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Abstract

In this paper we propose an approach to Social Network Analysis (SNA) based on

fuzzy m-ary adjacency relations. In particular, we show that the dimension of the

analysis can naturally be increased and interesting results can be derived. There-

fore, fuzzy m-ary adjacency relations can be computed starting from fuzzy binary

relations and introducing OWA-based aggregations. The behavioral assumptions

derived from the measure and the exam of individual propensity to connect with

other suggest that OWA operators can be considered particularly suitable in char-

acterizing such relationships.

Keywords: reciprocal relation; fuzzy preference relation; priority vector; normal-

ization.

1 Introduction

Social Network Analysis (SNA) is a relatively new and still developing sub-
ject that focuses on the study of social relations [30, 35] as a branch of the
broader discipline named network analysis [26] whose main object is study-
ing the relationships between objects belonging to one or more universal sets.
SNA focuses its attention on social objects and has principally concerned
with the structure and effects of relations between people, groups or organi-
zations, rather than on individual psychological attributes. Nevertheless, as
pointed out in [31], psychological attributes and behavioral issues are likely
to influence the dynamics of networks of individuals. For instance, the role



of individual differences in shaping organizational networks has been exam-
ined from several points of view [3], compelling as well the study of how
similarity in personal relationships and social context affect each other [23].
For better understanding of roles played by actors in social networks the
so called centrality indices have been introduced, accordingly a member is
viewed as central whenever she or he has a high number of connections with
a high number of different co-members [2, 4, 7, 15]. Since paths play a cen-
tral role in the functioning of most of the networks, it is not surprising that
a relevant number of centrality measures quantify importance with respect
to the sharing of paths in the network. Betweenness centrality, as a measure
of how many geodesic paths cross a given vertex, is one of the most popular
and was introduced [14] to quantify the control of a given actor over the flow
of information in the network. Therefore, this measure can be used to pro-
vide an ordering of the vertices in terms of their individual importance, but
it does not provide any description of the way in which subsets of vertices
influence the network as a whole. As pointed out in [21], vertex between-
ness centrality can be naturally extended to sets of vertices either defining
the betweenness of a set in terms of geodesic paths that pass through at
least one of the vertices in the set, or in terms of geodesic paths that pass
through all vertices in the set. Everett and Borgatti [12] introduced the
first type of extension and called it group betweenness centrality, the sec-
ond type was introduced in [21] showing that the two notions are intimately
related. The relationship between the two approaches has been mathemati-
cally characterized showing how the betweenness of a group of an arbitrary
number of vertices can be bounded above and below by quantities involving
only the betweenness of the individual vertices and the co-betweenness of
pairs of these vertices. In this way a direct insight into the composition
of subgroups of vertices is provided and it can be used in evaluating the
robustness of potential coalitions and the deploying of consensual dynam-
ics. One of the most commonly used tool for representing social relationship
among a set of actors in a network is the adjacency matrix representing a
binary relation. The first limitation of binary relations is that they can be
used only for representing pairwise adjacency, the second one is that the
dichotomy is not suitable for shaping the strength of the adjacency relation-
ship involving several social and individual attributes. One way to overcome
the first limitation was introduced in [6] and it was based on the concept
of multirelational systems [28]. The generalization of the definition of rela-
tion through the introduction of fuzziness opens the way to the extension of
Social Network Analysis to contexts in which the network could be repre-
sented using fuzzy graphs [24], taking care of the vagueness influencing the
relationships among the actors involved in the social dynamics and of the
qualitative nature of the actors’ attributes as well.

Fuzzy approaches to SNA provided so far are actually very few. In [25]
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a technique to model multi-modal social networks as fuzzy social networks
is proposed. The technique is based on k -modal fuzzy graphs determined
using the union operation on fuzzy graphs and a new operator called con-
solidation operator. The notion of regular equivalence [5] was generalized
in [13] introducing the notion of regular similarity, represented by a fuzzy
binary relation that describes the degree of similarity between actors in the
social network. In [10] the problem of partitioning the nodes of a social net-
work in overlapping groups allowing for multiple memberships and varied
levels of membership was solved introducing the so called fuzzy groups. In
[34], starting from the introduction of the natural connection between graph
theory and granular computing, human-focussed concepts associated with
social networks are formalized using set-based relational network theory and
fuzzy sets. A softening of the concept of node importance (centrality of a
node) is provided, considering the number of close connections. Kokabu et
al. [20] proposed a model for evaluating reciprocity of networks represented
by means of fuzzy binary relations. In literature, it was also proposed [8] to
use fuzzy relations for defining a characterization for fuzzy m-ary relations
and therefore expand the dimension of the analysis for m > 2.

The approach proposed in this paper takes advantage of the ability of
fuzzy relations [19, 36, 37] to model uncertainty permeating the relation-
ships between the actors in the network, and of the OWA operators [32, 33]
to move continuously from non-compensatory to full-compensatory situa-
tion and characterizing therefore the attitude of the actors to connect each
other. The paper is outlined as follows. In section 2 we offer a presentation
of SNA and adjacency matrix, which is the main tool to perform the anal-
ysis. In the same section we show that adjacency relations can be valued
(cardinal) relations and that fuzzy adjacency relations are simply a special
case of valued relations. Having presented that, in section 3 fuzzy m-ary
adjacency relations are defined and a method based on aggregating func-
tions for estimating them is presented. We claim, in section 4, that OWA
operators satisfy some reasonable properties and that they can be employed
as suitable aggregating functions to increase the dimension of the analysis.
In section 5 we discuss an example and, finally, in section 6, we present our
conclusions.

2 Crisp, valued and fuzzy adjacency relations in

SNA

As already mentioned, SNA is the branch of network analysis devoted to
studying and representing relationships between ‘social’ objects. To for-
malize, SNA mainly explores relationships between objects belonging to
an universal set X = {x1, . . . , xn} and in order to achieve its aim, some
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mathematical properties of relations are utilized. More specifically, a bi-
nary relation on a single set, which is the most popular kind of relation
used in the SNA, is a relation A ⊆ X × X, whose characteristic function
µA : X × X → {0, 1} is defined as

µA(xi, xj) =

{

1, if xi is related to xj

0, if xi is not related to xj

By definition [19], adjacency relations are reflexive, µA(xi, xi) = 1, and
symmetric, µA(xi, xj) = µA(xj , xi). Note that no transitivity condition is
required to hold. Moreover, if aij := µA(xi, xj) and X is reasonably not
too large, then an adjacency matrix A = (aij)n×n is a convenient way of
representing a relation.

Some scholars in the field claim that A has its strong point in being
a good synthesis of all the pairwise relations between elements of X. In
contrast, according to some others, A is too poor of information, i.e. it does
not contain information about the degree to which the relations between two
elements hold. Therefore it may happen that it treats in the same way very
different cases, without discriminating among situations where intensities of
relationship may be very different. Indeed, many examples may be brought
in order to support the latter point of view.

Some methods have already been proposed in order to overcome the
problem related with the lack of information about the intensity of rela-
tionship between elements of a pair. For instance, a discrete scale can be
adopted and a value be assigned to each entry aij to denote the intensity of
relation between xi and xj . This approach, based on valued adjacency rela-
tions, is the most widely used in order to overcome the problem of unvalued
relations.

Here, we want to propose an alternate approach based on fuzzy sets
theory [36] in order to obtain a fuzzy adjacency relation. A binary fuzzy
relation on a single set, R2 ⊆ X × X, is defined through the following
membership function

µR2 : X × X → [0, 1] (1)

and also in this case, putting rij := µR2(xi, xj), a fuzzy relation can be
conveniently represented by a matrix R = (rij)n×n where the value of each
entry is the degree to which the relation between xi and xj holds. In other
words, the value of µR2(xi, xj) is the answer to the question: ‘how strong is
the relationship between xi and xj?’. Therefore, in the context of SNA

µR2(xi, xj) =















1, if xi has the strongest possible degree
of relationship with xj

γ ∈]0, 1[ if xi is, to some extent, related to xj

0, if xi is not related with xj
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Fuzzy adjacency relations, as well as crisp adjacency relations, are here
assumed to be reflexive and symmetric. It is useful to spend some words
about symmetry. A fuzzy binary relation is symmetric if and only if

µR2(xi, xj) = µR2(xj , xi) i, j = 1, . . . , n. (2)

Although the assumption of symmetry is a simplification, it is of great help
for the model because, due to it, such relations can be represented by means
of undirected graphs and problems related with the so-called combinatorial
explosion are partially avoided. Furthermore, in many real-world cases,
symmetry is spontaneously satisfied by the nature of the relationship.

At this point we remind that:

• A fuzzy relation contains more information than a crisp one and the
former can overcome some drawbacks of the latter. See for example
[19], where fuzzy adjacency relations are called fuzzy compatibility or
proximity relations.

• We can shift from the fuzzy approach to the crisp one thanks to the
α-cuts. An α-cut is a crisp relation defined by

µA(xi, xj) =

{

1, if µR2(xi, xj) ≥ α
0, if µR2(xi, xj) < α .

For instance, given

R =









1 0.7 0.3 0.7
0.7 1 0.1 0.8
0.3 0.1 1 0.2
0.7 0.8 0.2 1









, (3)

its α-cut with α = 0.5 is

A =









1 1 0 1
1 1 0 1
0 0 1 0
1 1 0 1









(4)

• Applying fuzzy relations to SNA, we can extend most of the techniques
employed for analyzing crisp adjacency matrices. A significant exam-
ple, which will be used later on in this discussion, is the normalized
index of local centrality, that is

C(xi) =
1

n − 1

n
∑

j=1
j 6=i

rij . (5)

If ci := C(xi) and c = (c1, . . . , cn), then we can refer to R in (3) and
find that c = (17

30 , 3
5 , 7

20 , 185
300). This result is more informative than the

same index computed on A in (4), i.e. c = (2
3 , 2

3 , 0, 2
3)
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• It is possible to exploit already known indices for fuzzy sets as, for
instance, a measure of fuzziness [11] which would estimate how much
information we would have lost if we had used crisp relations instead
of fuzzy ones.

• Exploiting a fuzzy adjacency relation solves all the borderline cases,
i.e. all the cases where it is difficult to establish whether xi and xj

are related or not. To tell the truth, this property is, to some extent,
shared with valued adjacency relations. However, a fuzzy relation is
much easier to be interpreted from a logical point of view.

Let’s note that the whole issue can be addressed thanks to graph theory. In
this case there are n nodes x1, x2, . . . , xn and n(n−1)

2 edges connecting them.
Hence, nodes are nothing else but elements of the universe set X, weights of
edges are µR2(xi, xj) and the graph is G = 〈X, R〉. Therefore, the problem
can also be addressed in a graphical way with µR2(xi, xj) representing the
”thickness” of the edge between xi and xj .

One might wonder how it would be possible to define a fuzzy adjacency
matrix starting from real-world information. In all those cases where it is
difficult to define it directly we can derive it from valued adjacency matrices,
e.g. some evidence under the form of numerical data about the relationships
is available. Let us assume that a valued adjacency matrix, V = (vij)n×n,
exists with vij ∈ R≥. If it is possible to define a maximal level for the
valued graph, say v∗, such that it represents the maximum possible value of
relationship, then, with v∗ playing the role of the upper bound for entries vij ,
we can rescale each vij into a rij thanks to a suitable mapping rij = h(vij),
h : [0, v∗] → [0, 1].

3 Fuzzy m-ary adjacency relations and the degree

of social relationship

In this section we propose an extension of the analysis involving m-dimensio-
nal relations with 2 ≤ m ≤ n. If we do so, then each element of the m-ary
relation is the degree of social relationship among the m elements contained
in the m-tuple which is taken into account. Analogously to the binary case,
it is straightforward to define a fuzzy m-ary relation.

Definition 1. A fuzzy m-ary relation Rm on a single set X is a fuzzy subset
of Xm defined by means of the membership function

µRm : Xm → [0, 1] (6)

Then, for p1, . . . , pm ∈ {1, . . . , n}, the membership function characterizing
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fuzzy m-ary relations is the following

µRm(xp1, . . . , xpm
) =







1, if xp1, . . . , xpm
are definitely related

γ ∈]0, 1[ if xp1, . . . , xpm
are, to some extent, related

0, if xp1, . . . , xpm
are definitely not related

The logic underlying the membership function remains substantially un-
changed and therefore properties of reflexivity and symmetry are extended
to the m-dimensional case in the following way. A fuzzy m-ary relation is
reflexive if and only if

µRm(xi, xi, . . . , xi) = 1, i = 1, . . . , n .

A fuzzy m-ary relation is symmetric if and only if for any p1, p2, . . . , pm ∈
{1, . . . , n} it is

µRm(xp1, . . . , xpm
) = µRm(xq1, . . . , xqm

)

where (xq1, xq2, . . . , xqm
) is any permutation of (xp1, xp2, . . . , xpm

).
A fuzzy m-ary relation satisfying the reflexivity and symmetry properties is
called a fuzzy m-ary adjacency relation.
At this point, having defined fuzzy m-ary adjacency relations, it is the case
to highlight the difference between an element of a fuzzy m-ary adjacency
relation and a clique [22, 29, 35]. Namely, a clique of a graph is a maximum
complete subgraph whereas, if we deal with m-ary relations and the contrary
is not made explicit, the value µRm(xp1, . . . , xpm

) simply states, by means
of the bounded unipolar scale [0, 1], the degree to which the relation holds,
without taking into account any maximality condition.

However, problems arise when we try to elicit Rm in a direct way, as it
is certainly not a trivial operation, especially when m is large enough. As
we have seen in the previous section, in social network analysis adjacency
relations in the form R2 ⊆ X × X are often used and therefore degrees of
relationship over pairs are known. That is why we propose an effective way
to elicit Rm using the information embedded in the fuzzy binary adjacency
relation on the same universal set X. We propose to recursively calculate the
degree of relationship over m–tuples by means of the degree of relationship
over pairs using aggregation functions ρ3, . . . , ρm satisfying a fixed set of
assumptions, as described in the next section. More precisely, from a given
fuzzy binary adjacency relation R2 we calculate the corresponding fuzzy
ternary adjacency relation R3, then from R3 we calculate R4, and so on.
In general, to estimate µRm

(xp1, . . . , xpm
) we construct it recursively in the

following way

µRk
(xp1

, . . . , xpk
) = ρk(µRk−1

(xp1, . . . , xpk−1), . . . , µRk−1
(xp2, . . . , xpk

)),
(7)
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for k = 3, . . . , m. The k arguments of the function ρk themselves are func-
tions of k − 1 variables. For example, the first argument of the function ρk

in (7) is

µRk−1
(xp1, . . . , xpk−1) =ρk−1(µRk−2

(xp1, . . . , xpk−2), . . .

. . . , µRk−2
(xp2, . . . , xpk−1)) .

(8)

Note that to calculate µRk
(xp1, . . . , xpk

) in (7) we need to aggregate precisely
k values of µRk−1

(·). Since we assume that the symmetric property holds,
the order of the arguments in µRm

(xp1, . . . , xpm
) is not relevant and we can

assume, without loss of generality, xp1 ≤ · · · ≤ xpm
. Therefore, a fuzzy

m–ary adjacency relation on a set X requires
(

n+m−1
m

)

relationship values
to be completely defined, i.e. the number of combinations with repetition
of size m from a set of n elements.

The most important case for applications is that of µRm
(xp1, . . . , xpm

)
with all different arguments, i.e. allowing no repetition. This corresponds to
take into account only groups of distinct social objects and in the following
we will focus on this case. Under this assumption, a fuzzy m–ary adjacency
relation on a set X requires only

(

n
m

)

relationship values to be completely
defined.

Let us introduce the notation which will be used hereafter.

Definition 2. Given a finite non empty set X = {x1, . . . , xn}, we denote
by Fm(X) the family of subsets of X containing m elements,

Fm(X) = {A ⊆ X; |A| = m} (9)

Example 1 Given X = {x1, x2, x3, x4}, it is

F1(X) = {{x1}, {x2}, {x3}, {x4}}

F2(X) = {{x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}

F3(X) = {{x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}}

F4(X) = {x1, x2, x3, x4}.

In general, with |X| = n and m ≤ n, the cardinality of Fm(X) is

|Fm(X)| =

(

n

m

)

.

It turns out that in order to calculate the degree of relationship among
the m distinct objects of a set {xp1

, . . . , xpm
} ⊆ X, we need to calculate first

8



the degrees of relationship over all its subsets with cardinality greater than
one and less than m. The total number of these subsets is

(

m

2

)

+ · · · +

(

m

m − 1

)

= 2m − m − 2 . (10)

Let us now draw our attention again to the problem of aggregating re-
lationship values in order to construct higher dimensional relations. The
choice of aggregation functions ρ3, ρ4, . . . , ρm plays clearly a crucial role in
determining the fuzzy m–ary adjacency relation µRm

. In the following sec-
tion, therefore, we will focus on the suitable properties we require for these
functions.

4 Some properties of the OWA-based aggregating

function

This section is devoted to present and justify the assumptions that we make
regarding ρ3, . . . , ρm. First of all, as we already said, we require ρ3, . . . , ρm

to be ‘aggregation functions’. We recall the corresponding definition [1]

Definition 3 (Aggregation function). An aggregation function is a function
of m > 1 arguments that maps the (m-dimensional) unit cube onto the unit
interval, f : [0, 1]m → [0, 1], with the properties

• f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1

• a ≤ b implies f(a) ≤ f(b) for all a,b ∈ [0, 1]m (monotonicity)

Moreover, we are going to propose some other properties which, in our
opinion, should be satisfied by every ρm, m = 3, . . . , n.

1. idempotency ρm(a, . . . , a) = a. Therefore, if the objects of some set
are pairwise related with degree a, then we assume that the intensity
of relation computed on the tuple containing those objects has value
a as well.

2. commutativity, ρm(a1, . . . , am) = ρm(aq1, . . . , aqm
) where (q1, . . . , qm)

is any permutation of the indices. This property is required to hold
because fuzzy adjacency relations are symmetrically defined for all
m = 2, . . . , n .

3. strict monotonicity: ρm(a1, . . . , am) > ρm(b1, . . . , bm) if ai ≥ bi ∀i and
there exists at least one j such that aj > bj . Strict monotonicity is
asked to hold in order to overcome some evaluation problems which
would arise if we used non-strictly monotonically increasing functions

9



as, for instance, the geometric mean g(·). To give an example, substi-
tuting g to ρm we would have g(1, . . . , 1, 0) = g(0, . . . , 0), which is not
a desirable result from the social analysis point of view

4. continuity. This is essentially a technical assumption.

These four assumptions lead us to choose within a restricted class of av-
eraging operators. Namely, ρm should be an aggregating function respecting
properties 1–4. It is possible to see that the geometric mean, as mentioned
above, is excluded because it is not strictly monotone. The weighted arith-
metic mean is also excluded because it is not commutative.

Conversely, provided that 0 < wi < 1, any OWA operator [32, 33] sat-
isfies the listed properties [9]. Choosing between OWA operators would be
anything but arbitrary as an index of orness is associated to each OWA
and several approaches has been developed to find an OWA operator with a
given level of orness and optimizing some other properties as, for instance,
entropy and variance. Moreover, OWA operators cover a range of some well
known aggregating functions, as they can be meant as trade offs between
the min and the max operators.

Hence, in our case, as we use OWA operators, they should be defined such
that wi ∈]0, 1[ so that they are strictly monotonically increasing functions
in all the terms. Let us therefore give the following modified definition of
OWA.

Definition 4 (Strictly monotone OWA operator). A strictly monotone OWA
operator of dimension m is a mapping F : R

m → R, that has an associated
weighting vector w = (w1, . . . , wm) such that 0 < wi < 1 and

m
∑

i=1

wi = 1

Furthermore

F (a1, . . . , am) = w1b1 + · · · + wmbm =
m

∑

j=1

wjbj

where bj is the j-th largest element of the bag A = 〈a1, . . . , am〉.

5 Example

A number of examples explaining the utility of m-ary relations can be
brought. Let us, for example, consider the following fuzzy binary adjacency
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relation




















1 0.8 0.8 0.6 0.2 0.4 0.3
0.8 1 0.9 0.2 0.1 0.3 0.3
0.8 0.9 1 0.3 0.2 0.3 0.3
0.6 0.2 0.3 1 0.7 0.7 0.4
0.2 0.1 0.2 0.7 1 0.9 0.7
0.4 0.3 0.3 0.7 0.9 1 0.5
0.3 0.3 0.3 0.4 0.7 0.5 1





















(11)

which we can suppose be representing of fuzzy adjacency relations between
decision makers. Although we bring an example, it is easy to imagine several
other possible applications indeed. Following our proposal, it is possible to
estimate a ternary fuzzy adjacency relation simply by applying function
ρ3 according to (7). Let us further assume that, hereafter, function ρm is
univocally determined as an OWA operator of dimension m with maximal
entropy and orness(w) = 0.4, which, in the special case with m = 3, is
w ≃ (0.238371, 0.323257, 0.438371). Thus, the result, would be

µR3(x1, x2, x3) = ρ3(µR2(x1, x2), µR2(x1, x3), µR2(x2, x3)) ≃ 0.823837

µR3(x1, x2, x4) = ρ3(µR2(x1, x2), µR2(x1, x4), µR2(x2, x4)) ≃ 0.472326

... =
...

µR3(x4, x6, x7) = ρ3(µR2(x4, x6), µR2(x4, x7), µR2(x6, x7)) ≃ 0.503837

µR3(x5, x6, x7) = ρ3(µR2(x5, x6), µR2(x5, x7), µR2(x6, x7)) ≃ 0.66

It could be particularly interesting to pick the element of Fm(X) such that
the value of its membership function is maximal,

max{µRm(xp1, xp2, . . . , xpm
)| p1, . . . , pm ∈ {1, . . . , n}, p1 < p2 < · · · < pm} ,

(12)
In our case the maximum value of membership function is 0.823837 and it
is achieved by the triplet (x1, x2, x3).

A rather special case is that involving the m⋆-ary relation where m⋆

is defined as the integer part of n/2 + 1, more formally m⋆ = ⌊n/2 + 1⌋,
because the associated subset of X would be a minimum winning coalition.
In our case m⋆ = 4 and w = (0.167087, 0.213266, 0.272208, 0.34744) with

µR4(x1, x2, x3, x4) = ρ4(µR3(x1, x2, x3), . . . , µR3(x2, x3, x4)) ≃ 0.514996

µR4(x1, x2, x3, x5) = ρ4(µR3(x1, x2, x4), . . . , µR3(x2, x3, x5)) ≃ 0.402686

... =
...

µR4(x3, x5, x6, x7) = ρ4(µR3(x3, x5, x6), . . . , µR3(x5, x6, x7)) ≃ 0.41189

µR4(x4, x5, x6, x7) = ρ4(µR3(x4, x5, x6), . . . , µR3(x5, x6, x7)) ≃ 0.595482

with the maximum being 0.595482, achieved by (x4, x5, x6, x7).
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This latter proposal can be refined if we assume that every element
xi ∈ X has a specific weight ωi denoting its relative importance. Let us
consider the weight vector

ω = (ω1, . . . , ωn) s.t.

n
∑

i=1

ωi = 1 , ωi ≥ 0 ∀i. (13)

Then, we can perform an analysis similar to that described above by assum-
ing that parameter m is free, not necessarily equal to m⋆, and by requiring
that the sum of the weights associated to the considered m elements is equal
or greater than a given majority threshold 0 < t ≤ 1. In light of these ob-
servations, the optimization problem is

max{µRm(xp1, . . . , xpm
) | p1, . . . , pm ∈ {1, . . . , n}, p1 < · · · < pm,

m
∑

i=1

ωpi
> t, m = 2, . . . , n − 1} .

(14)

Some comments on (14) could be useful to better understand the involved
optimization. In (14) we are still interested in the strongest coalition, but the
constraint of having a fixed number of elements is replaced by a constraint
on a majority threshold t to be satisfied by the sum of the weights of the
coalition’s elements. That is, coalitions with different number m of elements
are taken into account, provided that they fulfil threshold t. Note that
large values of µRm can be easily achieved if the number m of elements is
small, while the constraint

∑m
i=1 ωpi

> t is satisfied by the coalitions with a
sufficiently large number of strong elements. Therefore, the optimal solution
of (14) arises by taking into account the two conflicting criteria: power
of the coalition and degree of relationship among the coalition’s elements.
We stress again that the number m of the coalition’s elements is optimally
determined only after having solved (14).

Although the example proposed here is not based on a real world case,
the problem solved in (14) could be applied to economics and political sci-
ences. In fact, it is possible to see vector ω as a collection of weights for
political parties. At this point, if we are able to establish some distance
measures between any two parties (i.e. a relationship degree), then we can
apply (14) and find the strongest winning coalition.

Note that vector ω defining the relative importance of each xi ∈ X must
not be confused with vector w of an OWA operator, which is used in this
paper to assign weights to degrees of relationships among elements in X.

Another problem that can be addressed is that of maximizing the num-
ber m of elements in a subset satisfying a fixed majority threshold. Namely,
let us fix a threshold δ ∈ [0, 1] such that µRm(xp1, xp2, . . . , xpm

) > δ and
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leave the dimension m of our analysis free. In this way, progressively increas-
ing m and calculating µRm(xp1, xp2, . . . , xpm

) at every stage, we can detect
the largest B ⊆ X such that µRm(B) > δ. Let m̂ denote this maximal
cardinality,

m̂ = max{m| µRm(B) > δ, m = |B|, B ⊆ X} . (15)

It may occur that set B is not unique, since there exist ν different subsets
Bj , j = 1, . . . , ν satisfying inequality µRm(Bj) > δ with the same maximal
cardinality m̂. In this case, it is possible to define a winner as the subset Bi

with the strongest degree of relationship, µRm(Bi) ≥ µRm(Bj), j = 1, . . . , ν.
If again the solution is not unique, the multiple solutions are considered
equivalent for our analysis.

The very last observation concerns the dimension of the analysis. If
m = n, then the degree to which this particular relation holds is a measure
of how strong the relation among all the xi ∈ X is. It can be interpreted as
the degree of social relationship computed on the entire network.

6 Conclusions

We provided a new approach to the analysis of social networks based on
m–ary fuzzy adjacency relations and OWA operators. Our aim was to show
that from the combined use of these two mathematical tools, the vague-
ness pervading the relationships between the actors involved in the social
network and their attitude to connect each other can be represented more
effectively. Through the introduction of the strictly monotone OWA opera-
tor, we provided a representation of fuzzy m-ary adjacency relations using
the information embedded in the fuzzy binary relations defined on the same
universal set. Hopefully starting from the results of this paper it will be
possible to provide further representations of the interactions characterizing
the dynamics of social networks involving linguistically based evaluations as
well.
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