
Rook Jumping Maze Design Considerations

Todd W. Neller1, Adrian Fisher2, Munyaradzi T. Choga1,
Samir M. Lalvani1, and Kyle D. McCarty1

1 Gettysburg College, Dept. of Computer Science, Gettysburg, Pennsylvania, 17325, USA,
tneller@gettysburg.edu,

WWW home page: http://cs.gettysburg.edu/˜tneller
2 Adrian Fisher Design Ltd., Portman Lodge, Durweston, Dorset, DT11 0QA England,

adrian@adrianfisherdesign.com,
WWW home page: http://www.adrianfisherdesign.com

Abstract. We define the Rook Jumping Maze, provide historical perspective,
and describe a generation method for such mazes. When applying stochastic local
search algorithms to maze design, most creative effort concerns the definition of
an objective function that rates maze quality. We define and discuss several maze
features to consider in such a function definition. Finally, we share our preferred
design choices, make design process observations, and note the applicability of
these techniques to variations of the Rook Jumping Maze.

1 Introduction

In this Section, we will define the Rook Jumping Maze, provide a suitable notation for
discussing maze features, and describe the history of the maze. In Section 2, we will
outline a general optimization process for generating such mazes, whereas Section 3
will define a number of specific features suitable for defining an objective function for
such optimization. Section 4 shares observations concerning the outcomes of algorith-
mic choices in Section 3, experiences in the business of maze design, and the “Aha!”
moments enjoyed when solving novel quick mazes (a.k.a. logic mazes). Existing and
potential variations of Rook Jumping Mazes are described in Section 5, followed by
conclusions in Section 6.

1.1 Definitions

Figure 1 provides an example of a Rook Jumping Maze.3 Let rmax and cmax be the
number of rows and columns, respectively. In this case, rmax = cmax = 5. A state s of
the maze (i.e., current location) is denoted by the row-column coordinate (r, c), where
r ∈ {1, . . . , rmax} and c ∈ {1, . . . , cmax}. For example, a maze puzzler located at
(1, 1) is located in the upper-left corner cell of the grid. The set of all states is denoted
S. Let functions row : S → N and col : S → N map a state to its row and column,
respectively.

3 Minimum 13-move solution for Figure 1: down, right, left, up, down, left, right, up, left, left,
right, down, up

3 4 1 3 1
3 3 3 G 2
3 1 2 2 3
4 2 3 3 3
4 1 4 3 2

Fig. 1. Example Rook Jumping Maze. Starting at the circled cell, each jump number indicates the
exact number of cells one may move in a straight line horizontally or vertically. The object is to
find a path to the goal marked “G”.

The circled starting state of this example maze, denoted sstart, is (1, 1). The goal
state of this example maze, denoted sgoal and marked with a “G”, is (2, 4).

Each state of the maze has an associated jump number that provides the exact num-
ber of cells one may move horizontally or vertically in a straight line to change states. In
Figure 1, the first move from (1, 1) may either be 3 cells right to (1, 4), or 3 cells down
to (4, 1). From (4, 1), there is only one legal forced move 4 cells right to (4, 5). From
(4, 5), one may move 3 cells left to (4, 2) or 3 cells up to (1, 5). A jump must be in a
single orthogonal direction, and may neither stop short of the number of required cells
at edges, nor may it wrap around edges toroidally. Variations are discussed in Section 5.

Let jump function j : S → N map a state to its jump number. Define j(sgoal) = 0.
Let the successor function σ : S → 2S map a state to its possible successor states, that
is:

σ(s) =

s′ ∈ S
∣∣∣∣∣∣∣∣
s′ = (row(s) + j(s), col(s)), or
s′ = (row(s)− j(s), col(s)), or
s′ = (row(s), col(s) + j(s)), or
s′ = (row(s), col(s)− j(s))


Let the predecessor function π : S → 2S map a state to its possible predecessor

states, that is:
π(s) = {s′ ∈ S|s ∈ σ(s′)}

Define a path of length n from sfrom to sto as a sequence of states (s1, s2, . . . , sn)
such that s1 = sfrom, sn = sto, and for all 1 ≤ i < n, si+1 ∈ σ(si). The optimal or
shortest solution path is a path of minimal length from sstart to sgoal. Let |p| denote the
length of path p. Let Psfrom,sto be the set of all paths from sfrom to sto. Then an optimal
solution path p∗ is argminp∈Psstart,sgoal

|p|.

1.2 History

The origin of Rook Jumping Mazes is unknown, but some attribute its creation to the
great puzzle innovator Sam Loyd. Loyd’s 1898 Queen Jumping Maze, which addi-

tionally allows diagonal moves, is shown in Figure 2.4 It appears on page 106 of the
Cyclopedia of Puzzles [1], a collection of Loyd’s work compiled by his son.5

Fig. 2. Loyd’s puzzle “Back from the Klondike”

The puzzler is directed to a heart-marked start location at the center of a gridded
circle. The object is to find a path to a cell from which one can jump one cell beyond
the circle’s edge. Loyd writes that the puzzle “. . . was built purposely to defeat Euler’s
[working backwards] rule and out of many attempts is probably the only one which
thwarts his method.”

Leading modern maze designer Adrian Fisher started creating floor mazes with col-
ored plastic tiles in 1984. From the outset, the colored tiles allowed him to create mazes
based on directed graphs, initially using sequences of colored maze paths, and later
using numbers and arrow to constrain movement.

Using colored plastic tiles, he created his first human-size Rook Jumping Maze in
1991 at Paradise Park, Hawaii. The logic was also one-way, this time with each cell
being the junction, and each “path” being an imaginary hop through the air of a given
distance (as stated in the cell), with the player choosing which direction to jump. Since
then, Fisher has supplied hundreds of plastic tile floor mazes worldwide to science

4 See also: http://en.wikipedia.org/wiki/Back from the Klondike
5 Public domain scans available from http://www.mathpuzzle.com/loyd/

centers, children’s museums, schools and farm attractions (often in conjunction with
cornfield maize mazes). One of Fisher’s Rook Jumping Mazes can be seen in [2].

Robert Abbott is another prominent modern maze designer who has created Rook
Jumping Mazes such as the 7×7 “Jumping Jim” [3, pp. 14–15], and the 8×8 “Number
Maze” [4, pp. 36–37] Rook Jumping Maze variant with a “no-U-turn rule” disallowing
reverse moves, e.g., a left jump immediately following a right jump.

2 Generation of Rook Jumping Mazes

In our experience, stochastic local search [5] algorithms have provided a satisfactory
means of generating Rook Jumping Mazes such as that of Figure 1. Even simple algo-
rithms yield good results, freeing us as designers to focus on the relative (un)desirability
of various maze features.

In applying stochastic local search (SLS) to maze design, we must, for the moment,
step back from maze states (i.e., locations) and individual maze solutions, and consider
instead the configuration of the maze itself, i.e., jump numbers and start/goal locations,
as a single configuration state c in the space of all maze configuration states C. We
search through such configuration states in order to find good designs according to a
maze-rating measure we subjectively define. Henceforth, we will refer to configuration
states as configurations to avoid confusion with maze location states.

In general, the goal of SLS is to seek a configuration from a set of configurations
C that optimizes some measure. We call this measure the configuration’s energy, de-
noted e : C → R, and we seek a configuration with low or minimal energy. Our task
is then to seek a configuration c minimizing e(c), that is, argminc∈C e(c). In practice,
it is often the case that we are only able to or only want to find an approximately opti-
mal configuration. For each configuration, there is a neighborhood N(c) which defines
those configurations we may look to next after c in our search. We choose a successor
configuration from N(c) (which is in some sense “local” to c) stochastically.

One of the simpler algorithms, Hill Descent with Random Uphill Steps, is parame-
terized by the number of iterations and an uphill step acceptance probability.6 We begin
with a random configuration c. For each of the given number of iterations, one gener-
ates a random neighboring configuration c′ ∈ N(c) as a possible next step in the search
space. If this configuration c′ has the same or lower energy, we accept the change of c to
c′. If the configuration has a higher energy, we accept the change with some small given
probability. Otherwise, we disregard the proposed change. At the end of all iterations,
the result of the search is the minimum energy configuration encountered.

For our maze generation, the initial random configuration has its start and goal state
locations set, and random jump numbers assigned such that at least one legal move is
possible from each non-goal location. Thus, the initial SLS configuration is generally
a poor-quality maze that possibly has no solution. We generate a random neighboring
“local” configuration by choosing a random non-goal location in the maze, and chang-
ing the jump number such that a legal move from that location is still possible. While
this small change may significantly change the quality of the maze, the overall maze

6 For rapid generation, we perform 25000 iterations with an acceptance probability of .005.

structure is still largely intact, and thus this provides a natural “locality” in the search
of all possible maze configurations.

These and other techniques, e.g., simulated annealing, are described in greater detail
in [5, 6].7 The greatest creative work consists of defining the energy function, i.e., the
measure to be optimized. In this case, think of energy as being a rating of the badness
of a Rook Jumping Maze configuration. Our design team, consisting of both faculty
and students from various disciplines, generated and tested many mazes, sharing and
discussing many features we observed as significant to the quality of Rook Jumping
Maze design. We next turn our attention to the primary features observed as being
relevant to the definition of the energy function.

3 Maze Features

There are a number of features that should be considered when defining the energy
function for stochastic local search. In this section, we will define several features and
discuss each in turn.

3.1 Goal Reachability, Reaching States, Reachable States, Black Holes, and
White Holes

The first and most important feature of a maze is that it can be solved, that is Psstart,sgoal

6= ∅. However, there are further definitions and features to consider, including the num-
ber of reaching/reachable states and the existence of black/white holes.8

A reaching state s is a state from which one can reach the goal, i.e., Ps,sgoal 6= ∅.
A reachable state s is a state which one can reach from the start, i.e., Psstart,s 6= ∅. A
black hole B(s) ⊂ S, a “dead-end” of a maze, is a subset of reachable, non-reaching
interconnected states defined recursively as follows. Let s ∈ B(s) be a reachable, non-
reaching state. For each s1 ∈ B(s), all successors and all reachable, non-reaching
predecessors are in B(s) as well. If s2 ∈ σ(s1) or (s2 ∈ π(s1) and Psstart,s2 6= ∅
and Ps2,sgoal = ∅), then s2 ∈ B(s). Similarly, a white hole W (s) ⊂ S, a back-tracing
dead-end of a maze, is a subset of unreachable, reaching interconnected states defined
recursively as follows. Let s ∈ W (s) be an unreachable, reaching state. For each s1 ∈
W (s), all predecessors and all unreachable, reaching successors are in W (s) as well. If
s2 ∈ π(s1) or (s2 ∈ σ(s1) and Psstart,s2 = ∅ and Ps2,sgoal 6= ∅), then s2 ∈W (s).

We first observe that, unlike conventional mazes, Rook Jumping Mazes introduce
a forward directional bias. It is easier to move forward in the maze than to trace back-
wards. As with conventional mazes, puzzlers will tend to trace a solution backwards, but
such backwards tracing is a greater challenge to visual perception. This has interesting
ramifications for the maze experience.

First, since some Rook Jumping Mazes are in a walkable form, laid out with large
tiles on the ground, we need to give attention to the forward experience. Since backtrac-
ing is more challenging, a black hole tends to encourage the puzzler to restart from the

7 Also: http://cs.gettysburg.edu/˜tneller/resources/sls/index.html
8 The descriptive maze terms “black hole” and “white holes” were coined by Fisher in [7].

beginning. In this brief moment of disengagement, especially if frequently repeated, the
puzzler may become demotivated. Rather than walking back to the start, one may sim-
ply walk away. We therefore favor elimination of black holes, allowing the possibility
of imminent breakthrough to a solution to keep the puzzler engaged. No step is to be
feared as a trap; there are only puzzling diversions from the goal.

Even some of those we have observed walking large scale mazes will sometimes
stop and visually work backwards from the goal in planning future steps. To provide
both an incentive for the forward experience, and a challenge for the backward expe-
rience, we do allow white holes. Further, we note that, compared to black holes, white
holes are easy to escape by retracing steps, for retracing backward steps is merely pro-
ceeding forward.

3.2 Start/Goal State Locations

Our design team had a preference for variety in start/goal locations. However, some of
our experiences with mazes generated with such variety yielded the following obser-
vations. (1) Traditional mazes, probably influenced by the left-to-right, top-to-bottom
(LRTB) scripting system, often have the start and goal in the upper-left and lower-right,
respectively. Even considering variations, one rarely starts a maze from within. (2) Non-
corner start locations can sometimes yield a forced first move, whereas there is always
a choice starting from the corner. (3) Variation of the goal location yielded pleasing
diversity of generated mazes. We thus opted to fix the start location in the upper-left
corner, and vary the goal location at random.

3.3 Shortest Solution Uniqueness

One should also consider the importance of a unique shortest solution path, i.e., if
p1, p2 ∈ argminp∈Psstart,sgoal

|p|, then p1 = p2. In mazes featuring many black holes,
simply finding a path to the goal may be a sufficiently satisfying accomplishment.

However, in mazes without black holes, where all states are reaching states, there
are generally an infinite number of solution paths with repeated states, and many dis-
tinct paths without repeated states. In such cases, the experience of finding a path to
the goal seems not to provide the same level of satisfaction as knowing that one has
found the best, shortest solution. In such mazes, random experimentation will eventu-
ally yield success, and random experimentation coupled with good memory can yield
speedy success. However, this can feel like a “given” or “inevitable” result.

The existence of a unique optimal solution can drive a deeper level of analytical
engagement. To find a path and then be informed that a shorter path exists can motivate a
more intense exploration of alternative paths, leading to a familiarity with the complete
topology for smaller mazes, e.g., 5 × 5. The satisfaction of having found the unique
optimal path is akin to that of forming an elegant mathematical proof. There is a beauty
to simplicity.

Since our design team prefers no black holes, the uniqueness of a minimal length
solution has great value.

3.4 Minimum Solution Path Length

At first, one might think that a long minimum solution path would be of prime impor-
tance in maze design. We might associate solution length with maze difficulty. However,
this is not necessarily the case. Mazes with longer minimum solution paths may involve
many forced moves, or stereotyped patterns such as sequences of U-turn moves within
a row or column.

4 3 3 2 3
1 2 2 3 2
4 2 2 3 3
3 3 2 3 4
4 1 2 G 4

(a) Maze with length 19 solu-
tion

3 2 2 2 2
2 G 2 2 2
2 2 2 3 2
2 3 2 2 1
2 2 2 2 2

(b) Maze with 2-jump clusters

3 3 3 5 3 G
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 2 1
3 3 3 2 4 2
3 3 3 4 4 1

(c) Maze with 3-jump clusters

Fig. 3. Illustrative design examples

Consider the illustrative example of Figure 3(a). In seeking to maximize the mini-
mum solution path length, we generate puzzles which, at first, are interesting. However,
many of these are easily backtraceable and have stereotyped sequences of successive
row/column as in column 3 and then row 2 in the end of the minimum length solution
of 19 moves.9

An analogy to standard walled mazes may help. A depth-first generation algorithm
will generally yield a long solution path, but with relatively few and obvious decisions
along the winding solution. In the same way, minimum solution length may not matter
so much as the frequency and complexity of decisions along the solution path.

3.5 Forward/Backward Decisions and Initial Forced Moves

Let us assume a unique shortest solution path p∗.10 We define the number of forward
decisions as the number of non-goal states along p∗ with more than one successor,
i.e., |S′| where S′ ⊂ S and {s ∈ S′|s ∈ p∗ and |σ(s)| > 1}. Similarly, we define the
number of backward decisions as the number of non-start states along p∗ with more
than one predecessor, i.e., |S′| where S′ ⊂ S and {s ∈ S′|s ∈ p∗ and |π(s)| > 1}.

Forced moves serve mainly to lengthen a solution and cause previously visited states
to pass out of memory. However, a solution with many forced moves is relatively unin-
teresting. Forced initial moves are particularly uninteresting, because the puzzle might

9 Solution to Figure 3(a): right, down, left, right, up, down, left, right, left, down, right, up, up,
down, up, left, right, right, down

10 When there exist multiple shortest solution paths, we may average this measure for such paths.

as well have a start position at the first state providing a decision. Similarly, states with
only one possible predecessor are relatively uninteresting, as they make backtracing too
easy.

3.6 Same Jump Clusters

A further interesting feature of Rook Jumping Mazes is what we will call a same jump
cluster. Same jump clusters are maximal strongly connected subgraphs of the maze with
all states sharing a common jump number. The same jump cluster J(s) ⊂ S is defined
recursively as follows: s ∈ J(s). If s1 ∈ J(s) and s2 ∈ σ(s1) and j(s1) = j(s2), then
s2 ∈ J(s).

For those with experience of Rook Jumping Mazes, same jump clusters stand out
as partial sub-lattices of jump number j, with cells in the sublattice being j cells apart.
Whereas 1-jump clusters are too easily traversed, 2- and 3-jump clusters yield mazes of
greater interest, as shown in Figures 3(b) and 3(c). However, most of our design team
preferred a diversity of jump numbers and fewer same jump clusters in general.

3.7 Example Energy Function

Not every feature has the same priority. Suppose one has integer-valued feature mea-
sures f1 and f2. We can combine the two, prioritizing f1 over f2 in the energy function,
with the expression (r2 + 1)f1 + f2, where r2 is the range of possible values for f2.
In this way, the smallest change to f1 matters more than the greatest possible change to
f2.

We compute our energy function e for a given maze configuration c as follows. Start
with an energy, i.e., maze badness score, of 0. If there is no unique optimal solution,
penalize the design by adding |S|3 to the score. Next, we add n|S|2 to the score, where
n is the number of non-reaching states. Assuming there is a unique optimal solution,
let df and db be the number of forward and backward decisions, respectively, along
the optimal path. Reward more decisions by subtracting min(df , db) from the score.
Partition all states into a set of jump clusters J . For each jump cluster J ∈ J , add
(|J | − 1)2 to the score. Finally, add m2 to the score, where m is the number of initial
forced moves.11 Thus, our energy function is

e(c) =


n |S|2 −min(df , db) +

∑
J∈J (|J | − 1)2 +m2 if there exists a unique

optimal solution, or
|S|3 + n |S|2 +

∑
J∈J (|J | − 1)2 +m2 otherwise

4 Observations

4.1 Algorithm Observations

Using the sample energy function of the previous section with hill descent for 20, 000
iterations with an uphill step probability of .005, we are pleased with the quality of
11 This step may be omitted if the start state is located in a corner where forced forward moves

are not possible.

the results. This is by no means the only way to generate high-quality Rook Jumping
Mazes, yet this approach may be replicated and improved upon by others with relative
ease.

The generated maze topologies tend to follow an interesting general pattern. Rough-
ly half of maze states lead to one another in a tangled mass, from which the other half
of states form a single branch leading to the goal, yet allowing many opportunities to
misstep back into the tangled mass. This topological tendency has been observed in
other similar maze generations, e.g., Oskar van Deventer’s four-bit mazes.12 We expect
that this is a common topological feature of interesting directed graph maze designs.

4.2 Diversity of Design

Leading maze puzzle designers13 tend to be fascinated by creating new puzzle formats,
each with its own new rule or rules. Thus many of their designs are created manu-
ally, which reveals their own particular design approach and style. Quite apart from its
graphical appearance, it is possible to recognise a particular designer’s style in a new
form of puzzle, from the way they have approached the design challenge.

Occasionally, publishing requirements to provide the same type of puzzle on a daily
or monthly basis motivates writing a computer program that makes the process auto-
matic or semi-automatic. Such programs then become an expression of their designer’s
style. In the approach described above, a design style may be diversified by making use
of multiple, independently-developed maze-rating functions.

Some puzzle researchers write computer programs to explore the potential of a par-
ticular puzzle notion, so as to generate multiple solutions, and then use tests to rank the
complexity of each solution. For example, sliding block puzzles can be easily devised
with a few pieces, and with a relatively simple yet distinctive playing area; nevertheless
one or two starting positions can have a much longer minimum solution path length,
sometimes involving more than 150 moves.14 If you consider this to be the only valid
factor, then this would be a way to rank the various solutions found by computer. In
practice, market research might find that another starting position provided a more en-
tertaining or satisfying puzzle. Or, if there are multiple ways of solving the same puzzle
(e.g., the Rubik’s Cube), all quite difficult, players might find the puzzle had greater
repeat appeal.

12 Stochastic local search algorithm:
http://cs.gettysburg.edu/˜tneller/mazes/oskar4bit/index.html

13 e.g., Robert Abbott (http://www.logicmazes.com/),
Adrian Fisher (http://www.adrianfisherdesign.com/),
Andrea Gilbert (http://www.clickmazes.com/),
Scott Kim (http://www.scottkim.com/),
Ed Pegg Jr. (http://www.mathpuzzle.com/),
Steve Ryan (http://steveryangames.com/),
James Stephens (http://www.puzzlebeast.com/),
and Oskar van Deventer (http://oskarvandeventer.nl/), to name a few

14 See, for example, “A Dozen Irritating Sliding Block Puzzles”:
http://www.puzzlebeast.com/slidingblock/sliding irritating.html

Fisher considers that, when it comes to the general public including families, whose
reading age is about 10 years, and puzzle concentration and aptitude much the same,
typically 12 to 15 moves is quite sufficiently entertaining to be fulfilling.

4.3 The “Aha!” Moment and the Fulfillment of Rule Mastery

Quick mazes (a.k.a. logic mazes) like the Rook Jumping Maze bring many principles
of good maze design into sharp focus. Fisher pioneered the name and concept of “Six
Minute Mazes” [2, pp. 223-257], whereby each puzzle takes about 6 minutes to solve,
so that a player can have the fulfillment of solving ten different puzzles each hour. The
player typically spends two minutes assimilating and practicing a new and unfamil-
iar rule, two minutes exploring the network in earnest (sometimes “methodically” at
first, and increasingly playfully and experimentally), reaches an “Aha!” moment after
noticing a repeated pattern emerging, forms a hypothesis, tries it out, and in the final
two minutes solves the puzzle, feeling that he/she has actively contributed to his/her
achievement (rather than just reaching the goal by turning the final corner by accident).
It is the feeling of mastering a new rule (such as “jump like a Rook in Chess”) which
gives so much personal fulfillment; much more so than sticking to the same rule with
ever more complex manifestations of that same rule.

For Rook Jumping Mazes, one that has mastered the basic rook jumping rule begins
to notice puzzle structures that lead to heuristics that aid the puzzler in solving. For
example, in Figure 1, consider cells (1, 1), (1, 4), (4, 4), and (4, 1). The first three of
these cells form a same jump cluster. The only escape from these cells is through the
fourth. Thus, the puzzler should directly jump from (1, 1) to (4, 1). Initially, puzzlers
tend not to form immediately the abstract concept of a same jump cluster (or parity
generalizations involving integer multiples of jump numbers). However, the indepen-
dent formation of such an abstraction, and observation of how this enables the puzzler
to avoid suboptimal paths, provides a satisfying sense of learned competence.

5 Maze Variations

One may create variations of the simple Rook Jumping Maze in many ways.
One may vary tiling of the maze, using a different regular tilings, e.g., triangular or

hexagonal. Semiregular and other tilings present different interesting possibilities at the
risk of yielding movement instructions that are difficult for many to grasp.

Additional topological constraints may be added or removed, such as allowing
toroidal wrap-around grid boundaries, or creating additional graph connectivity as in
the abstract strategy board game Surakarta.15 Simple means of adding constraints in-
clude the addition of impassable walls between tiles, impassable tiles, or tiles which
may be passed over but cannot be a move destination.

Movement constraints may be varied as well. With the addition of diagonal moves
the Rook Jumping Maze becomes a Queen Jumping Maze. Abbott’s “no-U-turn” rule
increases state complexity so that the current state must be described as the product of
the row, the column, and the previous move direction.
15 http://en.wikipedia.org/wiki/Surakarta (game)

Many rich possibilities for creative variants exist, yet most of the design considera-
tions we outlined remain relevant through such variation.

6 Conclusion

We have described the Rook Jumping Maze, its history, and noted algorithms suitable
for generation of such mazes. The core creative work lies in observing features of Rook
Jumping Mazes, and expressing one’s subjective judgments about maze quality in an
objective function. To aid others in this endeavor, we have discussed several features
which are important design considerations, and provided an example of how these may
be used in concert to yield high-quality results. The interested reader may enjoy viewing
these results.16

References

1. Loyd, S.: Sam Loyd’s Cyclopedia of 5000 Puzzles, Tricks, and Conundrums with Answers.
(1914)

2. Fisher, A.: The Amazing Book of Mazes. Harry N. Abrams, Inc., New York, New York, USA
(2006)

3. Abbott, R.: Mad Mazes: Intriguing Mind Twisters for Puzzle Buffs, Game Nuts and Other
Smart People. Adams Media Corporation (1990)

4. Abbott, R.: Supermazes: Mind Twisters for Puzzle Buffs, Game Nuts, and Other Smart People.
Prima Publishing, Rocklin, CA (1997)

5. Hoos, H.H., Stützle, T.: Stochastic Local Search: foundations and applications. Morgan
Kaufmann, San Francisco (2005)

6. Neller, T.W.: Teaching stochastic local search. In: Proceedings of the 18th International
FLAIRS Conference (FLAIRS-2005), Clearwater Beach, Florida, May 15-17, 2005, Menlo
Park, CA, USA, AAAI Press (2005)

7. Fisher, A., Gerster, G.: The Art of the Maze. Weidenfeld & Nicolson, London, England (1990)

16 Rook Jumping Maze of the Day: http://cs.gettysburg.edu:8080/jumpmaze/

