-based Admission Control 

 

As far as NGN QoS enforcement is concerned, the standardization bodies 3GPP, 
(targeting mobile networks) and ETSI TISPAN (focusing on fixed NGN networks) 
have designed their own architectures, depending on the particular access network 
requirements. In the case of 3GPP, this architecture is called Policy and Charging 
Control (PCC) [6]. Figure 2 depicts main functions in this architecture which can be 
easily mapped to layers and functions in the previously presented IETF architecture. 
 



 

Figure 2: 3GPP PCC Architecture 

 

On the other hand, as mentioned earlier, ETSI TISPAN has developed its own 
architecture for QoS enforcement which is called Resource and Admission Control 
Subsystem (RACS) [7] and illustrated in Figure 3. 

 

 

Figure 3: ETSI TISPAN RACS Architecture 

 



In order to merge these two architectural approaches into a common open source 
framework and considering the focus on access networks, BIQINI does currently not 
include an Interconnection Border Control Function (IBCF), nor a Core or 
Interconnect Border Gateway Function (C-BGF or I-BGF). Charging functionality 
has been included but interfaces have not been implemented yet. Furthermore we 
have decided to integrate and harmonize PCRF, Service Policy Decision Function (S-
PDF) and Access Resource and Admission Control Function (A-RACF) into one 
component, namely the Policy Decision Point (PDP). ETSI-defined Resource Control 
Enforcement Function (RCEF) and 3GPP-specific PCEF functionalities have been 
merged into a Policy Enforcement Point (PEP) component. The resulting architecture 
is aligned to the IETF recommendation [4] based on three components: AF, PDP and 
PEP. 

BIQINI is heavily relying on advanced routing and traffic control tools provided by 
the open source operating system Linux, most notably several system tools which 
support IP traffic queuing configuration. A detailed description of routing, switching, 
bandwidth management, queuing and IP security functions in Linux systems can be 
found in [5], in the rest of this section we will only provide an in-depth view on the 
default Linux command-line application for queuing configuration which is called 
traffic control (tc) and supports the modification of the queuing strategies to be used 
for outgoing and incoming IP packets on specific network interfaces.  

In tc, the different queuing types and –strategies are denoted as queuing 
disciplines. After setting up new queuing disciplines, IP packets must be assigned to 
certain queues using so-called filters which match the IP packets against specific 
patterns, corresponding to certain fields or byte sequences in the packet. Examples of 
these patterns include, e.g., source IP address, ports or any other field in the IP header. 
Upon successful match, the specific IP packet will be assigned to the corresponding 
queue. Note that a queuing discipline can, for instance, realize bandwidth 
management, reorder packets, delay packets, modify packets, etc., depending on the 
selected queuing discipline. A list of supported and implemented queuing algorithms 
can be found in [5]. 

The BIQINI implementation combines several queuing disciplines to realize QoS 
enforcement. The classful Hierarchical Token Bucket (HTB) algorithm manages the 
reserved bandwidth by allocating requested bandwidth to microflows. The queuing 
discipline dsmark manipulates the DSCP field of IP packets, marking all IP packets 
queued in a specific dsmark queue using a specified DSCP value. 

BIQINI uses the queuing discipline netem for implementing realistic access 
network emulation. The netem algorithm can delay, reorder, drop, and duplicate IP 
packets. By setting up several netem queuing disciplines, with different delay and loss 
values for distinct DSCP marking emulates a DiffServ[2] network. 

Finally, selective rejection or dropping of IP packets can be configured using the 
ipTables utility. A rule in ipTables describes traffic patterns and defines 
corresponding actions for this traffic, e.g., drop, reject, or accept. The traffic can be 
categorized by means of ports, addresses, protocol numbers, flags, etc. Similar to 
common firewalls, ipTables supports default rules for packets that cannot be matched 



to a rule. In most cases it is preferable to drop or reject all traffic that is not explicitly 
accepted by a rule.   

3 BIQINI – Architecture and Basic Concepts 

Based on the survey of related architectures provided in the previous section, we 
will now present the key concepts and the resulting architecture adopted for the 
BIQINI QoS enforcement framework in detail. 

3.1 Architecture 

The basic architecture of the BIQINI implementation is sketched in Figure 4. In the 
depicted scenario, the QoS enforcement is applied on an access link which on both 
ends is protected by respective PEPs. Whereas PEP 1 on the user side ensures that the 
micro-flow from the user agent to the core is scheduled correctly such that the service 
requirements (e.g. bandwidth) are fulfilled, PEP 2 on the core side is performing the 
same task for the opposite traffic direction. Note that, if PEP 1 were not installed, the 
user could use the access link excessively with other services, for instance sending 
extremely large emails or uploading huge amounts of data. Such bandwidth 
consuming services could then severely reduce the quality of real time services like 
voice communication. Thus, PEP 1(included in e.g., Customer Premises Equipment 
(CPE)) ensures proper bandwidth usage in the uplink direction. The finding that a 
layer-3-QoS enforced access links must be protected on both ends (therefore 
extending the 3GPP and TISPAN architectures) is an essential outcome of the BIQINI 
project. Otherwise QoS enforcement cannot protect uplink and downlink 
simultaneously, bearing the risk of QoS degradation. This architecture is similar to 
[1], which covers a study of enforcing QoS on Customer Premise Networks (CPN) 
and supports the realistic asymmetrical modeling of impairments on access links. 

 



 

Figure 4: Architecture of BIQINI QoS Enforcement for Access Links 

 

When no GGSN or DSLAM is available, the characteristics of a specific access 
network (e.g., ADSL or 3G) can be accurately emulated from the point of view of a 
layer 3 protocol with the NetEm instance depicted in Figure 4 [14]. This is done by 
means of the Linux netem queuing discipline.  

In order to differentiate between different service classes, we also have installed a 
netem instance on the PEPs. To be more specific, a microflow of the class “realtime 
conversational” needs low delay values and loss rates. In this case, our PEPs have to 
guarantee that the service receives the correct QoS on the access link. To realize this, 
the PEPs have to mark the IP packets with the correct DSCP value corresponding to 
this service class and handle it correspondingly. When the packets traverse the core 
network, DiffServ enabled router can determine which service class is to be used for a 
specific packet. As an example, we suggest to use the DSCP class 0x03 for realtime 
conversations. Thus, both PEPs have to mark packets of this class with the DSCP 
value 0x03, and at the same time the netem at the access link has to assign packets 
with DSCP value 0x03 to the queuing system handling realtime conversation, which, 
on its part, must realize low delay values and loss rates. On the other hand, best effort 
traffic could receive for instance the DSCP marking 0x00, which causes netem to 
treat such IP packets with a delay of several hundreds of msec and loss rates of 2% 
and beyond. 

In our overall QoS architecture, the PEPs are responsible for realizing bandwidth 
management. To this end, each incoming flow is shaped according to the installed 
rules. Flows that utilize too much bandwidth are queued at the PEP, thus increasing 
the corresponding delay value. In the worst case, this may lead to dropping the 
packets as soon as the queue is filled.  

Our PEPs can be configured with or without ipTables (see section 2). In the case of 
a configuration without ipTables, any traffic is admitted but marked at the PEP as best 



effort traffic. Therefore, netem treats this traffic with lowest quality. However, if 
services are enforced through the PDP, they are marked at the PEP with a different 
(“better”) DSCP value and are treated with higher priority. Additionally, the PEP also 
ensures that the enforced services can utilize their required bandwidth. 

The communication between AF, PDP and PEP is realized using the Diameter [8] 
protocol. More specifically, the AF utilizes AA-Requests (AAR) and AA Answer 
(AAA) messages over the Rx interface to transport authorization requests to the PDP, 
whereas a Session Termination Request (STR) terminates a session. The 
communication between PDP and PEP is realized over the Gx interface and uses Re-
AuthRequests (RAR) and Re-Auth Answer (RAA) messages. Figure 5 illustrates the 
Diameter messages employed.  

 

Figure 5: Message Flow between AF, PDP and PEP 

3.2 PDP – Policy Decision Point 

As already mentioned previously, the PDP is the specific component that is 
responsible for translating the media-specific data of a service request (like codec and 
media type) to QoS-specific parameters (like bandwidth and delay requirements). In 
order to realize this task, the PDP uses rules from an external rules repository, which 
allows deriving the appropriate QoS parameters from service specific and user 
specific data. 

Our implementations of the Rx and Gx interfaces are based on the jDiameterPeer 
due to the Fraunhofer FOKUS group. On top of it we have built a basic logic, which 
is able to handle incoming messages, to keep pointers to the corresponding state 
machines and to forward messages to the Rx and Gx interfaces. We have 



implemented the resulting state machine (depicted in Fig. 6) as well as “dummy” 
interfaces to a Subscription Policy Repository (SPR), which handles user and domain 
policies. Additionally, our implementation provides references to the PEP instances 
which have to be used for each subscriber. 

One of the main tasks of the PDP consists of mapping all requests to sessions, thus 
enabling the storage of a consistent state for each session. In this context, messages 
received by the Policy Decision Point (PDP) can be subdivided into preliminary 
service information messages and final service information messages. Whereas final 
service information messages install rules at the PEP, preliminary information 
messages only check if a requested service meets the corresponding policies and if 
there are enough resources available.  

The resulting state machine includes therefore the following set of states: 

 Receiving: waiting for incoming AAR message 
 Accepted PRE: received a AAR with Service-Type AVP set to 

PRELIMINARY_SERVICE_INFORMATION 
 Rejected: Service information received with not acceptable content (either 

due to policy or insufficient resources) 
 Accepted Final: received AAR with Service-Type AVP set to 

FINAL_SERVICE_INFORMATION 
 Committed: enforcing the rules at the PEP successful 
 Closing: received STR from the AF, trying to terminate session at the PEP 
 Failed: enforcing the rules at the PEP failed 
 Terminated: Session successfully terminated 

Note that in Fig. 6, a sequence of black (dashed) arrows depicts the traversal through 
the states, if the initial request already contains the final service information and if the 
installing of the rules at the PEP works properly. Blue arrows (dash-dotted) indicate 
that the initial request contains only preliminary service information, and a second 
request is sent to install the rules at the PEP. Red arrows (dotted) are used if either the 
request coming from the AF is not acceptable or the installation of rules at the PEP 
has failed. In order to maintain the clarity of presentation, the three states necessary 
for a session update are not shown in the diagram. Note that for each session handled 
at the PDP, a new state machine is created in order to deal with the corresponding 
messages. 



 

Figure 6: PDP State Machine 

3.3 PEP – Policy Enforcement Point 

The Policy Enforcement Point (PEP) is responsible for detecting microflows and 
processing them according to the configured QoS parameters. Both processes 
(detection and processing) are defined by rules which are received via the Gx 
interface from the PDP. 

 

 

Figure 7: Interface Cards and Queuing at the PEP 

Our implementation is realized with Java, reusing the jDiameter stack already 
introduced. The detection and enforcement process is realized by Linux tools like tc 
and ipTables. The PEP stores the current state and configuration of each rule and 
tracks the bandwidth consumption in the PEP Rules Management module for 



charging. For a comprehensive illustration of the main PEP components we refer to 
Figure 7.  

The PEP works an intermediate component between the communicating hosts. In 
order to be fully transparent for IP traffic, it is essential to configure the PEP as a 
bridge. With Linux, this requires two interface cards at the host, one towards the user 
agent and one towards the core network. The queuing is always realized at the 
sending interface, whereas QoS enforcement for traffic directed to the user agent can 
only be realized on the interface card towards the user agent (i.e. downlink). Similarly 
traffic directed to the core network can only be treated at the interface card towards 
the core network (i.e. uplink). In our implementation, we use the Linux system tool 
brctl to configure a Linux host with two interface cards as a bridge. 

Additionally, we have decided to reuse the concepts for installing, modifying and 
removing of rules by means of the Diameter protocol from the 3GPP PCC 
architecture, where these rules are called “charging rules” and include four main 
aspects:  

 Each rule has a unique identifier (Charging Rule Name), which is mainly 
necessary to be able to remove a certain rule.  

 Each rule is responsible for a certain microflow characterized by a flow 
description using the following parameters: source IP address, destination 
port, destination IP address and protocol number. In the case of a 
bidirectional flow, two such flow descriptions are required.  

 The third part of a rule contains QoS information which is described in 
terms of the guaranteed bit rate, the maximally requested bandwidth and 
the traffic class (like streaming, realtime conversational, etc.). The traffic 
class is used to set the DSCP value properly.  

 The last part in the charging rule concerns charging information. As our 
implementation currently is prepared for charging but does not implement   
charging interfaces, any information contained in this part is ignored.  

Altogether, these four parts are encoded as so-called Charging Rule Definition AVPs, 
see Figure 8. 

 
[Charging-Rule-Install] 
 [Charging-Rule-Definition] 
  [Charging-Rule-Name] Video-Rule;12345 
  [Flow-Description] 
   permit out 17 from 10.0.0.1 to 10.0.0.6 10001 
  [Flow-Description]  
   permit in 17 from 10.0.0.6 to 10.0.0.1 3400 
  [Flow-Status] ENABLED (3) 
  [QoS-Information] 
   [QoS-Class-Identifier] 1 
   [Max-Requested-Bandwidth-UL] 175000 
   [Max-Requested-Bandwidth-DL] 175000 
   [Guaranteed-Bitrate-UL] 150000 
   [Guaranteed-Bitrate-DL] 150000 
  [Online] DISABLE_ONLINE (0) 
  [Offline] ENABLE_OFFLINE (1) 
  [Metering-Method] DURATION (0) 
  [AF-Charging-Identifier] chargingid987654321 

Figure 8: Example of a Charging Rule Definition 



After starting the PEP, some generic rules have to be installed first (for example 
signaling traffic should be able to pass under all circumstances). Such predefined 
rules are stored in the configuration file of the PEP and are activated automatically. 
As an alternative option, a Charging Rule Command triggered by the PDP can also 
install these rules. 

After receiving an installation request via the Gx interface, the PEP has to 
configure the bandwidth management (realized with the HTB queuing discipline, see 
section 2) and activate the firewall for the respective microflow. The rate and ceil 
parameters of the tc command are configured by the guaranteed bit rate and Max-
Requested Bandwidth value of the QoS Information AVP, which has to be completed 
both for the uplink and downlink direction in the case of a bidirectional microflow. To 
realize DiffServ marking, we add a dsmark queuing discipline and configure a DSCP 
value that fits to the traffic class. In the next step, the firewall is informed by the 
ipTables command that this microflow has to be allowed to pass through. As 
mentioned before, it is also possible to run the PEP without gate blocking. By using 
the tc queuing system HTB, it is guaranteed that a certain microflow cannot exceed 
the reserved maximum requested bandwidth. If too much traffic should be injected 
into the network, the PEP will shape the traffic according to the installed rules. 
Additionally, the currently used bandwidth and the total amount of sent bytes are 
observed for each microflow. These data could be used in later releases to realize 
flow-based charging. Note that we do not use these data to infer a bearer loss, as 
individual services could generate traffic patterns with no data sent over a long period 
of time that would wrongly be detected as bearer loss.  

4 Results 

We have tested the BIQINI QoS enforcement framework for various typical 
scenarios including voice and triple play applications in combination with an Open 
Source IMS testbed. For background load generation, we have used the Jperf 
frontend, which relies on the functionality of the Iperf traffic generator [13]. The 
chosen scenarios illustrate the reduction of best effort Constant Bit Rate (CBR) Jperf 
UDP traffic due to a realtime session, which has been signaled using IMS and 
enforced using BIQINI. Figures 9, 10 and 11 depict the goodput and jitter of a Jperf 
best effort stream for three typical cases: 

 Scenario 1: 400 kbps best effort traffic is sent over the bridge, while after 15 sec 
the PEP is activated and consequently throttles down the traffic to 200 kbps, see 
Fig. 9 top. 

 Scenario 2: The 200 kbps traffic is running in the background, while after 60 sec a 
CBR G.711 call starts for a limited duration of 12 sec, which needs about 82 kbps 
(excluding IP headers), see Fig. 9 middle. Note that the maximal bandwidth has 
been chosen in order to illustrate the impact of the G.711 call, which needs nearly 
half of the bandwidth available at Jperf. 



 Scenario 3: A Variable Bit Rate (VBR) HD video stream consumes varying 
bandwidth depending e.g. on the amount of motion within subsequent frames and 
thus reduces the Jperf best effort traffic accordingly. In contrast to constant bit rate 
(CBR) voice streams, allocation of the maximum required bandwidth for VBR 
video streams leads to a significant waste of resources. This demonstrates one 
important BIQINI feature: due to the use of tc’s HTB queuing discipline, the PEP 
does not reserve the maximum bandwidth required for the video stream. However, 
it adapts dynamically and automatically to the video stream’s effective bandwidth 
consumption up to a specified maximum limit of the prioritized traffic. 

 

 

 

 

Figure 9: Three Typical JPerf Scenarios: Reserved Bandwidth (Sc. 1, top),  
CBR voice call (Sc. 2, mid), VBR HD video call (Sc. 3, bottom) 



5 Conclusions and Future Work 

This paper presents the fundamental concepts and the architecture of the BIQINI 
QoS framework. Intended to serve as an add-on to the FOKUS Open Source IMS 
testbed, it is well suited for use also with other session-based signaling protocols like 
plain IETF SIP. The implementation comprises a Policy Decision Point (PDP) as well 
as an emulated Policy Enforcement Point (PEP) enabling transparent, realistic and 
automated QoS and QoE trials. BIQINI realizes the reference points Rx and Gx 
specified by 3GPP and provides a policy interface which can be used to experiment 
with various policy repositories.  

One important limitation of the emulated PEP concerns the delay between 
activation and reaction (i.e. QoS enforcement). In our experience, this delay can 
amount up to one second which we, however, consider to be acceptable for a 
prototype implementation.  

As future work we plan to publish the BIQINI source code under the GNU Public 
License as a relevant enhancement of the current functionality of the Open Source 
IMS testbed. Moreover, recent projects at the FTW Vienna with specific focus on 
policies and services in IMS and non-IMS environments have started to extend 
BIQINI’s policy repository by interfacing with semantic policy engine 
implementations.  
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