arXiv:1011.0468v1 [cs.DS] 1 Nov 2010

Efficient Triangle Counting in Large Graphs via Degree-baséd
Vertex Partitioning

Mihail N. Kolountzakis, Gary L. Miller?, Richard Penty and Charalampos E. Tsourakakis

L Department of Mathematics, University of Crete, Greece
2 School of Computer Science, Carnegie Mellon UniversityAUS
kol ount @rat h. uoc. gr,gl m |l er@s. cnu. edu,yangp@s. cnu. edu, ct sour ak@rat h. cnu. edu
3 Deparment of Mathematical Sciences, Carnegie Mellon Usitye USA

Abstract. The number of triangles is a computationally expensive lyisptistic which is frequently used in complex net-
work analysis (e.g., transitivity ratio), in various ramd@raph models (e.g., exponential random graph model) aird-in
portant real world applications such as spam detectionpuering of the hidden thematic structure of the Web and link
recommendation. Counting triangles in graphs with miki@nd billions of edges requires algorithms which run fasg u
small amount of space, provide accurate estimates of théauaf triangles and preferably are parallelizable.

In this paper we present an efficient triangle counting atigor which can be adapted to the semistreaming moddl [
The key idea of our algorithm is to combine the sampling atbor of [34,35] and the partitioning of the set of vertices
into a high degree and a low degree subset respectively &%, imgating each set appropriately. We obtain a running time
(0] (m + 7”%/1#) and ane approximation (multiplicative error), whene is the number of verticesp the number of
edges and\ the maximum number of triangles an edge is contained. Runthe, we show how this algorithm can be adapted
to the semistreaming model with space usagem'/? logn + % and a constant number of passes (three) over
the graph stream. We apply our methods in various networis seiveral millions of edges and we obtain excellent results
Finally, we propose a random projection based method fangle counting and provide a sufficient condition to obtain a
estimate with low variance.

1 Introduction

Graphs are ubiquitous: the Internet, the World Wide Web (W)\V%dcial networks, protein interaction
networks and many other complicated structures are modealegtaphs<q]. The problem of counting
subgraphs is one of the typical graph mining tasks that Heascted a lot of attention. The most basic,
non-trivial subgraph, is the triangle. Given a simple, vedied graplZ(V, E), a triangle is a three node
fully connected subgraph. Many social networks are aburidamangles, since typically friends of friends
tend to become friends themselvés]| This phenomenon is observed in other types of networksedls w
(biological, online networks etc.) and is one of the mairsoges which gave rise to the definitions of the
transitivity ratio and the clustering coefficients of a drap complex network analysi€[]. Triangles are
used in several applications such as uncovering the hidasmatic structure of the weh ], as a feature
to assist the classification of web activity] pnd for link recommendation in online social networks]|
Furthermore, triangles are used as a network statisticiexponential random graph moda!].

In this paper, we propose a new triangle counting method lwprovides arx approximation to the

number of triangles in the graph and runsjr(m + % time, wheren is the number of vertices,

m the number of edges antlthe maximum number of triangles an edge is contained. Théleayof the
method is to combine the sampling scheme introduced by &kalis et al. in$4,35] with the partitioning
idea of Alon, Yuster and Zwickd] in order to obtain a more efficient sampling scheme. Funtioee, we
show that this method can be adapted to the semistreaminglwiti a constant number of passes and

O <m1/2 logn + %) space. We apply our methods in various networks with seveiiibns of

edges and we obtain excellent results both with respecetacburacy and the running time. Furthermore,
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we optimize the cache properties of the code in order to plataignificant additional speedup. Finally,
we propose a random projection based method for triangletoauand provide a sufficient condition to
obtain an estimate with low variance.

The paper is organized as follows: Sectdmpresents briefly the existing work and the theoretical
background, SectioB presents our proposed method and Seclignesents the experimental results on
several large graphs. In Sectibmve provide a sufficient condition for obtaining a concergdagstimate of
the number of triangles using random projections and ini@e6twe conclude and provide new research
directions.

2 Preliminaries

In this section, we briefly present the existing work on thantyle counting problem and the necessary
theoretical background for our analysis, namely a versibthe Chernoff bounded and the Johnson-
Lindenstrauss lemma. Tahldists the symbols used in this paper.

2.1 Existing work

There exist two categories of triangle counting algoriththe exact and the approximate. It is worth
noting that for the applications described in Sectlaime exact number of triangles in not crucial. Thus,
approximate counting algorithms which are faster and duapghigh quality estimate are desirable for the
practical applications in which we are interested in thiskvo

The state of the art algorithm is due to Alon, Yuster and Zwji¢kand runs inO(mw%), where
currently the fast matrix multiplication exponenis 2.371 [L(]. Thus, the Alon et al. algorithm currently
runs inO(m!4!) time. Algorithms based on matrix multiplication are notdise practice due to the high
memory requirements. Even for medium sized networks, matltiplication based algorithms are not
applicable. In planar graphs, triangles can be four@(im) time [17,28]. Furthermore, in] 7] an algorithm
which finds a triangle in any graph (ﬂ(m%) time is proposed. This algorithm can be extended to list the
triangles in the graph with the same time complexity. Evelisting algorithms solve a more general
problem than the counting one, they are preferred in pradticlarge graphs, due to the smaller memory
requirements compared to the matrix multiplication badgdrahms. Simple representative algorithms
are the node- and the edge-iterator algorithms. The foriments for each node number of triangles it’s
involved in, which is equivalent to the number of edges amibmgeighbors, whereas in the latter, the
algorithm counts for each edge j) the common neighbors of nodésg. Both of these algorithms have
the same asymptotic complexi€y(mn), which in dense graphs resultsdnn?) time, the complexity of
the naive counting algorithm. Practical improvements dkiex family of algorithms have been achieved
using various techniques, such as hashing and sorting etiree P4,30].

On the approximate counting side, most of the triangle dogrdlgorithms have been developed in
the streaming setting. In this scenario, the graph is reptes as a stream. Two main representations of
a graph as a stream are the edge stream and the incidence.dtré¢he former, edges are arriving one at
a time. In the latter scenario all edges incident to the saanex appear successively in the stream. The
ordering of the vertices is assumed to be arbitrary. A stiegiagorithm produces a relativeapproxima-
tion of the number of triangles with high probability, magia constant number of passes over the stream.
However, sampling algorithms developed in the streamitegdture can be applied in the setting where
the graph fits in the memory as well. Monte Carlo samplingnegplines have been proposed to give a fast



Symbol [Definition

G([n], F)|undirected simple graph with vertices labeled
1,2,..,n
and edge sell

m number of edges itr

t number of triangles it
deg(u) |degree of vertex
A(u,v) |# triangles
containing vertices andv
A max.cpe) Ale)
P sparsification parameter

Table 1. Table of symbols

estimate of the number of triangles. According to such amaggh, a.k.a. naive samplingl], we choose
three nodes at random repetitively and check if they forneagie or not. If one makes

1.1 To + 11 + T
rzlog(—)—2(1+M

0’ € T3 )

independent trials wherg is the number of triples witlh edges and outputs as the estimate of triangles
the random variabl&} equaling to the fractions of triples picked that form tritesgtimes the total number
of triples ((3)), then

1—eT3<Ty<(1+6e)T;

with probability at least — 4. This is not suitable whei; = o(n?), which is often the case when dealing
with real-world networks.

In [4] the authors reduce the problem of triangle counting effityeto estimating moments for a
stream of node triples. Then, they use the Alon-Matias-8dg@lgorithms ] (a.k.a. AMS algorithms)
to proceed. The key is that the triangle computation redurcestimating the zero-th, first and second fre-
guency moments, which can be done efficiently. Again, asemtiive sampling, the denser the graph the
better the approximation. The AMS algorithms are also useld §], where simple sampling techniques
are used, such as choosing an edge from the stream at randarhextking how many common neighbors
its two endpoints share considering the subsequent edgfes stream. Along the same lines] proposed
two space-bounded sampling algorithms to estimate the auoflriangles. Again, the underlying sam-
pling procedures are simple. E.g., for the case of the edgarstrepresentation, they sample randomly an
edge and a node in the stream and check if they form a triamgksr algorithms are the state-of-the-art
algorithms to the best of our knowledge. The three-passiéhgo presented therein, counts in the first
pass the number of edges, in the second pass it samplesmlyifat random an edgg, j) and a node
k € V —{i,7} and in the third pass it tests whether the edgek), (k, j) are present in the stream. The
number of draws that have to be done in order to get concanrir@hese draws are done in parallel), is of

the order
T + 215

T3 )
Even if the termTj is missing compared to the naive sampling, the graph hddatie fairly dense
with respect to the number of triangles in order to getapproximation with high probability. In the

case of “power-law” networks it was shown ia7 that the spectral counting of triangles can be efficient
due to their special spectral properties afid] [extended this idea using the randomized algorithm by

1.2
2
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[17] by proposing a simple biased node sampling. This algoritiam be viewed as a special case of a
streaming algorithm, since there exist algorithms, ef], [that perform a constant number of passes
over the non-zero elements of the matrix to produce a goodrémk matrix approximation. In5] the
semi-streaming model for counting triangles is introdyostich allowslogn passes over the edges.
The key observation is that since counting triangles resitcecomputing the intersection of two sets,
namely the induced neighborhoods of two adjacent nodeasiffem locality sensitivity hashing] are
applicable to the problem. Ir3f] an algorithm which tosses a coin independently for eacte eslith
probability p to keep the edge and probabiligy= 1 — p to throw it away is proposed. It was shown
later by Tsourakakis, Kolountzakis and Miller] using a powerful theorem due to Kim and 1] that
under mild conditions on the triangle density the methodltesn a strongly concentrated estimate on the
number of triangles. More recently, Avron proposed a new@pmate triangle counting method based
on a randomized algorithm for trace estimatiGh [

2.2 Concentration of Measure

In Section3 we make extensive use of the following version of the Chdrpodind (].

Theorem 1. Let X1, X», ..., X} be independently distributeld, 1} variables withE[X;] = p. Then for
anye > 0, we have

Pr < Qe Pk/2

k
1
|E;Xi_p| > €p

2.3 Random Projections

Arandom projecton — Rx fromR? — R* approximately preserves all Euclidean distances. Onéovers
of the Johnson-Lindenstrauss lemmad]|is the following:

Lemma 1 (Johnson Lindenstrauss)Supposer;,...,z, € R?ande > 0 and takek = Ce?logn.
Define the random matri® € R**" by taking allR; ; ~ N(0, 1) (standard gaussian) and independent.
Then, with probability bounded below by a constant the pojpt= Rz; € R” satisfy

(1 =)z — 5] < lyi —ys| < (L + )i — a4

fori,j=1,2,...,n.

3 Proposed Method

Our algorithm combines two approaches that have been takdénamgle counting: sparsify the graph
by keeping a random subset of the edde$§i5] followed by a triple sampling using the idea of vertex
partitioning due to Alon, Yuster and Zwick].

3.1 Edge Sparsification

The following method was introduced i4] and was shown to perform very well in practice: keep each
edge with probability) independently. Then for each triangle, the probabilityt diding kept is®. So the
expected number of triangles leftzdt. This is an inexpensive way to reduce the size of the graph as i



can be done in one pass over the edge list uéifgp) random variables (more details can be found in
sectiond.2and [23)).

In a later analysisd5], it was shown that the number of triangles in the sampleglgraconcentrated
around the actual triangle count as longpas> f?(%). Here we show a similar bound using more ele-
mentary techniques. Suppose we have a séttaaingles such that no two share an edge, for each such
triangle we define a random variable which is1 if the triangle is kept by the sampling afiebtherwise.
Then as the triangles do not have any edges in common¥ thare independent and take valuwith
probability1 — p3 and1 with probabilityp®. So by Chernoff bound, the concentration is bounded by:

Pr < Qe P k)2

k

1

|E ZXi —p’| > p?
i=1

So whenp3ke? > 4dlogn, the probability of sparsification returning arapproximation is at least
1 —n~4. This is equivalent tp®k > (4dlogn)/(€*), so to sample with small and throw out many edges,
we would likek to be large. To show that such a large set of independengtearexist, we invoke the
Hajnal-Szemerédi Theoremd]:

Lemma 2. (Hajnal-Szemexdi Theorem) Every graph withvertices and maximum vertex degree at most
kis k + 1 colorable with all color classes of size at leastk.

We can apply this theorem by considering the graph where ti@igle is a vertex and two vertices
representing triangles andt, are connected iff they have an edge in common. Then vertidbss graph
has degree at moét(A), and we get:

Corollary 1. Givent triangles where no edge belongs to more thartriangles, we can partition the
triangles intoS; . .. .S; such thatS;| > 2(t/A) and! is bounded by)(A).

We can now bound what values@tan give concentration:

Theorem 2. If p? € Q(‘“j%), then with probabilityl — n¢=3, the sampled graph has a triangle count
that e-approximates.

Proof. Consider the partition of triangles given by corolldryBy choice ofp we get that the probability
that the triangle count in each set is preserved within afaafte/2 is at leastl — n¢. Since there are at
mostn? such sets, an application of the union bounds gives thatttbtai is approximated within a factor
of /2 with probability at least — n?~3. This gives that the triangle count is approximated withfactor
of € with probability at least — n¢=3.

3.2 Triple Sampling

Since each triangle corresponds to a triple of vertices, aveaonstruct a set of triples that include all
triangles,U. From this list, we can then sample some triples uniforndytthese samples be numbered
from 1 to s. Also, for thei'” triple sampled, let\; be 1 it is a triangle and) otherwise. Since we pick
triples randomly fromJ and¢ of them are triangles, we have(X;) = ﬁ and X;s are independent. So
by Chernoff bound we obtain:
I~y bt ~ts/(2IU])
Pr ‘s ;XZ |U|| > €|U| < 2e



So whens = 2(|U|/tlogn/€e?), we have(2 "7 | X;/s)|U| approximates within a factor ofe with
probability at least —n~¢ for anyd of our choice. A3U| < n?, this immediately gives an algorithm with
runtimeO(n?log n/(te*)) that approximateswithin a factor ofe. Slightly more careful bookkeeping can
also give tighter bounds diV| in sparse graphs.

Consider a triple containing vertex (u, v, w). Sinceuv, uw € F, we have the number of such triples
involving v is at most defy)?. Also, asvw € E, another bound on the number of such triples.isVhen
degu)? > m, or dequ) > m'/?, the second bound is tighter, and the first is in the other.case

These two cases naturally suggest that low degree vertiiteslagree at most:'/? be treated sep-
arately from high degree vertices with degree greater th&f. For the number of triangles around low
degree vertices, sincé& is concave, the value of, degu)? is maximized when all edges are concen-
trated in as few vertices as possible. Since the maximunmedegfrsuch a vertex is:'/?, the number of
such triangles is upper boundedy’? - (m'/?)? = m3/2. Also, as the sum of all degreeslis, there can
be at mos2m!/? high degree vertices, which means the total number of tiésnigcident to these high
degree vertices is at maatn'/? - m = 2m?*2. Combing these bounds give that| can be upper bounded
by 3m?/2. Note that this bound is asymptotically tight whéris a complete grapm(= m'/?). However,
in practice the second bound can be further reduced by sugnovier the degree of all adjacent tou,
becoming}_ . dedv). As a result, an algorithm that implicitly construdfsby picking the better one
among these two cases by examining the degrees of all neghililbachieve

U] < O(m??)
This better bound oy gives an algorithm thatapproximates the number of triangles in time:
3/2 1
O(m+ 281
te?

As our experimental data in section 4.1. indicate, the vafueis usually(2(m) in practice. In such
cases, the second term in the above calculation becomeagibhgtompared to the first one. In fact, in
most of our data, just sampling the first type of triples (gka&tending all vertices are of low degree)
brings the second term below the first.

3.3 Hybrid algorithm

Edge sparsification with a probability gfallows us to only work orO(mp) edges, therefore the total
runtime of the triple sampling algorithm after sparsifioatwith probabilityp becomes:

(mp)3/2 B me
@] <mp + gy i =0 (mp+ gy 12

As stated above, since the first term in most practical cagesach larger, we can set the valuepof
to balance these two terms out:

m?3/?logn
p3/2te?
p°?te? = m'?logn

m*/?logn 2/
= (")

pm =



The actual value gf picked would also depend heavily on constants in front dfi betms, as sampling
is likely much less expensive due to factors such as cachetefhd memory efficiency. Nevertheless, our
experimental results in section 4 does seem to indicatethiatype of hybrid algorithms can perform
better in certain situations.

4 Experiments

4.1 Data

The graphs used in our experiments are shown in TalN&ultiple edges and self loops were removed (if
any).

Name | Nodes Edge$Triangle CounfDescription

AS-Skitter 1,696,41% 11,095,298 28,769,868Autonomous Systems
Flickr 1,861,232 15,555,040 548,658,708Person to Person
Livejournal-links |5,284,457 48,709,772 310,876,90%Person to Person
Orkut-links 3,072,626116,586,585 285,730,26¢/Person to Person
Soc-LiveJournal 4,847,571 42,851,237 285,730,26/Person to Person
Web-EDU 9,845,72% 46,236,104 254,718,14WNeb Graph (page to page)
Web-Google 875,713 3,852,981 11,385,529%Web Graph

Wikipedia 2005/111,634,989 18,540,58
Wikipedia 2006/9[2,983,494 35,048,11
Wikipedia 2006/113,148,440 37,043,45
Wikipedia 2007/2 3,566,907 42,375,91
Youtubepd] 1,157,822 2,990,44]

44,667,09BWeb Graph (page to page)
84,018,18B8W\eb Graph (page to page)
88,823,81Web Graph (page to page)
102,434,918Neb Graph (page to page)
4,945,382Person to Person

PO T O O OT O =N oOioTo

Table 2. Datasets used in our experiments.

4.2 Experimental Setup and Implementation Details

The experiments were performed on a single machine, with X¢on CPU at 2.83 GHz, 6144KB cache
size and and 50GB of main memory. The graphs are from reabiwgeb-graphs, some details regarding
them are in the chart below. The algorithm as implemented+s,@Gnd compiled using gcc version
4.1.2 and the -O3 optimization flag. Time was measured by¢altie user time given by the linux time
command. 10 times are included in that time since the amdumeonory operations performend in setting
up the graph is non-trivial. However, we use a modified 10 irmuthat’s much faster than the standard
C/C++ scanf.

A major optimization that we used was to sort the edges in thplgand store the input file in the
format as a sequence of neighbor lists per vertex. Each beidist begins with the size of the list,
followed by the neighbors. This is similar to how softwarastsas Matlab store sparse matrices, and the
preprocessing time to change the data into this format ismatted. It can significantly improve the cache
property of the graph stored, and therefore improving thifopmance.

Some implementation details can be based on this graphgstéoamat. Since each triple that we
check already have 2 edges already in the graph, it sufficeksdck whether the 3rd edge in the graph.
This can be done offline by comparing a smaller list of edgesnatythe initial edge list of the graph and
count the number of entries that they have in common. Onceovigl®e query list, the entire process can



be done offline in one pass through the graph. This also méanh#stead of picking a pre-determined
sample rate for the triples, we can vary the sample rate fantho the number of queries is about the
same as the size of the graph. Finally, in the next sectionisaiss the details behind efficient binomial
sampling. Specifically picking a random subset of expedszh$S| from a setS can be done in expected
sublinear time 23].

Binomial Sampling in Expected Sublinear time Most of our algorithms have the following routine in
their core: given a list of values, keep each of them with pllity »p and discard with probability — p.

If the list has length, this can clearly be done usimgrandom variables. As generating random variables
can be expensive, it’s preferrable to Uge:p) random variables in expectation if possible. One possgibili
is to pickO(np) random elements, but this would likely involve random asessn the list, or maintaining

a list of the indices picked in sorted order. A simple way thatuse in our code to perform this sampling
is to generate the differences between indices of entriagesl P3]. This variable clearly belongs to an
exponential distribution, and if is a uniform random number if9, 1), taking [log(,_,, #|. The primary
advantage of doing so is that sampling can be done while siocethe data in a sequential fashion, which
results in much better cache performances.

4.3 Results

The six variants of the code involved in the experiment ast ieparated by whether the graph was first
sparsified by keeping each edge with probabijlity 0.1. In either case, an exact algorithm based on hybrid
sampling with performance bounded B)m?/?) is ran. Then two triple based sampling algorithms are
also considered. They differ in whether an attempt to digtish between low and high degree vertices, so
the simple version is essentially sampling all 'V’ shapeplés off each vertex. Note that no sparsification
and exact also generates the exactly number of trianglessEare measured by the absolute value of the
difference between the value produced and the exact nuritra&argles divided by the exact number. The
results on error and running time are averages over five Results on these graphs described above are,
the methods listed in the columns listed in TaBle

No Sparsification Sparsifiedf = .1)

Graph Exact Simple Hybrid Exact Simple Hybrid

err(%) time |err(%) time|err(%) time |err(%) time |err(%) time |err(%) time
AS-Skitter 0.000| 4.452 |1.308|0.746 0.128| 1.204| 2.188|0.641 3.208|0.651 1.388|0.877
Flickr 0.000| 41.981|0.166|1.049 0.128| 2.016| 0.530|1.389 0.746|0.86( 0.818|1.033
Livejournal-links | 0.000| 50.828| 0.309/2.994 0.116| 9.375| 0.242|3.900 0.628|2.518 1.011|3.475
Orkut-links 0.000|202.012 0.564(6.208 0.286|21.328 0.172|9.881 1.980|5.322 0.761|7.227
Soc-LiveJournal |0.000| 38.271|0.285(2.619 0.108| 7.451| 0.681|3.493 0.830|2.222 0.462|2.962
Web-EDU 0.000| 8.502 |0.157|2.631 0.047| 3.300|0.571|2.864 0.771|2.354 0.383|2.732
Web-Google 0.000| 1.599 |0.286|0.379 0.045| 0.740| 1.112|0.251 1.262|0.371 0.264|0.265
Wiki-2005 0.000| 32.472(0.976|1.197 0.318| 3.613| 1.249|1.529 7.498|1.025 0.695|1.313
Wiki-2006/9 0.000| 86.623| 0.886|2.250 0.361| 7.483| 0.402|3.431 6.209|1.843 2.091|2.599
Wiki-2006/11 0.000| 96.1141.915|2.364 0.530| 7.972| 0.634(3.574 4.050|1.947 0.950|2.778
Wiki-2007 0.000|122.39%0.943|2.728 0.178| 9.268| 0.819|4.407 3.099|2.224 1.448|3.196
Youtube 0.000| 1.347 |1.114|0.3330.127| 0.500| 1.358|0.210 5.511|0.302 1.836|0.268

Table 3. Results of Experiments Averaged Over 5 Trials



4.4 Remarks

From Table3 it is clear that none of the variants clearly outperformsitiers on all the data. The gain/loss
from sparsification are likely due to the fixed sampling rateyarying it as in earlier works:fl] are likely

to mitigate this discrepancy. The difference between snapld hybrid sampling are due to the fact that
handling the second case of triples has a much worse cacbssagattern as it examines vertices that are
two hops away. There are alternative implementations of teohandle this situation, which would be
interesting for future implementations. A fixed sparsifigcatate ofp = 10% was used mostly to simplify
the setups of the experiments. In practice varying look for a rate where the result stabalizes is the
preferred option35.

When compared with previous results on this problem, ther eates and running times of our results
are all significantly lower. In fact, on the wiki graphs ouaek counting algorithms have about the same
order of speed with other appoximate triangle counting enntations.

5 Theoretical Ramifications

5.1 Random Projections and Triangles

Consider any two vertices;j € V which are connected, i.€4, j) € E. Observe that the inner product of
thei-th andj-th column of the adjacency matrix of graghgives the number of triangles that eddej)
participates in. Viewing the adjacency matrix as a coletofn points inR”, a natural question to ask is
whether we can use results from the theory of random projes{iLS] to reduce the dimensionality of the
points while preserving the inner products which contriatthe count of triangles. Magen and Zouzias
[25] have considered a similar problem, namely random praastwhich preserve approximately the
volume for all subsets of at moktpoints.

According to the lemma4, a random projecton — Rx from R¢ — R* approximately preserves all
Euclidean distances. However it does not preserve all pg@@rimner products. This can easily be seen by
considering the set of points

ey,...,en € R" =R

wheree; = (1,0,...,0) etc. Indeed, all inner products of the above set are zerashwdannot happen
for the pointsRe; as they belong to a lower dimensional space and they canrim althogonal. For the
triangle counting problem we do not need to approxinaditénner products. Supposé € {0,1}" is the
adjacency matrix of a simple undirected graghwith vertex set’' (G) = {1,2,...,n} and write A; for
thei-the column ofA. The quantity we are interested in is the number of trianigl€s (actually six times
the number of triangles)= 3", , ,cv (@) AuwAvw Awa

If we apply a random projection of the above kind to the colarohA A; — RA; and write X =
> wwwev (@) LBA)uw(RA)p (RA)w, itis easy to see thaf [X] = 0 sinceX is a linear combination of
triple productsR;; Ry, R, of entries of the random matrik and that all such products have expected
value0, no matter what the indices. So we cannot expect this kindrmdom projection to work.



Therefore we consider the following approach which stis limitations as we will show in the fol-
lowing. Lett = >, Al A,, whereu ~ v meansi,, = 1, and look at the quantity

Y =3 (RA,)(RA,)

u~v

_ i i (Z AmAjv> Ry Ry

=1 t,7=1 \u~v

k n
= Z Z #{Z — %k — % — j}Rlile-

=1 i,j=1

This is a quadratic form in the gaussiaf{0, 1) variablesR,;. By simple calculation for the mean value
and diagonalization for the variance we see that ifXhere independenv (0, 1) variables and

Z = XT"BX,
whereX = (Xy,...,X,)" andB € R™" is symmetrigthat

E[Z] =Tt B
Var [Z) = Tr B* = i(Bij)Q.

ij=1

HenceR[Y] = Y1, S #{i — % —+ — i} = k - t so the mean value is the quantity we want (multi-
plied by k). For this to be useful we should have some concentratiofy foearE [Y]. We do not need
exponential tails because we have only one quantity to abritr particular, a statement of the following

type
Pr(lY —E[Y]| > E[Y]] <1 -,

wherec, > 0 would be enough. The simplest way to check this is by computie standard deviation of
Y. By Chebyshev’s inequality it suffices that the standardat@n be much smaller than[Y']. According
to the formula above for the variance of a quadratic form we ge

VaT[Y]:ZZ#{i—*—*—i}z

=1 4,j=1
=C - k-#{r—x—x—x—x—x—x}=
= C' - k - (number of circuits of length 6 itr).

Therefore, to have concentration it is sufficient that
Var[Y] = o(k - (E[Y])?). (1)

Observe thatl) is a sufficient -and not necessary- condition. Furthernibré certainly not always
true as there are graphs with many 6-circuits and no trisnglell (the circuitanayrepeat vertices or
edges).
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5.2 Sampling in the Semi-Streaming Model

The previous analysis of triangle counting by Alon, Yusted @wick was done in the streaming model
[2], where the assumption was constant space overhead. Wels&ioour sampling algorithm can be done
in a slightly weaker model with space usage equaling:

m3/?logn
te? )
We assume the edges adjacent to each vertex are given inf drfleiVe first need to identify high de-
gree vertices, specifically the ones with degree highertiidh This can be done by sampligm'/? log n)
edges and recording the vertices that are endpoints of aiesé edges.

O <m1/2 logn +

Lemma 3. Supposeln'/?logn samples were taken, then the probability of all vertice$wiggree at
leastm!/? being chosen is at leagt— n =41,

Proof. Consider some vertex with degree at least.!/2. The probability of it being picked in each iter-
ation is at leastn!/?/m = m~1/2. As a result, the probability of it not picked ihm'/? logn iterations
is:

(1 _ m—1/2>dm1/2 logn _ [(1 B m1/2)m1/2]dlogn < <%)dlog" _ n—d
As there are at most vertices, applying union bound gives that all vertices wigigree at least.!/? are
sampled with probability at leagt— n=¢*!, O

This requires one pass of the graph. Note that the numbercbfcandidates for high degree vertices
can be reduced ta'/? using another pass over the edge list.

For all the low degree vertices, we can read tligim'/?) neighbors and sample them. For the high
degree vertices, we do the following: for each edge, obteamdom variable from a binomial distribution
equal to the number of edge/vertices pairs that this edgeadvied in. Then picky vertices from the list
of high degree vertices randomly. These two sampling pnaesdcan be done together in another pass
over the data.

Finally, we need to check whether each edge in the samplalddrbelong to the edge list. We can

store all such queries into a hash table as there are at(hﬁ@gfgﬁ) edges sampled w.h.p. Then going
through the graph edges in a single pass and looking themtapleyields the desired answer.

6 Conclusions & Future Work

In this work, we extended previous work4,35] by introducing the powerful idea of Alon, Yuster and
Zwick [2]. Specifically, we propose a Monte Carlo algorithm which @ppmates the true number of

triangles withire and runs ir0O <m + M) time. Our method can be extended to the semi-streaming

te?
m3/2lognA

model using three passes and a memory overhead(ef.'/? log n + 2

In practice our methods obtain excellent running timesicalty few seconds for graphs with several
millions of edges. The accuracy is also satisfactory, eapigtor the type of applications we are concerned
with. Finally, we propose a random projection based metbottriangle counting and provide a sufficient
condition to obtain an estimate with low variance. A natuaéstion is the following: can we provide
some reasonable condition 6hthat would guaranteel)? Finally, since our proposed methods are easily
parallelizable, developing such an implementation in thePRREDUCE framework, seel[1] and [21,20],
is an natural practical direction.
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