
A Sharp PageRank Algorithm with Applications
to Edge Ranking and Graph Sparsification

Fan Chung and Wenbo Zhao

University of California, San Diego
La Jolla, CA 92093

{fan,w3zhao}@ucsd.edu

Abstract. We give an improved algorithm for computing personalized
PageRank vectors with tight error bounds which can be as small as
Ω(n−p) for any fixed positive integer p. The improved PageRank algo-
rithm is crucial for computing a quantitative ranking of edges in a given
graph. We will use the edge ranking to examine two interrelated problems
– graph sparsification and graph partitioning. We can combine the graph
sparsification and the partitioning algorithms using PageRank vectors to
derive an improved partitioning algorithm.

1 Introduction

PageRank, which was first introduced by Brin and Page [9], is at the heart
of Google’s web searching algorithms. Originally, PageRank was defined for the
Web graph (which has all webpages as vertices and hyperlinks as edges). For any
given graph, PageRank is well-defined and can be used for capturing quantitative
correlations between pairs of vertices as well as pairs of subsets of vertices.
In addition, PageRank vectors can be efficiently computed and approximated
(see [3, 4, 8, 13, 14]). The running time of the approximation algorithm in [3] for
computing a PageRank vector within an error bound of ε is basically O(1/ε).
For the problems that we will examine in this paper, it is quite crucial to have
a sharper error bound. In Section 2, we will give an improved approximation
algorithm with running time O(m log(1/ε)) to compute PageRank vectors within
an error bound of ε.

The PageRank is originally meant for determining the “importance” of ver-
tices in the Web graph. It is also essential to identify the “importance” of edges
in dealing with various problems. We will use PageRank vectors to define a
qualitative ranking of edges that we call Green values for edges because of its
connection with discrete Green functions. The Green values for edges can also be
viewed as a generalized version of effective resistances in electric network theory.
The detailed definition for Green values of edges will be given in Section 3. We
then use the sharp approximate PageRank algorithm to compute Green values
within sharp error bounds.

To illustrate the usage of Green values, we examine a basic problem on spar-
sifying graphs. Graph sparsification was first introduced by Benczúr and Karger

2

[7, 15–17] for approximately solving various network design problems. The heart
of the graph sparsification algorithms are the sampling techniques for randomly
selecting edges. The goal is to approximate a given graph G with m edges on n
vertices by a sparse graph G̃, called sparsifier, with O(n log n) edges (or fewer)
on the same set of vertices in such a way that every cut in sparsifier G̃ is within
a factor of (1± ε) of the corresponding cut in G for some constant ε > 0. It was
shown that, for all x ∈ {0, 1}n, |xTLx−xT L̃x| ≤ εxTLx, where L and L̃ are the
Laplacians of the graph G and its sparsifier G̃, respectively.

Spielman and Teng [24] devised a sampling scheme to construct a spectral
sparsifier with O(n logc n) edges for some (large) constant c in O(m polylog(n))
time. A spectral sparsifier G̃ for graph G is a sparsifier satisfying |xTLx −
xT L̃x| ≤ εxTLx for all x ∈ Rn. In [25] Spielman and Srivastava gave a dif-
ferent sampling scheme using the effective resistances of electrical networks to
construct an improved spectral sparsifier with only O(n log n) edges. In the pro-
cess for constructing this spectral sparsifier, they need to use the Spielman-Teng
solver [24] as subroutines for solving O(log n) linear systems. The running time
of their sparsification algorithm is mainly dominated by the running time of
Spielman-Teng solver which is O(m logc n) for a very large constant c [24]. Re-
cently, Batson, Spielman and Srivastava [6] gave an elegant construction for a
spectral sparsifier with a linear number of edges although the running time is
O(n3m). Here, we will use Green values to sample edges of G in order to form
the sparsifier G̃ with O(n log n) edges. There are two advantages of sampling
using PageRank and Green values. The running time of our sparsification al-
gorithm is significantly faster and simpler than those in [6, 24] since we avoid
using Spielman-Teng solver for solving linear system. In addition, the graph
sparsification problem is closely related to graph partitioning algorithms.

For graph partitioning algorithms, previously widely used approach is the re-
cursive spectral method which finds a balanced cut in a graph on n vertices with
running time O((n2/λ)polylog(n)) (see [23]), together with an approximation
guarantee within a quadratic root of the optimal conductance (where λ denotes
the spectral gap of the normalized Laplacian). The running time can be further
improved to O(n2polylog(n)) by using Spielman-Teng solver for linear systems
[24]. Another approach for the balanced cut problem is by using commodity
flows [2, 20]. In [2] the approximation guarantee is within a factor of log n of the
optimal, which was further reduced to O(

√
log n) in [5] but the running time

is still O(n2polylog(n)). In another direction, Spielman and Teng [24, 25] intro-
duced local graph partitioning which yields a cut near the specified seeds with
running time only depending on the volume of the output. Their local partition-
ing algorithm has an approximation guarantee similar to the spectral method by
using a mixing result on random walks [19]. Andersen, Chung and Lang [3] used
PageRank vectors to give a local partitioning algorithm with improved approxi-
mation guarantee and running time. Recently, Andersen and Peres use involving
sets instead of PageRank to further improved the running time [4].

Our balanced-cut algorithm consisting of two parts. First we use PageRank
vectors to sparsify the graph. Then we use the known PageRank partitioning

3

algorithm to find a balanced cut. Both parts have the same complexity as com-
puting the PageRank vectors. Consequently, the complexity for our PageRank
balanced-cut algorithm is O(m log2 n/φ+ n polylog(n)) for any input graph on
n vertices and m edges. The balanced-cut algorithm here can be viewed as an
application of graph sparsification.

In this paper, we omit the proofs for most of lemmas and theorems (except
Theorems 4, 5, and 7) which will be included in the full paper version.

2 A sharp PageRank approximation algorithm

We consider an undirected, weighted graph G = (V,E,w) with n vertices and m
edges where the edge weights w(u, v) = w(v, u) ≥ 0 and the edge set E consists
of all pairs (u, v) with w(u, v) > 0. The weighted degree d(u) of vertex u is the
sum of w(u, v) over all v, i.e., d(u) =

∑
v w(u, v).

A typical random walk is defined by its transition probability matrix P satis-
fying P (u, v) = w(u, v)/d(u). We may write P = D−1A, where A is the weighted
adjacency matrix satisfying A(u, v) = w(u, v) for all pairs of (u, v) ∈ E and D is
the diagonal matrix of weighted degree. We here consider the lazy walk Z on G,
defined by Z = (I +P)/2. In [3], PageRank vector pr is defined by a recurrence
relation involving a seed vector s (as a probability distribution) and a positive
jumping constant α < 1 (or transportation constant), i.e. pr = αs+ (1− α)prZ
where pr and s are taken to be row vectors. In this paper, we consider the PageR-
ank pr as a discrete Green’s function αs(I − (1−α)Z)−1 = βs(βI + L)−1 where
β = 2α/(1−α) and L = I−P . Note that the usual Green’s function is associated
with the pseudo inverse of L. Another way to express the recurrence of PageR-
ank in terms of β and s is that: for a positive value β > 0, the (personalized)
PageRank vector prβ,s with a seed vector s is the unique solution of equation
prβ,s = β

2+β s+ 2
2+βprβ,sZ. If a seed vector is the characteristic function χu of

a single vertex u, we may write prβ,χu = prβ,u if there is no confusion. It is easy
to check that

∑
v∈V prβ,s(v) = 1 since

∑
v∈V s(v) = 1.

The PageRank approximation algorithm in [3] contains the following rou-
tines, called Push and ApproximatePR, which serve as subroutines later in
the sharp approximate PageRank algorithm. Given a vertex u, an approximate
PageRank vector p and a residual vector r, the Push operation is as follows:

Push(u):
Let p′ = p and r′ = r, except for these changes:

1. let p′(u) = p(u) + β
2+β r(u) and r′(u) = r(u)

2+β ;
2. for each vertex v such that (u, v) ∈ E: r′(v) = r(v) + r(u)

(2+β)d(u) .

Lemma 1 ([3]). Let p′ and r′ denote the resulting vectors after performing
operation Push(u) with vectors p and r. Then p = prβ,s−r implies p′ = prβ,s−r′ .

Theorem 1 ([3]). For any vector s with ‖s‖1 ≤ 1, and any constant ε ∈ (0, 1],
the algorithm ApproximatePR(s, β, ε) computes an approximate PageRank

4

vector p = prβ,s−r such that the residual vector r satisfies |r(v)/d(v)| ≤ ε for all
v ∈ V . The running time of algorithm is O(2+β

εβ).

ApproximatePR(s, β, ε):
1. Let p = 0 and r = s.
2. While r(u) ≥ εd(u) for some vertex u:

pick any vertex u where r(u) ≥ εd(u) and apply operation Push(u).
3. Return p and r.

We will improve the estimate error bound for the above algorithm by the fol-
lowing iterative process.

SharpApproximatePR(s, β, ε):
1. Let ε′ = 1, r = s and p = 0.
2. While ε′ > ε :

(a) set ε′ = ε′/2;
(b) let p′ and r′ be the output of ApproximatePR(r, β, ε′);
(c) let p = p+ p′ and r = r′.

3. Return p and r.

Theorem 2. Given constants ε ∈ (0, 1], β > 0 and seed vector s, to approximate
PageRank vector prβ,s, the algorithm SharpApproximatePR(s, β, ε) computes
approximate PageRank vector p = prβ,s−r such that the residual vector r satisfies
|r(v)/d(v)| ≤ ε for all v ∈ V and the running time is O((2+β)m log(1/ε)

β). In
particular, if ε is an inverse of a polynomial on n with degree p, i.e. Ω(n−p), the
running time can be bounded by O(m logn

β).

3 The Green values for edges in a graph

Recall that the combinatorial Laplacian of G is defined by L = D − A. If we
orient the edges of G in an arbitrary but fixed way, we can write its Laplacian
as L = BTWB, where Wm×m is a diagonal matrix with W (e, e) = w(e) and
Bm×n is the signed edge-vertex incidence matrix such that B(e, v) = 1 for v is
e’s head; B(e, v) = −1 for v is e’s tail; and B(e, v) = 0 otherwise.

The normalized Laplacian of G is defined to be L = D−1/2LD−1/2 and we
can write L = STWS where Sm×n = BD−1/2. Since L is symmetric and we have
L =

∑n−1
i=0 λiφ

T
i φi, where λ0 = 0 < λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ 2 are eigenvalues

of L and φ0, . . . , φn−1 are a corresponding orthonormal basis of eigenvectors.
Various properties concerning eigenvalues of the normalized Laplacian can be
found in [10]. Denote the β-normalized Laplacian Lβ by βI + L, and we may
write Lβ = S′TWβS

′ where we define S′ and Wβ as follows:

S′ =
[
I
S

]
(n+m)×n

and Wβ =
[
βI 0
0 W

]
(n+m)×(n+m)

.

5

Here the index set for the columns of S′ and columns (rows) of Wβ is V ∪ E
where the first n columns (rows) are indexed by V and the last m columns (rows)
are indexed by E.

Green’s functions were firstly introduced in a celebrated essay by George
Green [12] in 1828. The discrete analog of Green’s functions which are associated
with the normalized Laplacian of graphs were considered in [11] in connection
with the study of Dirichlet eigenvalues with boundary conditions. In particular,
the following modified Green’s function Gβ was used in [11]. For β ∈ R+, let
Green’s function Gβ denote the symmetric matrix satisfying LβGβ = I. Clearly,
we have Gβ =

∑n−1
i=0

1
λi+β

φTi φi. We remark that the discrete Green’s function
is basically a symmetric form of the PageRank. Namely, it is straightforward to
check that prβ,s = βsD−1/2GβD1/2. For each edge e = {u, v} ∈ E, we define the
Green value gβ(u, v) of e to be a combination of four terms in PageRank vectors

gβ(u, v) =
prβ,u(u)
d(u)

−
prβ,u(v)
d(v)

+
prβ,v(v)
d(v)

−
prβ,v(u)
d(u)

. (1)

Actually, one can also verify that gβ(u, v) = β(χu−χv)D−1/2GβD−1/2(χu−χv)T .
By using the above properties of Green’s function, we can prove the following
facts which will be useful later.

Lemma 2. The Green value gβ(u, v) can be expressed as
∑n−1
i=0

β
λi+β

(φi(u)√
d(u)
−

φi(v)√
d(v)

)2. Particularly, for two distinct vertices u, v ∈ V , β
2+β

(
1

d(u) + 1
d(v)

)
≤

gβ(u, v) ≤ 1
d(u) + 1

d(v) .

Since the Green values are relatively small (e.g., of order Ω(1/np) as Lemma 2
for positive integer p), we need very sharply approximate PageRank to be within
a factor of 1 + O(1/np) of the exact values in the analysis of the performance
bound for the graph sparsification algorithms that we will examine in Section 4.
For all the pairs (u, v), we define the approximate Green value g̃β(u, v) by

g̃β(u, v) =
prβ,χu−rχu (u)

d(u)
−

prβ,χu−rχu (v)
d(v)

+
prβ,χv−rχv (v)

d(v)
−

prβ,χv−rχv (u)
d(u)

.

Here, prβ,χu−rχu and prβ,χu−rχu are the approximate PageRank vectors as out-
puts of ApproximatePR for prβ,u and prβ,v respectively; rχu and rχv are the
corresponding residual vectors satisfying ‖rχuD−1‖1 ≤ ε/4 and ‖rχvD−1‖1 ≤
ε/4. With this definition, we can prove that

Lemma 3. For two distinct vertices u, v ∈ V , we have |gβ(u, v)− g̃β(u, v)| ≤ ε.

Here we will give a rough estimate for computing Green’s values by directly
using Lemma 3 and Theorem 1. Note that by invoking Theorem 1 without using
further techniques the running time does not seem to be improved.

Theorem 3. Given any constant ε > 0 and any pair (u, v) ∈ V × V , the
approximate Green value g̃β(u, v) can be computed in O(2+β

βε) time such that

6

|gβ(u, v) − g̃β(u, v)| ≤ ε. In particular, after O((2+β)n
βε) preprocessing time, for

each (u, v) ∈ V × V , we can compute such g̃β(u, v) by using a constant number
of queries.

Recall that in Lemma 2, we established a lower bound for gβ(u, v). We denote
as ∆ the maximum degree of graph G. Then, a direct consequence of the above
theorem is the following.

Corollary 1. Given any constant ε > 0 and any pair (u, v) ∈ V × V , we
can compute quantity g̃β(u, v) in O(∆

β2ε) time such that |gβ(u, v)− g̃β(u, v)| ≤
εgβ(u, v). In particular, after O(∆nβ2ε) preprocessing time, for each (u, v) ∈ V ×V ,
we can compute such g̃β(u, v) by using a constant number of queries.

We will improve both Theorem 3 and Corollary 1 in the Section 5 by using sharp
approximate PageRank algorithms and dimension reduction techniques.

4 Graph sparsification using Green values

To construct our sparsifier, we use a method quite similar to the scheme used
by Spielman and Srivastava except that PageRank is used here instead of effec-
tive resistance. We will give three graph sparsification algorithms, two of which
involve approximate Green values (which will be examined in section 5). In this
section, we use exact Green values for edges.

Recall that the graph G = (V,E,w) we consider here is an undirected
weighted graph. For a subset S of vertices in G, the edge boundary ∂(S) of
S consists of all edges with exactly one endpoint in S. The weight of ∂(S), de-
noted by w(S, S̄), is the sum of all edge weights of edges in ∂(S). The volume
of S, denoted by vol(S), is defined to be the sum of degrees d(v) over all v in
S. When S = V , we write vol(S) = vol(G). The Cheeger ratio (or conductance)
hG(S) of S in G is defined by hG(S) = w(S, S̄)/min{vol(S), vol(S̄)}. The con-
ductance hG of G is defined to be the minimum Cheeger ratio among all subsets
S with vol(S) ≤ vol(G).

The goal of sparsification is to approximate a given graph G by a sparse
graph G̃ on the same set of vertices while the sparse graph G̃ preserves the
Cheeger ratios of every subset of vertices to within a factor of 1 ± ε. The main
step in any sparsification algorithm [7, 15–17, 24, 25] is to choose an appropriate
probability distribution for random sampling the edges in a way that Cheeger
ratios of subsets change little. Our sparsification algorithm is a sampling process
using probabilities proportional to the Green values gβ ’s as follows:

G̃ = SparsifyExactGreen(G, q, β):
For each e = (u, v) ∈ E, set probability pe ∝ w(e)gβ(e) and repeat the
following steps for q times:

1. Choose an edge e ∈ G randomly with probability pe
2. Add e to G̃ with weight w(e)/qpe.
3. Sum the weights if an edge is chosen more than once.

7

The analysis of the above algorithm will be examined in the following subsec-
tions. Our main theorem is the following

Theorem 4. Given an unweighed graph G on n vertices with m edges, for any
ε ∈ (0, 1), let G̃ denote the output of the algorithm SparsifyExactGreen(G, q, β),
where q = 256C2n log n/ε2, β = 1/2, C ≥ 1 is a absolute constant. Then with
probability at least 1/2, we have |hG̃(S)− hG(S)| ≤ ε for all S ⊂ V .

4.1 Analyzing the sparsifier

Our analysis follows the general scheme as that of [25]. In our analysis of spar-
sifier, we consider the matrix Λβ = W

1/2
β S′GβS′TW 1/2

β . Note that Λβ is a
(n + m) × (n + m) matrix and we index its the first n columns (rows) by V
and its last m columns (rows) by E. From the definition and properties of Green
values in Section 3, one can verify that Λβ(e, e) = 1

β

√
Wβ(e, e)gβ(e)

√
Wβ(e, e) =

1
βw(e)gβ(e). Here are several useful properties for Λβ .

Lemma 4. (i) Λ2
β = Λβ. (ii) The dimension (or rank) of Λβ, denoted by

dim(Λβ) is n. (iii) The eigenvalues of Λβ are 1 with multiplicity n and 0 with
multiplicity m. (iv) Λβ(e, e) = ‖Λβ(·, e)‖22.

Next, we introduce some notations and several lemmas that the theorems in
later sections rely on. Let w̃(e) be the edge weight of edge e in G̃. Recall that
q is a number and pe is the sampling probability for e ∈ E. Denote Iβ as a
nonnegative diagonal matrix

Iβ =
[
In×n 0

0 R

]
(n+m)×(n+m)

where R(e, e) =
w̃(e)
w(e)

=
of times e is sampled

qpe
.

Lemma 5. Suppose Iβ is a nonnegative diagonal matrix such that ‖ΛβIβΛβ −
ΛβΛβ‖2 ≤ ε. Then ∀x ∈ Rn, |xL̃βxT − xLβxT | ≤ εxLβxT where Lβ =
S′TWβS

′ and L̃β = S′TW
1/2
β IβW

1/2
β S′.

Lemma 6 ([22]). Let p be a probability distribution over Ω ⊆ Rd such that
supy∈Ω ‖y‖2 ≤ M and Ep‖yT y‖2 ≤ 1. Let y1 . . . yq be independently samples

drawn from p. Then for every 1 > ε > 0, P
{∥∥∥ 1

q

∑q
i=1 y

T
i yi − EyT y

∥∥∥
2
> ε
}
≤

2 exp(−ε2/a2), where a = min
(
CM

√
log q
q , 1

)
and C is an absolute constant.

4.2 Proof of Theorem 4

We first prove the following theorem which leads to the proof of Theorem 4.

Theorem 5. Let L be the normalized Laplacian of G and G̃ be the output of the
algorithm SparsifyExactGreen(G, q, β), where q = 4C2n log n/ε2, ε ∈ (0, 1]
and C is a absolute constant. Then with probability at least 1/2, we have ∀x ∈
Rn, |xL̃βxT − xLβxT | ≤ εxLβxT , where Lβ = βI + L = S′TWβS

′ and L̃β =
S′TW

1/2
β IβW

1/2
β S′.

8

Brief proof of Theorem 5: Before applying Lemmas 5 and Lemma 6 we ob-
serve that ΛβIβΛβ =

∑
e∈E R(e, e)Λβ(e, ·)TΛβ(e, ·) +

∑
v∈V Λβ(v, ·)TΛβ(v, ·)

and ΛβΛβ =
∑
e∈E Λβ(e, ·)TΛβ(e, ·) +

∑
v∈V Λβ(v, ·)TΛβ(v, ·). Thus we have

ΛβIβΛβ − ΛβΛβ =
∑
e∈E(R(e, e) − 1)Λβ(e, ·)TΛβ(e, ·). Now, let us consider∑

e∈E R(e, e)Λβ(e, ·)TΛβ(e, ·) which can be expressed as

∑
e∈E

of times e is sampled
qpe

Λβ(e, ·)TΛβ(e, ·) =
1
q

q∑
i=1

yTi yi

where y1, . . . , yq are random vectors drawn independently with replacement from
the distribution p defined by setting y = 1√

pe
Λβ(e, ·) with probability pe.

We also need to bound the norm of the expectation of yT y and the norm of
y. By using the properties of Λβ in Lemma 4, we can show that ‖Epy

T y‖2 ≤
1 and 1√

pe
‖Λβ(e, ·)‖2 ≤

√
n (details are omitted). Notice that if we let q =

4C2n log n/ε2 then we have min
(
CM

√
log q
q , 1

)
≤ C

√
ε2 n log(4C2n logn/ε2)

4C2n logn ≤
ε/2. By applying the Rudelson and Vershynin’s lemma in [22] (Lemma 6), we
completes the proof of the theorem.

ut
Before applying Theorem 5 to prove Theorem 4, we still need the following

two lemmas. We here consider G as an unweighted graph first, i.e w(e) = 1 for
all edges, although this can be easily extended to the general weighted graphs.

Lemma 7. For any constant ε ∈ (0, 1], let G̃ be the output of algorithm Spar-
sifyExactGreen (G, q, β), where q = 4C2n(β + 2) log n/ε2. Then, with proba-
bility 1− 1/n, for all subsets S ⊂ V , we have |volG̃(S)− volG(S)| ≤ εvolG(S).

Lemma 8. If sparse graph G̃ corresponding to graph G satisfies two conditions:
(a) for all x ∈ Rn, |xL̃βx− xLβxT | ≤ εxLβxT ; (b) for all subsets S ⊂ V ,
|volG̃(S)− volG(S)| ≤ εvolG(S). Then |hG̃(S)− hG(S)| ≤ 2εhG(S) + εβ.

Proof of Theorem 4: To prove Theorem 4, we need to combine Lemma 7, Lemma
8 and Theorem 5. For any 1 > ε > 0, let G̃ be the output of the algorithm
SparsifyExactGreen(G, q, β), where q = 256C2n log n/ε2, β = 1/2, and C ≥ 1
is a constant. By Theorem 5 and Lemma 7, the conditions of Lemma 8 are
satisfied with probability at least 1/2. Note that we have chosen β to be 1/2
and hG(S) ≤ 1, thus algorithm SparsifyExactGreen can be applied by using
O(n logn

ε2) sampling. Furthermore, for all S ∈ V , we have |hG̃(S)− hG(S)| ≤ ε.
ut

By choosing a different β, namely, β = φ/2, we have the following:

Theorem 6. Given constants ε, φ ∈ (0, 1], let G̃ be the output of the algorithm
SparsifyExactGreen(G, q, β), where q = 256C2n log n/ε2, β = φ/2, and C ≥
1. Then with probability at least 1/2, we have |hG̃(S)− hG(S)| ≤ εhG(S) for all
S ∈ V with hG(S) ≥ φ.

9

5 Sparsification using approximate PageRank vectors

In Corollary 1, we can compute approximate Green values g̃β(u, v) satisfying
(1 − κ)gβ(u, v) ≤ g̃β(u, v) ≤ (1 + κ)gβ(u, v) for all edges (u, v) ∈ E in O(∆n)
time, where κ is any absolute constant such that κ < 1 (e.g., κ = 0.01). Instead
of using exact Green values, we can use approximate Green values as we run the
algorithm SparsifyExactGreen. The approximate Green values g̃β ’s are combi-
nations of approximate PageRank vectors pr′β,v’s. Here we choose the parameters
for algorithm ApproximatePR: pr′β,v = ApproximatePR(χv, β, β

(2+β)∆κ). It
is not difficult to verify that all results in Section 4 will change at most by a con-
stant factor if we run the algorithm SparsifyExactGreen by using approximate
Green values as above. The performance guarantee and the number of sampled
edges in the Theorems 4 differ by at most a constant factor, although the com-
putational complexity will increase to O(∆n). In order to further improve the
running time, we use several methods in the following subsections.

5.1 Graph sparsification by using sharply approximate Green values

In order to have better error estimate of approximate Green values, we need
to improve the error estimate for approximate PageRank vectors in Theorem
1. We will use the strengthened approximate PageRank algorithm SharpAp-
proximatePR and the dimension reduction technique in [25] to approximate
the Green values by using these sharply approximate PageRank vectors produced
by SharpApproximatePR.

First, we recall that gβ(u, v) = β(χu−χv)D−1/2GβD−1/2(χu−χv)T and thus

gβ(u, v)

= β(χu − χv)D−1/2GβLβGβD−1/2(χu − χv)T

= β‖WβS
′GβD−1/2(χu − χv)T ‖22 =

1
β
‖WβS

′D1/2[βD−1/2GβD−1/2](χu − χv)T ‖22.

Therefore, gβ(u, v)’s are just pairwise distances between vectors {ZχTv }v∈V where
Z = WβS

′D1/2[βD−1/2GβD−1/2]. However, the dimension of the vectors in
{ZχTv }v∈V is m+ n. In order to reduce the computational complexity for com-
puting these vectors, we project these vectors into a lower dimensional space
while preserving their pairwise distances by the following lemma.

Lemma 9 ([1]). Given vectors x1, . . . , xn ∈ Rd and constants ε, γ > 0, let
k0 = cγ log n/ε2 where cγ is a constant depending on γ. For integer k ≥ k0, let
Rk×d be a random matrix where {Rij} are independent random variables with
values ±1/

√
k. Then with probability 1− 1

nγ , we have

(1− ε)||xi − xj ||22 ≤ ||Rxi −Rxj ||22 ≤ (1 + ε)||xi − xj ||22.

Now, we are ready to state our algorithm to approximate the Green values.
Later, in order to analysis our algorithm ApproxiamteGreen, we will give a
bound for yi’s by Lemma 10.

10

ApproxiamteGreen(β, ε, k):
1. Let Rk×(n+m) = [R1, R2] be a random matrix whose entries are

independent random variables with values ±1/
√
k, where R1 is an k × n

matrix and R2 is an k ×m matrix.
2. Let Y = RW

1/2
β S′D1/2 and Z̃ = RZ.

3. For i = 1, . . . , k, do the following
(a) Let yi be the ith row of Y and z̃i be the ith row of Z̃.
(b) Approximate z̃i by z̃i′ = SharpApproximatePR(yi, β, ε/nr).

4. Let Z̃ ′ be the approximated matrix for Z̃ whose rows are z̃1′, . . . , z̃k′.
For all (u, v) ∈ E, return g̃β(u, v) = ‖Z̃ ′(χu − χv)T ‖22.

Lemma 10. Given an integer k and a random matrix whose entries are inde-
pendent random variables with values ±1/

√
k, with probability 1−1/n2, we have

||yi||1 ≤ c(
∑
v∈V

√
d(v))

√
log n for 1 ≤ i ≤ k, where c is an absolute constant.

By combining the above lemmas and Theorem 2, we have the follow theorem.

Theorem 7. Given any constant ε > 0, let k = c log n/ε2. If β = Ω(poly(1/n)),
algorithm ApproxiamteGreen(β, ε, k) will output g̃β(u, v) satisfying |gβ(u, v)−
g̃β(u, v)| ≤ εgβ(u,v) in O(m log2 n

βε2) time.

Proof. To bound the running time, note that step 1 can be completed inO(m log n/ε)
time since R is a k×(n+m) random matrix. In step 2, we set Y = RW

1/2
β S′D1/2

and it only takes O(m log n/ε2) time since S′ has O(m) entries and W
1/2
β is a

diagonal matrix.
In step 3, Let yi be the ith row of Y and z̃i be the ith row of Z̃, i.e.,

(Y [βD−1/2GβD−1/2])k×n. Therefore, we have z̃i = yi[βD−1/2GβD−1/2] and we
can view z̃i as a scaled PageRank vector with seed vector yi.

In Lemma 10, we have proved that with probability at least 1−1/n, ‖yi‖1 =
O(
∑
v∈V

√
d(v) log n) for 1 ≤ i ≤ k. Without loss of generality, we may assume

O(
∑
v∈V

√
d(v) log n) = O(m) otherwise the graph is sufficient sparse. Thus, z̃i

can be approximated by using algorithm SharpApproximatePR with arbi-
trary small absolute error, say, ε′. Thus, each call of SharpApproximatePR
just takes O(m log(1/ε′)

β) time. By Lemma 2, gβ(u, v) = Ω(β/n) which implies
that we only need to set ε′ = ε/nr for some large enough but fixed constant
r. Thus, each call of SharpApproximatePR will actually take O(m log n/β)
time. Since there are k = O(log n/ε2) calls, the total running time of step 3 is
O(m log2 n/βε2).

In step 4, since each column of Z̃ ′ has k = O(log n/ε2) entries and there are
m edges, the running time of step 4 is O(m log n/ε2). The lemma then follows.

ut

G̃ = SparsifyApprGreen(G, q, β, ε):
1. For all (u, v) ∈ E, compute approximate Green values g̃β(e) by calling

ApproxiamteGreen (β, κ, k) where κ = 1/2 and k = c log n/ε2.
2. Apply SparsifyExactGreen(G, q, β) with approximate Green values.

11

Theorem 8. Given constants ε > 0, φ > 0 and a graph G on n vertices with m
edges, set q = 256C2n log n/ε2, β = φ/2, and let G̃ be the output of the algorithm
SparsifyApprGreen(G, q, β, ε). Then with probability at least 1/2, we have (i)
|hG̃(S) − hG(S)| ≤ εhG(S) for all S ∈ V satisfying hG(S) ≥ φ; (ii) Algorithm
SparsifyApprGreen can be performed by using O(m log2 n

φ) preprocessing time
and O(n logn

ε2) sampling.

The proof is quite similar to the analysis in Section 4 and will be omitted.

6 Partitioning using approximate PageRank vectors

In this section, we combine the graph sparsification and the partitioning algo-
rithms using PageRank vectors to derive an improved partitioning algorithm.

An application of our sparsification algorithm by PageRank is the balanced
cut problem. For a given graph G, we first use our sparsification algorithm to pre-
process the graph. Then we apply the local partitioning algorithm using PageR-
ank vectors [3, 4] on the sparsifier. Since the local partitioning algorithm is a
subroutine for the balance cut problem, we obtain a balanced cut algorithm
with an improved running time. Spielman and Teng [24] gave a local partition-
ing algorithm which, for a fixed value of φ, gives a cut with approximation ratio
O(φ1/2 log3/2 n) and of volume vφ in O(m logc(n)/φ−5/3) time where vφ is the
largest volume of the set with cheeger ratio φ. Note that he constant c above
is quite large [24]. In [3], PageRank vectors were used to derive a local parti-
tioning algorithm with an improved running time (m+ nφ−1)O(polylog(n)). In
[4], the running time was further reduced to O(m + nφ−1/2)O(polylog(n)) by
preprocessing using sparsification algorithms in [7].

Given an undirected, weighted graph G = (V,E,w) with n vertices and
m edges, we can apply algorithm SparsifyApprGreen as a preprocess pro-
cedure on graph G to get a sparsifier G̃ with only O(n log n/ε2) edges in time
O(m log2 n/φ) such that |hG̃(S) − hG(S)| ≤ εhG(S) for all S with hG(S) ≥ φ.
Then, we use the algorithm PageRank-Partition [3] on graph G̃ instead of
G for balanced cut problem. The algorithm PageRank-Partition has two in-
puts including a parameter φ and a graph with m edges. As stated in [3], the
PageRank-Partition algorithm has expected running time O(m log4m/φ2).
Furthermore, with high probability the PageRank-Partition algorithms was
shown to be able to find a set S, if exists, such that vol(S) ≥ vol(C)/2 and
hG(S) ≤ φ. This can be summarized as follows:

Theorem 9. Given an undirected, weighted graph G = (V,E,w) with n vertices
and m edges, constant φ > 0, and ε > 0. With probability 1/2, we can preprocess
graph G in O(m log2 n

φ) time to obtain a sparse graph G̃ with O(n logn
ε2) edges

such that for all S ∈ V satisfying hG(S) ≥ φ, |hG̃(S) − hG(S)| ≤ εhG(S).
Algorithm PageRank-Partition takes as inputs a parameter φ and a graph G̃
and has expected running time O(n log6m/(φ2ε2)). If there exists a set C with
hG(C) = O(φ2/log2n), then with high probability the PageRank-Partition
algorithm finds a set S such that vol(S) ≥ vol(C)/2 and hG(S) ≤ φ.

12

References

1. D. Achlioptas, Database-friendly random projections, PODS 01, 274–281.
2. S. Arora and S. Kale, A combinatorial, primal-dual approach to semidefinite pro-

grams, STOC 07, 227–236.
3. R. Andersen, F. Chung, and K. Lang, Local graph partitioning using pagerank

vectors, FOCS 06, 475–486.
4. R. Andersen and Y. Peres, Finding sparse cuts locally using evolving sets, STOC

09, 235–244.
5. S. Arora, E. Hazan, and S. Kale, Θ(

√
logn) approximation to sparsest cut in Õ(n2)

time, FOCS 04, 238–247.
6. J. Batson, D. A. Spielman, and N. Srivastava, Twice-Ramanujan sparsifiers, STOC

09, 255–262.
7. A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in Õ(n2) time,

STOC 96, 47–55.
8. P. Berkhin, Bookmark-coloring approach to personalized pagerank computing, In-

ternet Mathematics, 3(1), (2007), 41–62
9. S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine,

Computer Networks and ISDN Systems, 30(1-7), (1998), 107–117.
10. F. Chung, Spectal Graph Theory, AMS Publication, 1997.
11. F. Chung and S.-T. Yau, Discrete Green’s Functions, Journal of Combinatorial

Theory, Series A, 91(1-2)(2000), 191–214.
12. G. Green, An Essay on the Application of Mathematical Analysis to the Theories

of Electricity and Magnetism, Nottingham, 1828.
13. H. Haveliwala, Topic-sensitive pagerank: A context-sensitive ranking algorithm for

web search, IEEE Trans. Knowl. Data Eng., 15(4), (2003), 784–796.
14. G. Jeh and J. Widom, Scaling personalized web search, WWW 03, 271–279.
15. D. R. Karger, Random sampling in cut, flow, and network design problems, STOC

94, 648–657.
16. David R. Karger, Using randomized sparsification to approximate minimum cuts,

SODA 94, 424–432.
17. David R. Karger, Minimum cuts in near-linear time, JACM, 47(1), (2000), 46–76.
18. L. Loväsz, Random walks on graphs: A survey, Combinatorics, Paul Erdös is Eighty

2 (1993), 1–46.
19. L. Lovász and M. Simonovits, The mixing rate of Markov chains, an isoperimetric

inequality, and computing the volume, FOCS 90, 346–354.
20. L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi. On partitioning

graphs via single commodity flows, STOC 08, 461–470.
21. L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking:

Bringing order to the web, Technical report, Stanford Digital Library Technologies
Project, 1998.

22. M. Rudelson and R. Vershynin, Sampling from large matrices: An approach
through geometric functional analysis, Journal of the ACM, 54(4) (2007).

23. D. A. Spielman and S.-H. Teng. Spectral partitioning works: Planar graphs and
finite element meshes, FOCS 96, 96–105.

24. D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems. STOC 04, 81–90.

25. D. A. Spielman and N. Srivastava, Graph sparsification by effective resistances.
STOC 2008, 563–568.

