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Abstract. The number of triangles is a computationally expensive graph statistic which is frequently used in complex net-
work analysis (e.g., transitivity ratio), in various random graph models (e.g., exponential random graph model) and inim-
portant real world applications such as spam detection, uncovering of the hidden thematic structure of the Web and link
recommendation. Counting triangles in graphs with millions and billions of edges requires algorithms which run fast, use
small amount of space, provide accurate estimates of the number of triangles and preferably are parallelizable.
In this paper we present an efficient triangle counting algorithm which can be adapted to the semistreaming model [15].
The key idea of our algorithm is to combine the sampling algorithm of [34,35] and the partitioning of the set of vertices
into a high degree and a low degree subset respectively as in [2], treating each set appropriately. We obtain a running time

O
(

m+ m3/2∆ log n
tǫ2

)

and anǫ approximation (multiplicative error), wheren is the number of vertices,m the number of

edges and∆ the maximum number of triangles an edge is contained. Furthermore, we show how this algorithm can be adapted

to the semistreaming model with space usageO
(

m1/2 log n+ m3/2∆ log n
tǫ2

)

and a constant number of passes (three) over

the graph stream. We apply our methods in various networks with several millions of edges and we obtain excellent results.
Finally, we propose a random projection based method for triangle counting and provide a sufficient condition to obtain an
estimate with low variance.

1 Introduction

Graphs are ubiquitous: the Internet, the World Wide Web (WWW), social networks, protein interaction
networks and many other complicated structures are modeledas graphs [9]. The problem of counting
subgraphs is one of the typical graph mining tasks that has attracted a lot of attention. The most basic,
non-trivial subgraph, is the triangle. Given a simple, undirected graphG(V,E), a triangle is a three node
fully connected subgraph. Many social networks are abundant in triangles, since typically friends of friends
tend to become friends themselves [38]. This phenomenon is observed in other types of networks as well
(biological, online networks etc.) and is one of the main reasons which gave rise to the definitions of the
transitivity ratio and the clustering coefficients of a graph in complex network analysis [27]. Triangles are
used in several applications such as uncovering the hidden thematic structure of the web [13], as a feature
to assist the classification of web activity [5] and for link recommendation in online social networks [36].
Furthermore, triangles are used as a network statistic in the exponential random graph model [14].

In this paper, we propose a new triangle counting method which provides anǫ approximation to the

number of triangles in the graph and runs inO
(

m+ m3/2∆ logn
tǫ2

)

time, wheren is the number of vertices,

m the number of edges and∆ the maximum number of triangles an edge is contained. The keyidea of the
method is to combine the sampling scheme introduced by Tsourakakis et al. in [34,35] with the partitioning
idea of Alon, Yuster and Zwick [2] in order to obtain a more efficient sampling scheme. Furthermore, we
show that this method can be adapted to the semistreaming model with a constant number of passes and

O
(

m1/2 log n+ m3/2∆ logn
tǫ2

)

space. We apply our methods in various networks with severalmillions of

edges and we obtain excellent results both with respect to the accuracy and the running time. Furthermore,
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we optimize the cache properties of the code in order to obtain a significant additional speedup. Finally,
we propose a random projection based method for triangle counting and provide a sufficient condition to
obtain an estimate with low variance.

The paper is organized as follows: Section2 presents briefly the existing work and the theoretical
background, Section3 presents our proposed method and Section4 presents the experimental results on
several large graphs. In Section5 we provide a sufficient condition for obtaining a concentrated estimate of
the number of triangles using random projections and in Section 6 we conclude and provide new research
directions.

2 Preliminaries

In this section, we briefly present the existing work on the triangle counting problem and the necessary
theoretical background for our analysis, namely a version of the Chernoff bounded and the Johnson-
Lindenstrauss lemma. Table1 lists the symbols used in this paper.

2.1 Existing work

There exist two categories of triangle counting algorithms, the exact and the approximate. It is worth
noting that for the applications described in Section1 the exact number of triangles in not crucial. Thus,
approximate counting algorithms which are faster and output a high quality estimate are desirable for the
practical applications in which we are interested in this work.

The state of the art algorithm is due to Alon, Yuster and Zwick[2] and runs inO(m
2ω
ω+1 ), where

currently the fast matrix multiplication exponentω is 2.371 [10]. Thus, the Alon et al. algorithm currently
runs inO(m1.41) time. Algorithms based on matrix multiplication are not used in practice due to the high
memory requirements. Even for medium sized networks, matrix-multiplication based algorithms are not
applicable. In planar graphs, triangles can be found inO(n) time [17,28]. Furthermore, in [17] an algorithm
which finds a triangle in any graph inO(m

3
2 ) time is proposed. This algorithm can be extended to list the

triangles in the graph with the same time complexity. Even iflisting algorithms solve a more general
problem than the counting one, they are preferred in practice for large graphs, due to the smaller memory
requirements compared to the matrix multiplication based algorithms. Simple representative algorithms
are the node- and the edge-iterator algorithms. The former counts for each node number of triangles it’s
involved in, which is equivalent to the number of edges amongits neighbors, whereas in the latter, the
algorithm counts for each edge(i, j) the common neighbors of nodesi, j. Both of these algorithms have
the same asymptotic complexityO(mn), which in dense graphs results inO(n3) time, the complexity of
the naive counting algorithm. Practical improvements overthis family of algorithms have been achieved
using various techniques, such as hashing and sorting by thedegree [24,30].

On the approximate counting side, most of the triangle counting algorithms have been developed in
the streaming setting. In this scenario, the graph is represented as a stream. Two main representations of
a graph as a stream are the edge stream and the incidence stream. In the former, edges are arriving one at
a time. In the latter scenario all edges incident to the same vertex appear successively in the stream. The
ordering of the vertices is assumed to be arbitrary. A streaming algorithm produces a relativeǫ approxima-
tion of the number of triangles with high probability, making a constant number of passes over the stream.
However, sampling algorithms developed in the streaming literature can be applied in the setting where
the graph fits in the memory as well. Monte Carlo sampling techniques have been proposed to give a fast
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Symbol Definition

G([n], E) undirected simple graph withn vertices labeled
1, 2, .., n
and edge setE

m number of edges inG
t number of triangles inG

deg(u) degree of vertexu
∆(u, v) # triangles

containing verticesu andv
∆ maxe∈E(G) ∆(e)

p sparsification parameter

Table 1.Table of symbols

estimate of the number of triangles. According to such an approach, a.k.a. naive sampling [31], we choose
three nodes at random repetitively and check if they form a triangle or not. If one makes

r = log(
1

δ
)
1

ǫ2
(1 +

T0 + T1 + T2

T3
)

independent trials whereTi is the number of triples withi edges and outputs as the estimate of triangles
the random variableT ′

3 equaling to the fractions of triples picked that form triangles times the total number
of triples (

(

n
3

)

), then
(1− ǫ)T3 < T ′

3 < (1 + ǫ)T3

with probability at least1− δ. This is not suitable whenT3 = o(n2), which is often the case when dealing
with real-world networks.

In [4] the authors reduce the problem of triangle counting efficiently to estimating moments for a
stream of node triples. Then, they use the Alon-Matias-Szegedy algorithms [1] (a.k.a. AMS algorithms)
to proceed. The key is that the triangle computation reducesin estimating the zero-th, first and second fre-
quency moments, which can be done efficiently. Again, as in the naive sampling, the denser the graph the
better the approximation. The AMS algorithms are also used by [19], where simple sampling techniques
are used, such as choosing an edge from the stream at random and checking how many common neighbors
its two endpoints share considering the subsequent edges inthe stream. Along the same lines, [7] proposed
two space-bounded sampling algorithms to estimate the number of triangles. Again, the underlying sam-
pling procedures are simple. E.g., for the case of the edge stream representation, they sample randomly an
edge and a node in the stream and check if they form a triangle.Their algorithms are the state-of-the-art
algorithms to the best of our knowledge. The three-pass algorithm presented therein, counts in the first
pass the number of edges, in the second pass it samples uniformly at random an edge(i, j) and a node
k ∈ V − {i, j} and in the third pass it tests whether the edges(i, k), (k, j) are present in the stream. The
number of draws that have to be done in order to get concentration (these draws are done in parallel), is of
the order

r = log(
1

δ
)
2

ǫ2
(3 +

T1 + 2T2

T3
)

Even if the termT0 is missing compared to the naive sampling, the graph has still to be fairly dense
with respect to the number of triangles in order to get anǫ approximation with high probability. In the
case of “power-law” networks it was shown in [32] that the spectral counting of triangles can be efficient
due to their special spectral properties and [33] extended this idea using the randomized algorithm by
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[12] by proposing a simple biased node sampling. This algorithmcan be viewed as a special case of a
streaming algorithm, since there exist algorithms, e.g., [29], that perform a constant number of passes
over the non-zero elements of the matrix to produce a good lowrank matrix approximation. In [5] the
semi-streaming model for counting triangles is introduced, which allowslog n passes over the edges.
The key observation is that since counting triangles reduces to computing the intersection of two sets,
namely the induced neighborhoods of two adjacent nodes, ideas from locality sensitivity hashing [6] are
applicable to the problem. In [34] an algorithm which tosses a coin independently for each edge with
probability p to keep the edge and probabilityq = 1 − p to throw it away is proposed. It was shown
later by Tsourakakis, Kolountzakis and Miller [35] using a powerful theorem due to Kim and Vu [22] that
under mild conditions on the triangle density the method results in a strongly concentrated estimate on the
number of triangles. More recently, Avron proposed a new approximate triangle counting method based
on a randomized algorithm for trace estimation [3].

2.2 Concentration of Measure

In Section3 we make extensive use of the following version of the Chernoff bound [8].

Theorem 1. LetX1, X2, . . . , Xk be independently distributed{0, 1} variables withE[Xi] = p. Then for
anyǫ > 0, we have

Pr

[

|
1

k

k
∑

i=1

Xi − p| > ǫp

]

≤ 2e−ǫ2pk/2

2.3 Random Projections

A random projectonx → Rx fromR
d → R

k approximately preserves all Euclidean distances. One version
of the Johnson-Lindenstrauss lemma [18] is the following:

Lemma 1 (Johnson Lindenstrauss).Supposex1, . . . , xn ∈ R
d and ǫ > 0 and takek = Cǫ−2 log n.

Define the random matrixR ∈ R
k×n by taking allRi,j ∼ N(0, 1) (standard gaussian) and independent.

Then, with probability bounded below by a constant the pointsyj = Rxj ∈ R
k satisfy

(1− ǫ)|xi − xj | ≤ |yi − yj| ≤ (1 + ǫ)|xi − xj |

for i, j = 1, 2, . . . , n.

3 Proposed Method

Our algorithm combines two approaches that have been taken on triangle counting: sparsify the graph
by keeping a random subset of the edges [34,35] followed by a triple sampling using the idea of vertex
partitioning due to Alon, Yuster and Zwick [2].

3.1 Edge Sparsification

The following method was introduced in [34] and was shown to perform very well in practice: keep each
edge with probabilityp independently. Then for each triangle, the probability of it being kept isp3. So the
expected number of triangles left isp3t. This is an inexpensive way to reduce the size of the graph as it
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can be done in one pass over the edge list usingO(mp) random variables (more details can be found in
section4.2and [23]).

In a later analysis [35], it was shown that the number of triangles in the sampled graph is concentrated
around the actual triangle count as long asp3 ≥ Ω̃(∆

t
). Here we show a similar bound using more ele-

mentary techniques. Suppose we have a set ofk triangles such that no two share an edge, for each such
triangle we define a random variableXi which is1 if the triangle is kept by the sampling and0 otherwise.
Then as the triangles do not have any edges in common, theXis are independent and take value0 with
probability1− p3 and1 with probabilityp3. So by Chernoff bound, the concentration is bounded by:

Pr

[

|
1

k

k
∑

i=1

Xi − p3| > ǫp3

]

≤ 2e−ǫ2p3k/2

So whenp3kǫ2 ≥ 4d logn, the probability of sparsification returning anǫ-approximation is at least
1−n−d. This is equivalent top3k ≥ (4d logn)/(ǫ2), so to sample with smallp and throw out many edges,
we would likek to be large. To show that such a large set of independent triangles exist, we invoke the
Hajnal-Szemerédi Theorem [16]:

Lemma 2. (Hajnal-Szemeŕedi Theorem) Every graph withn vertices and maximum vertex degree at most
k is k + 1 colorable with all color classes of size at leastn/k.

We can apply this theorem by considering the graph where eachtriangle is a vertex and two vertices
representing trianglest1 andt2 are connected iff they have an edge in common. Then vertices in this graph
has degree at mostO(∆), and we get:

Corollary 1. Given t triangles where no edge belongs to more than∆ triangles, we can partition the
triangles intoS1 . . . Sl such that|Si| > Ω(t/∆) andl is bounded byO(∆).

We can now bound what values ofp can give concentration:

Theorem 2. If p3 ∈ Ω(d∆ logn
ǫ2t

), then with probability1 − nd−3, the sampled graph has a triangle count
that ǫ-approximatest.

Proof. Consider the partition of triangles given by corollary1. By choice ofp we get that the probability
that the triangle count in each set is preserved within a factor of ǫ/2 is at least1 − nd. Since there are at
mostn3 such sets, an application of the union bounds gives that their total is approximated within a factor
of ǫ/2 with probability at least1− nd−3. This gives that the triangle count is approximated within afactor
of ǫ with probability at least1− nd−3.

3.2 Triple Sampling

Since each triangle corresponds to a triple of vertices, we can construct a set of triples that include all
triangles,U . From this list, we can then sample some triples uniformly, let these samples be numbered
from 1 to s. Also, for theith triple sampled, letXi be 1 it is a triangle and0 otherwise. Since we pick
triples randomly fromU andt of them are triangles, we haveE(Xi) =

t
|U |

andXis are independent. So
by Chernoff bound we obtain:

Pr

[

|
1

s

s
∑

i=1

Xi −
t

|U |
| > ǫ

t

|U |

]

≤ 2e−ǫ2ts/(2|U |)
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So whens = Ω(|U |/t log n/ǫ2), we have(1
s

∑s
i=1Xi/s)|U | approximatest within a factor ofǫ with

probability at least1−n−d for anyd of our choice. As|U | ≤ n3, this immediately gives an algorithm with
runtimeO(n3 log n/(tǫ2)) that approximatest within a factor ofǫ. Slightly more careful bookkeeping can
also give tighter bounds on|U | in sparse graphs.

Consider a triple containing vertexu, (u, v, w). Sinceuv, uw ∈ E, we have the number of such triples
involvingu is at most deg(u)2. Also, asvw ∈ E, another bound on the number of such triples ism. When
deg(u)2 > m, or deg(u) > m1/2, the second bound is tighter, and the first is in the other case.

These two cases naturally suggest that low degree vertices with degree at mostm1/2 be treated sep-
arately from high degree vertices with degree greater thanm1/2. For the number of triangles around low
degree vertices, sincex2 is concave, the value of

∑

u deg(u)2 is maximized when all edges are concen-
trated in as few vertices as possible. Since the maximum degree of such a vertex ism1/2, the number of
such triangles is upper bounded bym1/2 · (m1/2)2 = m3/2. Also, as the sum of all degrees is2m, there can
be at most2m1/2 high degree vertices, which means the total number of triangles incident to these high
degree vertices is at most2m1/2 ·m = 2m3/2. Combing these bounds give that|U | can be upper bounded
by 3m3/2. Note that this bound is asymptotically tight whenG is a complete graph (n = m1/2). However,
in practice the second bound can be further reduced by summing over the degree of allv adjacent tou,
becoming

∑

uv∈E deg(v). As a result, an algorithm that implicitly constructsU by picking the better one
among these two cases by examining the degrees of all neighbors will achieve

|U | ≤ O(m3/2)

This better bound onU gives an algorithm thatǫ approximates the number of triangles in time:

O

(

m+
m3/2 log n

tǫ2

)

As our experimental data in section 4.1. indicate, the valueof t is usuallyΩ(m) in practice. In such
cases, the second term in the above calculation becomes negligible compared to the first one. In fact, in
most of our data, just sampling the first type of triples (aka.pretending all vertices are of low degree)
brings the second term below the first.

3.3 Hybrid algorithm

Edge sparsification with a probability ofp allows us to only work onO(mp) edges, therefore the total
runtime of the triple sampling algorithm after sparsification with probabilityp becomes:

O

(

mp +
(mp)3/2

ǫ2tp3

)

= O

(

mp +
mα

ǫ2tp3/2

)

As stated above, since the first term in most practical cases are much larger, we can set the value ofp
to balance these two terms out:

pm =
m3/2 log n

p3/2tǫ2

p5/2tǫ2 = m1/2 log n

p =

(

m1/2 logn

tǫ2

)2/5
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The actual value ofp picked would also depend heavily on constants in front of both terms, as sampling
is likely much less expensive due to factors such as cache effect and memory efficiency. Nevertheless, our
experimental results in section 4 does seem to indicate thatthis type of hybrid algorithms can perform
better in certain situations.

4 Experiments

4.1 Data

The graphs used in our experiments are shown in Table2. Multiple edges and self loops were removed (if
any).

Name Nodes EdgesTriangle CountDescription

AS-Skitter 1,696,415 11,095,298 28,769,868Autonomous Systems
Flickr 1,861,232 15,555,040 548,658,705Person to Person
Livejournal-links 5,284,457 48,709,772 310,876,909Person to Person
Orkut-links 3,072,626116,586,585 285,730,264Person to Person
Soc-LiveJournal 4,847,571 42,851,237 285,730,264Person to Person
Web-EDU 9,845,725 46,236,104 254,718,147Web Graph (page to page)
Web-Google 875,713 3,852,985 11,385,529Web Graph
Wikipedia 2005/111,634,989 18,540,589 44,667,095Web Graph (page to page)
Wikipedia 2006/9 2,983,494 35,048,115 84,018,183Web Graph (page to page)
Wikipedia 2006/113,148,440 37,043,456 88,823,817Web Graph (page to page)
Wikipedia 2007/2 3,566,907 42,375,911 102,434,918Web Graph (page to page)
Youtube[26] 1,157,822 2,990,442 4,945,382Person to Person

Table 2.Datasets used in our experiments.

4.2 Experimental Setup and Implementation Details

The experiments were performed on a single machine, with Intel Xeon CPU at 2.83 GHz, 6144KB cache
size and and 50GB of main memory. The graphs are from real world web-graphs, some details regarding
them are in the chart below. The algorithm as implemented in C++, and compiled using gcc version
4.1.2 and the -O3 optimization flag. Time was measured by taking the user time given by the linux time
command. IO times are included in that time since the amount of memory operations performend in setting
up the graph is non-trivial. However, we use a modified IO routine that’s much faster than the standard
C/C++ scanf.

A major optimization that we used was to sort the edges in the graph and store the input file in the
format as a sequence of neighbor lists per vertex. Each neighbor list begins with the size of the list,
followed by the neighbors. This is similar to how softwares such as Matlab store sparse matrices, and the
preprocessing time to change the data into this format is notcounted. It can significantly improve the cache
property of the graph stored, and therefore improving the performance.

Some implementation details can be based on this graph storage format. Since each triple that we
check already have 2 edges already in the graph, it suffices tocheck whether the 3rd edge in the graph.
This can be done offline by comparing a smaller list of edges against the initial edge list of the graph and
count the number of entries that they have in common. Once we sort the query list, the entire process can
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be done offline in one pass through the graph. This also means that instead of picking a pre-determined
sample rate for the triples, we can vary the sample rate for them so the number of queries is about the
same as the size of the graph. Finally, in the next section we discuss the details behind efficient binomial
sampling. Specifically picking a random subset of expected sizep|S| from a setS can be done in expected
sublinear time [23].

Binomial Sampling in Expected Sublinear time Most of our algorithms have the following routine in
their core: given a list of values, keep each of them with probability p and discard with probability1 − p.
If the list has lengthn, this can clearly be done usingn random variables. As generating random variables
can be expensive, it’s preferrable to useO(np) random variables in expectation if possible. One possibility
is to pickO(np) random elements, but this would likely involve random accesses in the list, or maintaining
a list of the indices picked in sorted order. A simple way thatwe use in our code to perform this sampling
is to generate the differences between indices of entries retained [23]. This variable clearly belongs to an
exponential distribution, and ifx is a uniform random number in(0, 1), taking⌈log(1−p) x⌉. The primary
advantage of doing so is that sampling can be done while accessing the data in a sequential fashion, which
results in much better cache performances.

4.3 Results

The six variants of the code involved in the experiment are first separated by whether the graph was first
sparsified by keeping each edge with probabilityp = 0.1. In either case, an exact algorithm based on hybrid
sampling with performance bounded byO(m3/2) is ran. Then two triple based sampling algorithms are
also considered. They differ in whether an attempt to distinguish between low and high degree vertices, so
the simple version is essentially sampling all ’V’ shaped triples off each vertex. Note that no sparsification
and exact also generates the exactly number of triangles. Errors are measured by the absolute value of the
difference between the value produced and the exact number of triangles divided by the exact number. The
results on error and running time are averages over five runs.Results on these graphs described above are,
the methods listed in the columns listed in Table3.

No Sparsification Sparsified (p = .1)
Graph Exact Simple Hybrid Exact Simple Hybrid

err(%) time err(%) time err(%) time err(%) time err(%) time err(%) time
AS-Skitter 0.000 4.452 1.308 0.746 0.128 1.204 2.188 0.641 3.208 0.651 1.388 0.877
Flickr 0.000 41.981 0.166 1.049 0.128 2.016 0.530 1.389 0.746 0.860 0.818 1.033
Livejournal-links 0.000 50.828 0.309 2.998 0.116 9.375 0.242 3.900 0.628 2.518 1.011 3.475
Orkut-links 0.000 202.012 0.564 6.208 0.286 21.328 0.172 9.881 1.980 5.322 0.761 7.227
Soc-LiveJournal 0.000 38.271 0.285 2.619 0.108 7.451 0.681 3.493 0.830 2.222 0.462 2.962
Web-EDU 0.000 8.502 0.157 2.631 0.047 3.300 0.571 2.864 0.771 2.354 0.383 2.732
Web-Google 0.000 1.599 0.286 0.379 0.045 0.740 1.112 0.251 1.262 0.371 0.264 0.265
Wiki-2005 0.000 32.472 0.976 1.197 0.318 3.613 1.249 1.529 7.498 1.025 0.695 1.313
Wiki-2006/9 0.000 86.623 0.886 2.250 0.361 7.483 0.402 3.431 6.209 1.843 2.091 2.598
Wiki-2006/11 0.000 96.114 1.915 2.362 0.530 7.972 0.634 3.578 4.050 1.947 0.950 2.778
Wiki-2007 0.000 122.395 0.943 2.728 0.178 9.268 0.819 4.407 3.099 2.224 1.448 3.196
Youtube 0.000 1.347 1.114 0.333 0.127 0.500 1.358 0.210 5.511 0.302 1.836 0.268

Table 3.Results of Experiments Averaged Over 5 Trials
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4.4 Remarks

From Table3 it is clear that none of the variants clearly outperforms theothers on all the data. The gain/loss
from sparsification are likely due to the fixed sampling rate,so varying it as in earlier works [34] are likely
to mitigate this discrepancy. The difference between simple and hybrid sampling are due to the fact that
handling the second case of triples has a much worse cache access pattern as it examines vertices that are
two hops away. There are alternative implementations of howto handle this situation, which would be
interesting for future implementations. A fixed sparsification rate ofp = 10% was used mostly to simplify
the setups of the experiments. In practice varyingp to look for a rate where the result stabalizes is the
preferred option [35].

When compared with previous results on this problem, the error rates and running times of our results
are all significantly lower. In fact, on the wiki graphs our exact counting algorithms have about the same
order of speed with other appoximate triangle counting implementations.

5 Theoretical Ramifications

5.1 Random Projections and Triangles

Consider any two verticesi, j ∈ V which are connected, i.e.,(i, j) ∈ E. Observe that the inner product of
thei-th andj-th column of the adjacency matrix of graphG gives the number of triangles that edge(i, j)
participates in. Viewing the adjacency matrix as a collection ofn points inRn, a natural question to ask is
whether we can use results from the theory of random projections [18] to reduce the dimensionality of the
points while preserving the inner products which contribute to the count of triangles. Magen and Zouzias
[25] have considered a similar problem, namely random projections which preserve approximately the
volume for all subsets of at mostk points.

According to the lemma1, a random projectonx → Rx from R
d → R

k approximately preserves all
Euclidean distances. However it does not preserve all pairwise inner products. This can easily be seen by
considering the set of points

e1, . . . , en ∈ R
n = R

d.

wheree1 = (1, 0, . . . , 0) etc. Indeed, all inner products of the above set are zero, which cannot happen
for the pointsRej as they belong to a lower dimensional space and they cannot all be orthogonal. For the
triangle counting problem we do not need to approximateall inner products. SupposeA ∈ {0, 1}n is the
adjacency matrix of a simple undirected graphG with vertex setV (G) = {1, 2, . . . , n} and writeAi for
thei-the column ofA. The quantity we are interested in is the number of trianglesin G (actually six times
the number of triangles)t =

∑

u,v,w∈V (G)AuvAvwAwu.

If we apply a random projection of the above kind to the columns of A Ai → RAi and writeX =
∑

u,v,w∈V (G)(RA)uv(RA)vw(RA)wu it is easy to see thatE [X ] = 0 sinceX is a linear combination of
triple productsRijRklRrs of entries of the random matrixR and that all such products have expected
value0, no matter what the indices. So we cannot expect this kind of random projection to work.
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Therefore we consider the following approach which still has limitations as we will show in the fol-
lowing. Let t =

∑

u∼v A
⊤
uAv, whereu ∼ v meansAuv = 1, and look at the quantity

Y =
∑

u∼v

(RAu)
⊤(RAv)

=

k
∑

l=1

n
∑

i,j=1

(

∑

u∼v

AiuAjv

)

RliRlj

=

k
∑

l=1

n
∑

i,j=1

#{i− ∗ − ∗ − j}RliRlj.

This is a quadratic form in the gaussianN(0, 1) variablesRij . By simple calculation for the mean value
and diagonalization for the variance we see that if theXj are independentN(0, 1) variables and

Z = X⊤BX,

whereX = (X1, . . . , Xn)
⊤ andB ∈ R

n×n is symmetric, that

E [Z] = TrB

Var [Z] = TrB2 =

n
∑

i,j=1

(Bij)
2.

HenceE [Y ] =
∑k

l=1

∑n
i=1#{i− ∗ − ∗ − i} = k · t so the mean value is the quantity we want (multi-

plied byk). For this to be useful we should have some concentration forY nearE [Y ]. We do not need
exponential tails because we have only one quantity to control. In particular, a statement of the following
type

Pr [|Y − E [Y ]| > ǫE [Y ]] < 1− cǫ,

wherecǫ > 0 would be enough. The simplest way to check this is by computing the standard deviation of
Y . By Chebyshev’s inequality it suffices that the standard deviation be much smaller thanE [Y ]. According
to the formula above for the variance of a quadratic form we get

Var [Y ] =

k
∑

l=1

n
∑

i,j=1

#{i− ∗ − ∗ − i}2

= C · k ·#{x− ∗ − ∗ − ∗ − ∗ − ∗ − x} =

= C · k · (number of circuits of length 6 inG).

Therefore, to have concentration it is sufficient that

Var [Y ] = o(k · (E [Y ])2). (1)

Observe that (1) is a sufficient -and not necessary- condition. Furthermore,(1) is certainly not always
true as there are graphs with many 6-circuits and no triangles at all (the circuitsmay repeat vertices or
edges).
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5.2 Sampling in the Semi-Streaming Model

The previous analysis of triangle counting by Alon, Yuster and Zwick was done in the streaming model
[2], where the assumption was constant space overhead. We showthat our sampling algorithm can be done
in a slightly weaker model with space usage equaling:

O

(

m1/2 log n+
m3/2 log n

tǫ2

)

We assume the edges adjacent to each vertex are given in order[15]. We first need to identify high de-
gree vertices, specifically the ones with degree higher thanm1/2. This can be done by samplingO(m1/2 log n)
edges and recording the vertices that are endpoints of one ofthose edges.

Lemma 3. Supposedm1/2 logn samples were taken, then the probability of all vertices with degree at
leastm1/2 being chosen is at least1− n−d+1.

Proof. Consider some vertexv with degree at leastm1/2. The probability of it being picked in each iter-
ation is at leastm1/2/m = m−1/2. As a result, the probability of it not picked indm1/2 log n iterations
is:

(1−m−1/2)dm
1/2 logn =

[

(1−m1/2)m
1/2
]d logn

≤

(

1

e

)d logn

= n−d

As there are at mostn vertices, applying union bound gives that all vertices withdegree at leastm1/2 are
sampled with probability at least1− n−d+1. ⊓⊔

This requires one pass of the graph. Note that the number of such candidates for high degree vertices
can be reduced tom1/2 using another pass over the edge list.

For all the low degree vertices, we can read theirO(m1/2) neighbors and sample them. For the high
degree vertices, we do the following: for each edge, obtain arandom variabley from a binomial distribution
equal to the number of edge/vertices pairs that this edge is involved in. Then picky vertices from the list
of high degree vertices randomly. These two sampling procedures can be done together in another pass
over the data.

Finally, we need to check whether each edge in the sampled triples belong to the edge list. We can
store all such queries into a hash table as there are at mostO(m

3/2 logn
tǫ2

) edges sampled w.h.p. Then going
through the graph edges in a single pass and looking them up intable yields the desired answer.

6 Conclusions & Future Work

In this work, we extended previous work [34,35] by introducing the powerful idea of Alon, Yuster and
Zwick [2]. Specifically, we propose a Monte Carlo algorithm which approximates the true number of

triangles withinǫ and runs inO
(

m+ m3/2 logn∆
tǫ2

)

time. Our method can be extended to the semi-streaming

model using three passes and a memory overhead ofO
(

m1/2 log n+ m3/2 logn∆
tǫ2

)

.

In practice our methods obtain excellent running times, typically few seconds for graphs with several
millions of edges. The accuracy is also satisfactory, especially for the type of applications we are concerned
with. Finally, we propose a random projection based method for triangle counting and provide a sufficient
condition to obtain an estimate with low variance. A naturalquestion is the following: can we provide
some reasonable condition onG that would guarantee (1)? Finally, since our proposed methods are easily
parallelizable, developing such an implementation in the MAPREDUCE framework, see [11] and [21,20],
is an natural practical direction.
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