Relational String Verification Using Multi-track
Automata *

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

Department of Computer Science, University of Califorianta Barbara, CA, USA
{yuf, bultan, ibarra}@s. ucsb. edu

Abstract. Verification of string manipulation operations is a crug@abblem in
computer security. In this paper, we present a new reldtistmniag verification
technique based on multi-track automata. Our approachpiabda of verifying
properties that depend on relations among string variafles enables us to
prove that vulnerabilities that result from improper sgrmanipulation do not ex-
istin a given program. Our main contributions in this paper be summarized as
follows: (1) We formally characterize the string verificatiproblem as the reach-
ability analysis ofstring systemand show decidability/undecidability results for
several string analysis problems. (2) We develop a soundslcranalysis tech-
nique for string verification that over-approximates thecteable states of a given
string system using multi-track automata and summariaa(®) We evaluate the
presented techniques with respect to several string dedlgachmarks extracted
from real web applications.

1 Introduction

The most important Web application vulnerabilities are thui@adequate manipulation
of string variables [10]. In this paper we investigate #teng verification problem:
Given a program that manipulates strings, we want to vessegtions about string
variables. For example, we may want to check that at a ceptaigram point a string
variable cannot contain a specific set of characters. Tlpis tf checks can be used
to prevent SQL injection attacks where a malicious usewuithes special characters in
the input string to inject unintended commands to the gedhat the Web application
constructs (using the input provided by the user) and sendsickend database. As
another example, we may want to check that at a certain progoént a string variable
should be prefix or suffix of another string variable. Thiseygf checks can be used
to prevent Malicious File Execution (MFE) attacks where Véigiplication developers
concatenate potentially hostile user input with file fuoos that lead to inclusion or
execution of untrusted files by the Web server.

We formalize the string verification problem as reachabdibalysis ofstring sys-
tems(Section 2). After demonstrating that the string analysabfem is undecidable
in general, we present and implement a forward symbolicha&aitity analysis tech-
nique that computes an over-approximation of the reachsthtes of a string system
using widening and summarization (Section 4). We use nialtik deterministic finite

* This work is supported by NSF grants CCF-0916112, CCF-09368nd CCF-0524136.

automata (DFAs) as a symbolic representation to encodestiad possible values that
string variables can take at a given program point. Unlikerpstring analysis tech-
niques, our analysis iglational, i.e., it is able to keep track of the relationships among
the string variables, improving the precision of the strarlysis and enabling ver-
ification of invariants such aX; = X, whereX; and X, are string variables. We
develop the precise construction of multi-track DFAs forelr word equations, such
asc1 Xic2 = ¢ Xoc, and show that non-linear word equations (suctKas= X5 X3)
cannot be characterized precisely as a multi-track DFAt{&@e8). We propose a reg-
ular approximation for non-linear equations and show haosgéhconstructions can be
used to compute the post-condition of branch conditionsas@jnment statements that
involve concatenation. We use summarization for inteicpdural analysis by generat-
ing a multi-track automaton (transducer) characterizhmgy telationship between the
input parameters and the return values of each proceducédBé). To be able to use
procedure summaries during our reachability analysisalign multi-track automata
so that normalized automata are closed under intersedtierimplemented these al-
gorithms using the MONA automata package [5] and analyzeeraEPHP programs
demonstrating the effectiveness of our string analysisriggies (Section 5).

Related Work. The use of automata as a symbolic representation for verifichas
been investigated in other contexts [4]. In this paper, veei$oon verification of string
manipulation operations, which is essential to detect ardgmt crucial web vulnera-
bilities. Due to its importance in security, string anayas been widely studied. One
influential approach has been grammar-based string asalyai statically computes
an over-approximation of the values of string expression¥ava programs [6] which
has also been used to check for various types of errors in \Melications [8, 9, 12].
In [9, 12], multi-track DFAs, known agransducers are used to model replacement
operations. There are also several recent string anafyasiis that use symbolic string
analysis based on DFA encodings [7,11, 14, 15]. Some of thherbased on symbolic
execution and use a DFA representation to model and ver#ystting manipulation
operations in Java programs [7, 11]. In our earlier work, \&eehused a DFA based
symbolic reachability analysis to verify the correctnefsstong sanitization operations
in PHP programs [13-15]. Unlike the approach we proposeispaper, all of the re-
sults mentioned above use single track DFA and encode thieabke configurations of
each string variable separately. Our multi-track autoreatzoding not only improves
the precision of the string analysis but also enables vatitio of properties that cannot
be verified with the previous approaches.

We have also investigated the boundary of decidability h@r $tring verification
problem. Bjgrner et al. [2] show the undecidability resuithweplacement operation.
In this paper we consider only concatenation and show thiagsterification problemis
undecidable even for deterministic string systems witly timlee unary string variables
and non-deterministic string systems with only two strirgiables if the comparison
of two variables are allowed.

2 String Systems

We define the syntax of string systems in Figure 1. We only idenstring variables
and hence variable declarations need not specify a typst#@ttments are labeled. We

prog ::= decl" func

decl::=decl id™;

func::=id (id*) begi n decl’ Istmt"™ end

Istmt::=|:stmt

stmt::=seqstmt i f expt hen gotol;|gotoL; wherelLis a setoflabels
|'i nput id; | out put exg | assert exp

seqstmt=id :=sexp | id :=cal | id (sexp™);

exp::= bexp| expA exp| - exp

bexp::= atom= sexp

sexp::= sexpatom| atom| suffixid) | prefixid)

atom:=id | c, wherecis a string constant

Fig. 1. The syntax of string systems

only consider one string operation (concatenation) in oum&l model; however, our

symbolic string analysis techniques can be extended tol@adnplex string opera-

tions (such as replacement [14]). Function calls use galldlue parameter passing.
We allow goto statements to be non-deterministic (if a gtatesnent has multiple tar-

get labels, then one of them is chosen non-deterministicéfiia string system contains
a non-deterministic goto statement it is called a non-deit@stic string system, other-

wise, it is called a deterministic string system.

There are several attributes we can use to classify stristpys such as deter-
ministic (D) or non-deterministic) string systems, the number of variables in the
string systems, and the alphabet used by the string vasiablg., unary((), binary
(B), or arbitrary (<) alphabet. Finally, we can restrict the set of string exgims
that can be used in the assignment and conditional branthétisns. As an instance,
NB(X;, XQ)X —Xi¢ denotes a non-deterministic string system with a binaratet
and two string varlables)(l and X;) where variables can only concatenate constant
strings from the right and compared to each other. Weutsedenote a single symbol,
andc, d to denote constant strings= prefiz(X;) evaluates to true if is a prefix of
X;, andc = suffiz(X;) evaluates to true i is a suffix of X;. We define theeachability
problem for string systenis the problem of deciding, given a string system and a con-
figuration (i.e., the instruction label and the values of ¥heables), whether at some
point during a computation, the configuration will be reathé&/e have the following
results:

Theorem 1. The reachability problem for:
1. NB(X1,X»)y =5 ¢ is undecidable,

2. D (Xl,XQ,Xg)))((ch2 x5 is undecidable,

3. DU(Xq, XQ,X3,X4) X3 x2 Xa is undecidable,

4. NU (X1, X)W R0 X o prefin(X,).e—suffia(x,) 1S D€CIdaDIE,

5. NK(X1,Xo,.. Xk)c gdfgmﬁr(x)c wffin(x, IS decidable, and
Xia,X;:=aX;

6. DK (X1, Xo,,... ,Xk)Xl:Xz,c:Xi7C:pmﬁz(xi)7c:wﬁx(xi) is decidable.

Theorem 1 demonstrates the complexity boundaries for gatifin of string sys-
tems. Theorem 1.1, 1.2 and 1.3 show that the string verificgtioblem can be unde-

cidable even when we restrict a non-deterministic strirggesy to two binary variables,
or a deterministic string system to three unary variablefoor unary variables with
specific comparisons. Theorem 1.4 shows that the threebl@sian Theorem 1.2 are
necessary in the sense that when there are only two varjakleshability is decid-
able, even when the string system is nondeterministic. figmedl.5 and 1.6, on the
other hand, demonstrate that there are non-trivial strar@fization problems that are
decidable. Since the general string verification probleomidecidable, it is necessary
to develop conservative approximation techniques foifieation of string systems. In
this paper we propose a sound string verification approastchan symbolic reachabil-
ity analysis with conservative approximations where rau#ick automata are used as
a symbolic representation. Some examples of string systesmgan be verified using
our analysis are given in [16].

3 Regular Approximation of Word Equations

Our string analysis is based on the following observati¢hsThe transitions and the
configurations of a string system can be symbolically regmmeed using word equations
with existential quantification, (2) word equations can &gresented/approximated us-
ing multi-track DFAs, which are closed under intersectionion, complement, and
projection, and (3) the operations required during reaidibabnalysis (such as equiv-
alence checking) can be computed on DFAs.

Multi-track DFAs A multi-track DFA is a DFA but over the alphabet that consts
many tracks. Am-track alphabet is defined &8 U {A})", whereX ¢ X' is a special
symbol for padding. We use[i] (1 < i < n)to denote thé'” track ofw € (JU{A})".
An alignedmulti-track DFA is a multi-track DFA where all tracks aretl@fstified (i.e.,
A's are right justified). That is, ifv is accepted by an alignedtrack DFA M, then
forl < i < n,w[i] € X**. We also usei[i] € X* to denote the longest-free
prefix ofw[:]. It is clear that aligned multi-track DFA languages are etbander inter-
section, union, and homomorphism. L, be the alignech-track DFA that accepts
the (aligned) universe, i.e{w | Vi.w[i] € X**}. The complement of the language
accepted by an aligned-track DFA M is defined bycomplement modulo alignment
i.e., the intersection of the complementfM) with L(M,,). For the following de-
scriptions, a multi-track DFA is an aligned multi-track Die&less we explicitly state
otherwise.

Word Equations A word equation is an equality relation of two words that catenate
variables from a finite s& and words from a finite set of constagtsThe general form
of word equations is defined as...v, = v} ...v),, whereVi,v;,v; € X UC. The
following theorem identifies the basic forms of word equasioFor example, a word
equationf : X7 = X2dX3X, is equivalent to3 Xy, , X, . X1 = Xo Xk, A Xi, =
ka2 A Xp, = X3X4.

Theorem 2. Word equations and Boolean combinations (\ and V) of these equa-
tions can be expressed using equations of the f@im= Xoc, X1 = ¢Xo, ¢ = X1 X5,
X; = X2 X3, Boolean combinations of such equations and existentiahtification.

Let f be a word equation ove&X= {X;, X»,..., X,,} and f[¢/X] denote a new
equation whereX is replaced withe for all X that appears irf. We say that am-
track DFA M under-approximateg if for all w € L(M), flw[l]/ X1, ..., w[n]/X,]
holds. We say that an-track DFA M over-approximateg if for any sq,...,s, € X*
wheref[s1/X1, ..., s,/X,] holds, there exista) € L(M) such that for alll < i <
n,w[i] = s;. We call M precisewith respect tof if M both under-approximates and
over-approximateg.

Definition 1. A word equationf is regularly expressible if and only if there exists a
multi-track DFAM such thatM is precise with respect té.

Theorem 3. 1. X; = Xac, X1 = ¢Xo, andec = X X, are regularly expressible, as
well as their Boolean combinations.
2. X; = ¢X, isregularly expressible but the correspondimghas exponential num-
ber of states in the length of
3. Xj = X, X5 is not regularly expressible.

We are able to compute multi-track DFAs that are precise vafipect to word equa-
tions: X1 = Xsc, X1 = ¢X5, ande = X X5. SinceX; = X, X3 is not regularly ex-
pressible, below, we describe how to compute DFAs that aqpisite such non-linear
word equations. Using the DFA constructions for these fasibforms we can con-
struct multi-track DFAs for all word equations and their Bzsn combinations (if the
word equation contains a non-linear term then the congdubf-A will approximate
the equation, otherwise it will be precise). The Booleanrapens conjunction, dis-
junction and negation can be handled with intersectiommrand complement mod-
ulo alignment of the multi-track DFAs, respectively. Eristial quantification on the
other hand, can be handled using homomorphism, where gwendequatiornf and a
multi-track automato/ such thatV/ is precise with respect tf, then the multi-track
automatonM |; is precise with respect t8.X;.f where M |; denotes the result of
erasing the®” track (by homomorphism) of/.

Construction of X; = X5 X3 Since Theorem 3 shows that; = X, X3 is not reg-
ularly expressible, it is necessary to construct a consigevéover or undel approx-
imation of X; = X, X3. We first propose amver approximation construction for
X1 = XoX3. Let M7, = <Q1,2,51711,F1>, My = <Q2,2,52,IQ,F2>, andM3 =
(Qs, X, 63, I3, F3) accept values oy, Xo, and X3, respectivelyM = (Q, (X U
{\})3,6,1, F) is constructed as follows.

- QC Q1 XxQ2xQ3xQs,

— I =(I1,1s,15,13),

- Ya,be X, 6((r,p,s,8),(a,a,b)) = (61(r, a), d2(p, a), d3(s,b), s'),

—Va,be X,pe€ Fa,s ¢ F5,0((r,p,s,5), (a, A\, b)) = (61(r,a),p, 05(s,b),d5(s', a)),
€ D€ Br € By, 00 0) = (Bin k5.0
—Va€ S.pd Fos € By, 6((r,prs,), (a0,) = (61(r,a), 82(p,), 5, 5)
— F={(r,p,s,8") |re Fi,pe Fy,s € F5,5' € F3}.

The intuition is as followsM tracesM, M, and M5 on the first, second and third
tracks, respectively, and makes sure that the first and deicacks match each other.
After reaching an accepting state i, M enforces the second track to beand
starts to tracé\/s on the first track to ensure the rest (suffix) is acceptedhy |Q)| is
O(|Q1] X 1Q2] x |Qs] + |Q1] x |Qs] x |Qs]). For allw € L(M), the following hold:

— @[1] € L(M,), (2] € L(Msy),w[3] € L(Ms),
— w[l] = w[2Jw" andw’ € L(Ms3),

Note thatw’ may not be equal tav[3], i.e., there existsv € L(M), w[l] #
w[2]w|[3], and hencé/ is not precise with respect t8; = X, X3. On the other hand,
for any w such thatw[l] = w[2]w[3], we havew € L(M), hencelM is a regular
overapproximation ofX; = X, Xs.

Below, we describe how to construct a reguladerapproximation ofX; = X5 X3
(which is necessary for conservative approximation ofét:iplement set). We use the
idea that ifL(M>) is a finite set language, one can construct the DEAhat satisfies
X, = X>X3 by explicitly taking the union of the construction &f; = ¢X3 for
all ¢ € L(Ms). If L(My) is an infinite set language, we construct a reguiader
approximation ofX; = X» X3 by considering a (finite) subset @f(1/) where the
length is bounded. Formally speaking, for edch> 0 we can construcd/,, so that
w € L(My),w[l] = w[2]w[3], w[l] € L(M), w[3] € L(Ms), w[2] € L(Ms) and
[w[2]| < k. It follows that M}, is a regularunderapproximation ofX; = X5X3.

If L(M>) is a finite set language, there exigtgthe length of the longest accepted
word) whereL (M) is precise with respect t; = X, X3. If L(M>) is an infinite set
language, there does not exist sucko thatL(M}) is precise with respect t&; =
X5 X3, as we have proven non-regularity 8f = X5 X3.

4 Symbolic Reachability Analysis

Our symbolic reachability analysis involves two main stépsvard fixpoint computa-
tion and summarization.

Forward Fixpoint Computation The first phase of our analysis is a standard forward
fixpoint computation on multi-track DFAs. Each program fasassociated with a
single multi-track DFA, where each track is associated withingle string variable

X € X. We useM /] to denote the multi-track automaton at the program lab€he
forward fixpoint computation algorithm is a standard wotege algorithm. Initially,

for all labelst, L(M][l]) = (. We iteratively compute the post-images of the statements
and join the results to the corresponding automata. Fser in the form: X:= sexp,

the post-image is computed as:

PosT(M, stmt) = (3X.M N ConsTRucT X' = sexp, +))[X/X'].

ConsTRuCT(exp, b) returns the DFA that accepts a regular approximatiangf where

b € {+,—} indicates the directionofer or under, respectively) of approximation if
needed. During the construction, we recursively push tigatiens) (and flip the di-
rection) inside to the basic expressiohsaip), and use the corresponding construction

f(X)

begin

1: goto 2, 3; (£, %) (A, a) (A a)
2: X = call f(X a); @—»@

3: return X

end

Fig. 2. A function and its summary DFA

of multi-track DFAs discussed in the previous section. We fusiction summaries to
handle function calls. Each functighis summarized as a finite state transducer, de-
noted as\/ ¢, which captures the relations among input variables (paters), denoted
as X, and return values. The return values are tracked in theubtriick, denoted as
X,. We discuss the generation of the transduldgrbelow. For astm¢t in the form X :=
call f(ei,...,e,), the post-image is computed as:

POSTM, stmt) = (3X, X,,... X,, .M N M0 Mg)[X/X,),

where M; = ConsTRUCT(A\; X, = e;, +). The process terminates when we reach
a fixpoint. To accelerate the fixpoint computation, we extendautomata widening
operator [14], denoted a8, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and mergesstatthe same equivalence
class [1, 3]. The following lemma shows that the equalitatiehs among tracks are
preserved while widening multi-track automata.

Lemmal. if L(M)C L(x =y)andL(M') C L(z = y), L(IMVM') C L(z = y).

Summarization We compute procedure summaries in order to handle proceédlise
We assume parameter-passing with call-by-value semaantitsve are able to handle
recursion. Each functioyi is summarized as a multi-track DFA, denotedMdsg, that
captures the relation among its input variables and retalues.

Consider the recursive functigh shown in Figure 2 with one parametgr.non-
deterministically returns its input (goto 3) or makes a salf (goto 2) by concatenating
its input and a constant. The generated summary for this function is also shown in
Figure 2.M; is a2-track DFA, where the first track is associated with its paetmn
Xp,, and the second track is associated with representing the return values. The
edge(X, X)) represents a set of identity edges. In other waf@ig, (X, X)) = ¢’ means
Va € X,6(q, (a,a)) = ¢'. The summary DFAV/; precisely captures the relatidfy, =
Xp, .a* between the input variable and the return values.

During the summarization phase, (possibly recursive)tions are summarized as
unaligned multi-track DFAs that specify the relations agdieir inputs and return
values. We first build (possibly cyclic) dependency graghsgecify how the inputs
flow to the return values. Each node in the dependency grapksisciated with an
unaligned multi-track DFA that traces the relation amonuuis and the value of that
node. An unaligned multi-track DFA is a multi-track DFA wkers might not be right
justified. Return values of a function are represented withaaxiliary output track.
Given a functionf with n parameters)/; is an unalignedn + 1)-track DFA, wherex

tracks represent theinput parameters and one tra&k is the output track representing
the return values. We iteratively compute post images afhable relations and join
the results until we reach a fixpoint. Upon termination, themary is the union of the
unaligned DFAs associated with the return nodes. To comihese summaries at the
call site, we also propose an alignment algorithm to aligrtiiat\’s are right justified)
an unaligned multi-track DFA.

Once the summary DFA/; has been computed, it is not necessary to reanalyze
the body of f. To compute the post-image of a call fowe intersect the values of
input parameters witfi/; and use existential quantification to obtain the returnesilu
Let M be a one-track DFA associated with whereL(M) = {b}. PosT (M, X :=
cal | f(X)) returnsM’ whereL(M') = ba* for the example function shown above.
As another example, 16t/ be a2-track DFA associated witlX, Y that is precise with
respect toX = Y. Thenros1(M, X :=cal | f(X)) returnsM’ which is precise
with respect taX = Y.a* precisely capturing the relation betwe&nandY” after the
execution of the function call. As discussed abd\#,is computed by3X, X,,, .M N
My N My)[X/X,], whereL(M;) = ConsTRUCT X, = X, +).

5 Experiments

We evaluate our approach against three kinds of benchmBrBasic benchmarks, 2)
XSS/SQLI benchmarks, and 3) MFE benchmarks. These ben&smgpresent typi-
cal string manipulating programs along with string projesrthat address severe web
vulnerabilities.

In the first set, we demonstrate that our approach can propkcitrequality prop-
erties of string systems. We wrote two small programs. CBeakch (B1) has if branch
(X1 = X5) and else branch(; # X3). In the else branch, we assign a constant string
¢ to X, and then assign the same constant stringf4o We check at the merge point
whetherX; = X5. In CheckLoop (B2) we assign variabld§ and X, the same con-
stant string at the beginning, and iteratively append aratbnstant string to both in
an infinite loop. We check whethéf; = X, at the loop exit. Lef\/ accept the values
of X; and X, upon termination. The equality assertion holds wign/) C L(M,),
whereM,, is ConsTRucT(X; = X5, —). We use " to construct (under approxima-
tion) automata for assertions to ensure the soundness ahalysis. Using multi-track
DFAs, we prove the equality property (result “true”) wheseee are unable to prove it
using single-track DFAs (result “false”) as shown in Tabl@1 and B2). Though these
benchmark examples are simple, to the best of our knowleélges are no other string
analysis tools that can prove equality properties in thesehmarks.

In the second set, we check existence of Cross-Site S@ifti8S) and SQL Injec-
tion (SQLI) vulnerabilities in Web applications with knownilnerabilities. We check
whether at a specific program point, a sensitive function tag an attack string as
its input. If so, we say that the program is vulnerable witbpest to the given attack
pattern. To identify XSS/SQLI attacks, we check intersetémptiness against all pos-
sible input values that reach a sensitive function at a givegram point and the attack
strings specified as a regular language. Though one can shebkulnerabilities using
single-track DFAs [14], using multi-track automata, we gaacisely interpret branch

conditions, such a8ww\=$ur | , that cannot be precisely expressed using single-track
automata, and obtain more accurate characterization ofsigf the sensitive functions.
For the vulnerabilities identified in these benchmarks &$4), we did not observe
false alarms that result from the approximation of the binasanditions.

The last set of benchmarks show that the precision that @ireed using multi-
track DFAs can help us in removing false alarms generatedrglestrack automata
based string analysis. These benchmarks represeaiitious file executio(MFE) at-
tacks. Such vulnerabilities are caused because develdpectly use or concatenate
potentially hostile input with file or stream functions, enproperly trust input files.
We systematically searched web applications for program@that execute file func-
tions, such asncl ude andf open, whose arguments may be influenced by external
inputs. At these program points, we check whether the weddiles and the external
inputs are consistent with what the developers intend. Weually generate a multi-
track DFA M,,,,; that accepts a set of possible violations for each benchraadkapply
our analysis on the sliced program segments. Upon terromatie report that the file
function is vulnerable ifL (M) N L(Myw) # 0. M is the composed DFA of the listed
single-track DFAs in the single-track analysis. As showiable 1 (M1 to M5), using
multi-track DFAs we are able to verify that MFE vulneralidi do not exist whereas
string analysis using single-track DFAs raises false asdfonall these examples.

We have shown that multi-track DFAs can handle problemsdhanhot be handled
by multiple single-track DFAs, but at the same time, they msee time and memory.
For these benchmarks, the cost seems affordable. As sholabia 1, in all tests, the
multi-track DFAs that we computed (even for the composedpare smaller than the
product of the corresponding single-track DFAs. One achgambf our implementation
is symbolic DFA representation (provided by the MONA DFAréby [5]), in which
transition relations of the DFA are represented as Multinteal Binary Decision Dia-
grams (MBDDs). Using the symbolic DFA representation weiéitloe potential expo-
nential blow-up that can be caused by the product alphalwsteler, in the worst case
the size of the MBDD can still be exponential in the numbera¢ks.

6 Conclusion

In this paper, we presented a formal characterization ostitiveg verification problem,

investigated the decidability boundary for string systearsl presented a novel veri-
fication technique for string systems. Our verification téghe is based on forward
symbolic reachability analysis with multi-track automatanservative approximations
of word equations and summarization. We demonstrated feetieeness of our ap-

proach on several benchmarks.

References

1. C. Bartzis and T. Bultan. Widening arithmetic automataCAV, pages 321-333, 2004.
2. N. Bjarner, N. Tillmann, and A. Voronkov. Path feasilyilénalysis for string-manipulating
programs. INTACAS pages 307-321, 2009.

10

Single-track Multi-track

Resul DFAs/ Composed DFA ‘ Time ‘LMem Resul‘ DFA L Time (LMem
Ben state(bdd) user+sys(se¢)kb) state(bdd)user+sys(se¢)(kb)
[Bl[false] 15(107), 15(107) /33(477) [0.027 + 0.00§410] true | 14(193) [0.070 + 0.009 918 |
[B2] false] 6(40), 6(40) /9(120) [0.022+0.009 484] true [5(60) [0.025+0.00¢ 293 |
SI] vl 2(20), 9(64), 17(148) 0.010+0.007 444] vul | 65(1629)] 0.195+0.15(1231
S2[wul 9(65), 42(376) 0.017+0.003 626 | vul |49(1205)| 0.059+0.00¢ 4232
S3] wul 11(106), 27(226) 0.032+0.003 838 vul [47(2714)[0.153+0.004 2684
S4] wul 53(423), 79(633) 0.062+0.0051696] vul | 79(1900)[0.226+0.003 2826
M1] yes 2(8), 28(208) / 56(801) 0.027+0.003 621] no [50(3551)[0.059+0.007 1294
M2]| yes 2(20), 11(89) / 22(495) 0.013+0.004 555| no | 21(604) [0.040+0.004 996
M3]| yes 2(20), 2(20) / 5(113) 0.008+0.007 417| no | 3(276) [0.018+0.001] 465
M4 | yes |24(181), 2(8), 25(188) / 1201(25949%).226+0.025 9495 no |181(9893) 0.784+0.07|19322
M5 yes | 2(8), 14(101), 15(108) / 211(3195)0.049+0.004 1676 no | 62(2423)| 0.097+0.005 1756

Table 1. Experimental results. DFA(S): the minimized DFA(s) asatail with the
checked program point. state: number of states. bdd: nuwibledd nodes. Bench-
mark: Application, script (line number). S1: MyEasyMarket, trans.php (218). S2:
PBLguestbook-1.32, pblguestbook.php(1210), S3:Aphpkld- saa.php(87), and S4:
BloggIT 1.0, admin.php (23). M1: PBLguestbook-1.32, plagtibook.php(536). M2:
MyEasyMarket-4.1, prod.php (94). M3: MyEasyMarket-4.ghphp (189). M4: php-
fusion-6.01, dbbackup.php (111). M5: php-fusion-6.01, forupsine.php (28).

w

10.

11.

12.

13.

14.

15.

16.

A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract reguhodel checking. €AV, pages
372-386, 2004.

. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Reguhodel checking. ICAV, pages

403-418, 2000.

. BRICS. The MONA projectht t p: / / www. bri cs. dk/ nona/ .
. A.S. Christensen, A. Mgller, and M. |. Schwartzbach. Beeanalysis of string expressions.

In SAS pages 1-18, 2003.

. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao.t&is analysis framework for

detecting sql injection vulnerabilities. BOMPSAC pages 87-96, 2007.

. C. Gould, Z. Su, and P. Devanbu. Static checking of dynaltyigenerated queries in

database applications. I8SE pages 645-654, 2004.

. Y. Minamide. Static approximation of dynamically gertethweb pages. IWWW pages

432-441, 2005.

Open Web Application Security Project (OWASP). Top tenjert. http:// ww.
owasp. or g/, May 2007.

D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid.trAbsng symbolic execution
with string analysis. ITAICPART-MUTATIONpages 13-22, DC, USA, 2007.

G. Wassermann and Z. Su. Static detection of crosseifgtiag vulnerabilities. INCSE
pages 171-180, 2008.

F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An autombtesed string analysis tool for php.
In TACAS pages 154-157, 2010.

F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic gnrerification: An automata-based
approach. IrSPIN pages 306—-324, 2008.

F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string vegtion: Combining string analysis
and size analysis. INACAS pages 322-336, 2009.

F. Yu, T. Bultan, and O. H. Ibarra. Verification of stringunipulating programs using multi-
track automata. Technical Report 2009-14, Computer Sei®w®partment, University of
California, Santa Barbara, August 2009.

