Skip to main content

A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6519))

Included in the following conference series:

Abstract

The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel’s entanglement assisted classical capacity. In this extended abstract, we summarize a new and conceptually simple proof of this theorem [journal reference: arXiv.org:quant-ph/0912.3805], which has previously been proved in [Bennett et al., arXiv.org:quant-ph/0912.5537]. Our proof is based on optimal one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537 (2009), arXiv.org:quant-ph/0606225

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: The quantum reverse Shannon theorem (2006), arXiv.org:quant-ph/0912.5537

    Google Scholar 

  3. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637 (2002), arXiv.org:quant-ph/0106052

    Article  MathSciNet  MATH  Google Scholar 

  4. Berta, M.: Single-shot quantum state merging, Diploma thesis ETH Zurich (2008), arXiv.org:quant-ph/0912.4495

    Google Scholar 

  5. Berta, M., Christandl, M., Renner, R.: A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem (2009), arXiv.org:quant-ph/0912.3805, submitted to Comm. Math. Phys. (2009)

    Google Scholar 

  6. Berta, M., Dupuis, F., Renner, R., Wullschleger, J.: Optimal decoupling (2010) (in preparation)

    Google Scholar 

  7. Christandl, M., König, R., Renner, R.: Post-selection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett 102, 20504 (2009), arXiv.org:quant-ph/0809.3019

    Article  Google Scholar 

  8. Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816 (2009), arXiv.org:quant-ph/0803.2770

    Article  MathSciNet  MATH  Google Scholar 

  9. Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44 (2005), arXiv:quant-ph/0304127

    Article  MathSciNet  MATH  Google Scholar 

  10. Dupuis, F.: The Decoupling Approach to Quantum Information Theory. PhD thesis, Université de Montréal (2009), arXiv.org:quant-ph/1004.1641

    Google Scholar 

  11. Harrow, A.W.: Entanglement spread and clean resource inequalities. Proc. XVI Int. Cong. Math. Phys. 536 (2009), arXiv.org:quant-ph/0909.1557

    Google Scholar 

  12. Holevo, A.S.: The capacity of the quantum communication channel with general signal states. IEEE Trans. Inf. Theory 44, 269 (1998), arXiv.org:quant-ph/9611023

    Article  MATH  Google Scholar 

  13. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005), arXiv.org:quant-ph/0505062

    Article  Google Scholar 

  14. Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys 269, 107 (2006), arXiv.org:quant-ph/0512247

    Article  MathSciNet  MATH  Google Scholar 

  15. Kitaev, A.: Quantum computations: algorithms and error correction. Russian Math. Surveys 52, 1191 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337 (2009), arXiv.org:quant-ph/0807.1338

    Article  MathSciNet  MATH  Google Scholar 

  17. Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997), arXiv.org:quant-ph/9604015

    Article  MathSciNet  Google Scholar 

  18. Oppenheim, J.: State redistribution as merging: introducing the coherent relay (2008), arXiv.org:quant-ph/0805.1065

    Google Scholar 

  19. Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (2005), arXiv.org:quant-ph/0512258

    Google Scholar 

  20. Renner, R.S., König, R.: Universally Composable Privacy Amplification Against Quantum Adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proc. IEEE Int. Symp. Inf. Theory, vol. 233 (2004)

    Google Scholar 

  22. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131 (1997)

    Article  Google Scholar 

  23. Shannon, C.E.: A mathematical theory of communication. Bell. Syst. Tech. J. 423, 379–423, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shor, P.W.: The quantum channel capacity and coherent information. In: Lecture notes, MSRI Workshop on Quantum Computation (2002)

    Google Scholar 

  25. Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 461 (1971)

    MathSciNet  MATH  Google Scholar 

  26. Stinespring, W.: Positive function on C*-algebras. Proc. Amer. Math. Soc. 6, 211 (1955)

    MathSciNet  MATH  Google Scholar 

  27. Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840 (2009), arXiv.org:quant-ph/0811.1221

    Article  MathSciNet  MATH  Google Scholar 

  28. Tomamichel, M., Colbeck, R., Renner, R.: Duality between smooth min- and max-entropies. IEEE Trans. Inf. Theory 56(9), 4674 (2010), arXiv.org:quant-ph/0907.5238

    Article  MathSciNet  MATH  Google Scholar 

  29. van Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A, Rapid Comm. 67, 060302(R) (2003), arXiv.org:quant-ph/0201041

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berta, M., Christandl, M., Renner, R. (2011). A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem. In: van Dam, W., Kendon, V.M., Severini, S. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2010. Lecture Notes in Computer Science, vol 6519. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18073-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18073-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18072-9

  • Online ISBN: 978-3-642-18073-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics