
Relational String Verification Using Multi-track
Automata ⋆

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra

Department of Computer Science, University of California,Santa Barbara, CA, USA
{yuf, bultan, ibarra}@cs.ucsb.edu

Abstract. Verification of string manipulation operations is a crucialproblem in
computer security. In this paper, we present a new relational string verification
technique based on multi-track automata. Our approach is capable of verifying
properties that depend on relations among string variables. This enables us to
prove that vulnerabilities that result from improper string manipulation do not ex-
ist in a given program. Our main contributions in this paper can be summarized as
follows: (1) We formally characterize the string verification problem as the reach-
ability analysis ofstring systemsand show decidability/undecidability results for
several string analysis problems. (2) We develop a sound symbolic analysis tech-
nique for string verification that over-approximates the reachable states of a given
string system using multi-track automata and summarization. (3) We evaluate the
presented techniques with respect to several string analysis benchmarks extracted
from real web applications.

1 Introduction

The most important Web application vulnerabilities are dueto inadequate manipulation
of string variables [10]. In this paper we investigate thestring verification problem:
Given a program that manipulates strings, we want to verify assertions about string
variables. For example, we may want to check that at a certainprogram point a string
variable cannot contain a specific set of characters. This type of checks can be used
to prevent SQL injection attacks where a malicious user includes special characters in
the input string to inject unintended commands to the queries that the Web application
constructs (using the input provided by the user) and sends to a backend database. As
another example, we may want to check that at a certain program point a string variable
should be prefix or suffix of another string variable. This type of checks can be used
to prevent Malicious File Execution (MFE) attacks where Webapplication developers
concatenate potentially hostile user input with file functions that lead to inclusion or
execution of untrusted files by the Web server.

We formalize the string verification problem as reachability analysis ofstring sys-
tems(Section 2). After demonstrating that the string analysis problem is undecidable
in general, we present and implement a forward symbolic reachability analysis tech-
nique that computes an over-approximation of the reachablestates of a string system
using widening and summarization (Section 4). We use multi-track deterministic finite

⋆ This work is supported by NSF grants CCF-0916112, CCF-0716095, and CCF-0524136.

2

automata (DFAs) as a symbolic representation to encode the set of possible values that
string variables can take at a given program point. Unlike prior string analysis tech-
niques, our analysis isrelational, i.e., it is able to keep track of the relationships among
the string variables, improving the precision of the stringanalysis and enabling ver-
ification of invariants such asX1 = X2 whereX1 andX2 are string variables. We
develop the precise construction of multi-track DFAs for linear word equations, such
asc1X1c2 = c′1X2c

′

2 and show that non-linear word equations (such asX1 = X2X3)
cannot be characterized precisely as a multi-track DFA (Section 3). We propose a reg-
ular approximation for non-linear equations and show how these constructions can be
used to compute the post-condition of branch conditions andassignment statements that
involve concatenation. We use summarization for inter-procedural analysis by generat-
ing a multi-track automaton (transducer) characterizing the relationship between the
input parameters and the return values of each procedure (Section 4). To be able to use
procedure summaries during our reachability analysis wealign multi-track automata
so that normalized automata are closed under intersection.We implemented these al-
gorithms using the MONA automata package [5] and analyzed several PHP programs
demonstrating the effectiveness of our string analysis techniques (Section 5).

Related Work. The use of automata as a symbolic representation for verification has
been investigated in other contexts [4]. In this paper, we focus on verification of string
manipulation operations, which is essential to detect and prevent crucial web vulnera-
bilities. Due to its importance in security, string analysis has been widely studied. One
influential approach has been grammar-based string analysis that statically computes
an over-approximation of the values of string expressions in Java programs [6] which
has also been used to check for various types of errors in Web applications [8, 9, 12].
In [9, 12], multi-track DFAs, known astransducers, are used to model replacement
operations. There are also several recent string analysis tools that use symbolic string
analysis based on DFA encodings [7, 11, 14, 15]. Some of them are based on symbolic
execution and use a DFA representation to model and verify the string manipulation
operations in Java programs [7, 11]. In our earlier work, we have used a DFA based
symbolic reachability analysis to verify the correctness of string sanitization operations
in PHP programs [13–15]. Unlike the approach we proposed in this paper, all of the re-
sults mentioned above use single track DFA and encode the reachable configurations of
each string variable separately. Our multi-track automataencoding not only improves
the precision of the string analysis but also enables verification of properties that cannot
be verified with the previous approaches.

We have also investigated the boundary of decidability for the string verification
problem. Bjørner et al. [2] show the undecidability result with replacement operation.
In this paper we consider only concatenation and show that string verification problem is
undecidable even for deterministic string systems with only three unary string variables
and non-deterministic string systems with only two string variables if the comparison
of two variables are allowed.

2 String Systems
We define the syntax of string systems in Figure 1. We only consider string variables
and hence variable declarations need not specify a type. Allstatements are labeled. We

3

prog ::= decl∗ func∗

decl ::= decl id+;
func ::= id (id∗) begin decl∗ lstmt+ end
lstmt ::= l:stmt
stmt::= seqstmt| if expthen goto l; | goto L; whereL is a set of labels

| input id; | output exp; | assert exp;
seqstmt::=id := sexp; | id := call id (sexp

∗);
exp::= bexp| exp∧ exp| ¬ exp
bexp::= atom= sexp
sexp::= sexp.atom| atom| suffix(id) | prefix(id)
atom::= id | c, wherec is a string constant

Fig. 1.The syntax of string systems

only consider one string operation (concatenation) in our formal model; however, our
symbolic string analysis techniques can be extended to handle complex string opera-
tions (such as replacement [14]). Function calls use call-by-value parameter passing.
We allow goto statements to be non-deterministic (if a goto statement has multiple tar-
get labels, then one of them is chosen non-deterministically). If a string system contains
a non-deterministic goto statement it is called a non-deterministic string system, other-
wise, it is called a deterministic string system.

There are several attributes we can use to classify string systems such as deter-
ministic (D) or non-deterministic (N) string systems, the number of variables in the
string systems, and the alphabet used by the string variables, e.g., unary (U), binary
(B), or arbitrary (K) alphabet. Finally, we can restrict the set of string expressions
that can be used in the assignment and conditional branch instructions. As an instance,
NB(X1, X2)

Xi:=Xic
X1=X2

denotes a non-deterministic string system with a binary alphabet
and two string variables (X1 andX2) where variables can only concatenate constant
strings from the right and compared to each other. We usea to denote a single symbol,
andc, d to denote constant strings.c = prefix (Xi) evaluates to true ifc is a prefix of
Xi, andc = suffix(Xi) evaluates to true ifc is a suffix ofXi. We define thereachability
problem for string systemsis the problem of deciding, given a string system and a con-
figuration (i.e., the instruction label and the values of thevariables), whether at some
point during a computation, the configuration will be reached. We have the following
results:

Theorem 1. The reachability problem for:

1. NB(X1, X2)
Xi:=Xic
X1=X2

is undecidable,

2. DU(X1, X2, X3)
Xi:=Xic
X1=X3,X2=X3

is undecidable,

3. DU(X1, X2, X3, X4)
Xi:=Xic
X1=X3,X2=X4

is undecidable,

4. NU(X1, X2)
Xi:=Xic
X1=X2,c=Xi,c=prefix(Xi),c=suffix(Xi)

is decidable,

5. NK(X1, X2, . . . , Xk)Xi:=dXic

c=Xi,c=prefix(Xi),c=suffix(Xi)
is decidable, and

6. DK(X1, X2, , . . . , Xk)Xi:=Xia,Xi:=aXi

X1=X2,c=Xi,c=prefix(Xi),c=suffix(Xi)
is decidable.

Theorem 1 demonstrates the complexity boundaries for verification of string sys-
tems. Theorem 1.1, 1.2 and 1.3 show that the string verification problem can be unde-

4

cidable even when we restrict a non-deterministic string system to two binary variables,
or a deterministic string system to three unary variables orfour unary variables with
specific comparisons. Theorem 1.4 shows that the three variables in Theorem 1.2 are
necessary in the sense that when there are only two variables, reachability is decid-
able, even when the string system is nondeterministic. Theorem 1.5 and 1.6, on the
other hand, demonstrate that there are non-trivial string verification problems that are
decidable. Since the general string verification problem isundecidable, it is necessary
to develop conservative approximation techniques for verification of string systems. In
this paper we propose a sound string verification approach based on symbolic reachabil-
ity analysis with conservative approximations where multi-track automata are used as
a symbolic representation. Some examples of string systemsthat can be verified using
our analysis are given in [16].

3 Regular Approximation of Word Equations

Our string analysis is based on the following observations:(1) The transitions and the
configurations of a string system can be symbolically represented using word equations
with existential quantification, (2) word equations can be represented/approximated us-
ing multi-track DFAs, which are closed under intersection,union, complement, and
projection, and (3) the operations required during reachability analysis (such as equiv-
alence checking) can be computed on DFAs.

Multi-track DFAs A multi-track DFA is a DFA but over the alphabet that consistsof
many tracks. Ann-track alphabet is defined as(Σ ∪ {λ})n, whereλ 6∈ Σ is a special
symbol for padding. We usew[i] (1 ≤ i ≤ n) to denote theith track ofw ∈ (Σ∪{λ})n.
An alignedmulti-track DFA is a multi-track DFA where all tracks are left justified (i.e.,
λ’s are right justified). That is, ifw is accepted by an alignedn-track DFA M , then
for 1 ≤ i ≤ n, w[i] ∈ Σ∗λ∗. We also usêw[i] ∈ Σ∗ to denote the longestλ-free
prefix ofw[i]. It is clear that aligned multi-track DFA languages are closed under inter-
section, union, and homomorphism. LetMu be the alignedn-track DFA that accepts
the (aligned) universe, i.e.,{w | ∀i.w[i] ∈ Σ∗λ∗}. The complement of the language
accepted by an alignedn-track DFAM is defined bycomplement modulo alignment,
i.e., the intersection of the complement ofL(M) with L(Mu). For the following de-
scriptions, a multi-track DFA is an aligned multi-track DFAunless we explicitly state
otherwise.

Word Equations A word equation is an equality relation of two words that concatenate
variables from a finite setX and words from a finite set of constantsC. The general form
of word equations is defined asv1 . . . vn = v′1 . . . v′m, where∀i, vi, v

′

i ∈ X ∪ C. The
following theorem identifies the basic forms of word equations. For example, a word
equationf : X1 = X2dX3X4 is equivalent to∃Xk1

, Xk2
.X1 = X2Xk1

∧ Xk1
=

dXk2
∧ Xk2

= X3X4.

Theorem 2. Word equations and Boolean combinations (¬, ∧ and∨) of these equa-
tions can be expressed using equations of the formX1 = X2c, X1 = cX2, c = X1X2,
X1 = X2X3, Boolean combinations of such equations and existential quantification.

5

Let f be a word equation overX= {X1, X2, . . . , Xn} andf [c/X] denote a new
equation whereX is replaced withc for all X that appears inf . We say that ann-
track DFAM under-approximatesf if for all w ∈ L(M), f [ŵ[1]/X1, . . . , ŵ[n]/Xn]
holds. We say that ann-track DFAM over-approximatesf if for any s1, . . . , sn ∈ Σ∗

wheref [s1/X1, . . . , sn/Xn] holds, there existsw ∈ L(M) such that for all1 ≤ i ≤
n, ŵ[i] = si. We callM precisewith respect tof if M both under-approximates and
over-approximatesf .

Definition 1. A word equationf is regularly expressible if and only if there exists a
multi-track DFAM such thatM is precise with respect tof .

Theorem 3. 1. X1 = X2c, X1 = cX2, andc = X1X2 are regularly expressible, as
well as their Boolean combinations.

2. X1 = cX2 is regularly expressible but the correspondingM has exponential num-
ber of states in the length ofc.

3. X1 = X2X3 is not regularly expressible.

We are able to compute multi-track DFAs that are precise withrespect to word equa-
tions:X1 = X2c, X1 = cX2, andc = X1X2. SinceX1 = X2X3 is not regularly ex-
pressible, below, we describe how to compute DFAs that approximate such non-linear
word equations. Using the DFA constructions for these four basic forms we can con-
struct multi-track DFAs for all word equations and their Boolean combinations (if the
word equation contains a non-linear term then the constructed DFA will approximate
the equation, otherwise it will be precise). The Boolean operations conjunction, dis-
junction and negation can be handled with intersection, union, and complement mod-
ulo alignment of the multi-track DFAs, respectively. Existential quantification on the
other hand, can be handled using homomorphism, where given aword equationf and a
multi-track automatonM such thatM is precise with respect tof , then the multi-track
automatonM ⇂i is precise with respect to∃Xi.f whereM ⇂i denotes the result of
erasing theith track (by homomorphism) ofM .

Construction of X1 = X2X3 Since Theorem 3 shows thatX1 = X2X3 is not reg-
ularly expressible, it is necessary to construct a conservative (over or under) approx-
imation of X1 = X2X3. We first propose anover approximation construction for
X1 = X2X3. Let M1 = 〈Q1, Σ, δ1, I1, F1〉, M2 = 〈Q2, Σ, δ2, I2, F2〉, andM3 =
〈Q3, Σ, δ3, I3, F3〉 accept values ofX1, X2, andX3, respectively.M = 〈Q, (Σ ∪
{λ})3, δ, I, F 〉 is constructed as follows.

– Q ⊆ Q1 × Q2 × Q3 × Q3,
– I = (I1, I2, I3, I3),
– ∀a, b ∈ Σ, δ((r, p, s, s′), (a, a, b)) = (δ1(r, a), δ2(p, a), δ3(s, b), s

′),
– ∀a, b ∈ Σ, p ∈ F2, s 6∈ F3, δ((r, p, s, s′), (a, λ, b)) = (δ1(r, a), p, δ3(s, b), δ3(s

′, a)),
– ∀a ∈ Σ, p ∈ F2, s ∈ F3, δ((r, p, s, s′), (a, λ, λ)) = (δ1(r, a), p, s, δ3(s

′, a)),
– ∀a ∈ Σ, p 6∈ F2, s ∈ F3, δ((r, p, s, s′), (a, a, λ)) = (δ1(r, a), δ2(p, a), s, s′),
– F = {(r, p, s, s′) | r ∈ F1, p ∈ F2, s ∈ F3, s

′ ∈ F3}.

6

The intuition is as follows:M tracesM1, M2 andM3 on the first, second and third
tracks, respectively, and makes sure that the first and second tracks match each other.
After reaching an accepting state inM2, M enforces the second track to beλ and
starts to traceM3 on the first track to ensure the rest (suffix) is accepted byM3. |Q| is
O(|Q1| × |Q2| × |Q3| + |Q1| × |Q3| × |Q3|). For allw ∈ L(M), the following hold:

– ŵ[1] ∈ L(M1), ŵ[2] ∈ L(M2), ŵ[3] ∈ L(M3),
– ŵ[1] = ŵ[2]w′ andw′ ∈ L(M3),

Note thatw′ may not be equal tôw[3], i.e., there existsw ∈ L(M), ŵ[1] 6=
ŵ[2]ŵ[3], and henceM is not precise with respect toX1 = X2X3. On the other hand,
for any w such thatŵ[1] = ŵ[2]ŵ[3], we havew ∈ L(M), henceM is a regular
over-approximation ofX1 = X2X3.

Below, we describe how to construct a regularunder-approximation ofX1 = X2X3

(which is necessary for conservative approximation of its complement set). We use the
idea that ifL(M2) is a finite set language, one can construct the DFAM that satisfies
X1 = X2X3 by explicitly taking the union of the construction ofX1 = cX3 for
all c ∈ L(M2). If L(M2) is an infinite set language, we construct a regularunder-
approximation ofX1 = X2X3 by considering a (finite) subset ofL(M2) where the
length is bounded. Formally speaking, for eachk ≥ 0 we can constructMk, so that
w ∈ L(Mk), ŵ[1] = ŵ[2]ŵ[3], ŵ[1] ∈ L(M1), ŵ[3] ∈ L(M3), ŵ[2] ∈ L(M2) and
|ŵ[2]| ≤ k. It follows that Mk is a regularunder-approximation ofX1 = X2X3.
If L(M2) is a finite set language, there existsk (the length of the longest accepted
word) whereL(Mk) is precise with respect toX1 = X2X3. If L(M2) is an infinite set
language, there does not exist suchk so thatL(Mk) is precise with respect toX1 =
X2X3, as we have proven non-regularity ofX1 = X2X3.

4 Symbolic Reachability Analysis

Our symbolic reachability analysis involves two main steps: forward fixpoint computa-
tion and summarization.

Forward Fixpoint Computation The first phase of our analysis is a standard forward
fixpoint computation on multi-track DFAs. Each program point is associated with a
single multi-track DFA, where each track is associated witha single string variable
X ∈ X. We useM [l] to denote the multi-track automaton at the program labell. The
forward fixpoint computation algorithm is a standard work-queue algorithm. Initially,
for all labelsl, L(M [l]) = ∅. We iteratively compute the post-images of the statements
and join the results to the corresponding automata. For astmt in the form:X := sexp,
the post-image is computed as:

POST(M, stmt) ≡ (∃X.M ∩ CONSTRUCT(X ′ = sexp, +))[X/X ′].

CONSTRUCT(exp, b) returns the DFA that accepts a regular approximation ofexp, where
b ∈ {+,−} indicates the direction (over or under, respectively) of approximation if
needed. During the construction, we recursively push the negations (¬) (and flip the di-
rection) inside to the basic expressions (bexp), and use the corresponding construction

7

f(X)
begin
1: goto 2, 3;
2: X: = call f(X.a);
3: return X;
end

Fig. 2.A function and its summary DFA

of multi-track DFAs discussed in the previous section. We use function summaries to
handle function calls. Each functionf is summarized as a finite state transducer, de-
noted asMf , which captures the relations among input variables (parameters), denoted
asXp, and return values. The return values are tracked in the output track, denoted as
Xo. We discuss the generation of the transducerMf below. For astmt in the formX :=
call f(e1, . . . , en), the post-image is computed as:

POST(M, stmt) ≡ (∃X, Xp1
, . . .Xpn

.M ∩ MI ∩ Mf)[X/Xo],

whereMI = CONSTRUCT(
∧

i Xpi
= ei, +). The process terminates when we reach

a fixpoint. To accelerate the fixpoint computation, we extendour automata widening
operator [14], denoted as∇, to multi-track automata. We identify equivalence classes
according to specific equivalence conditions and merge states in the same equivalence
class [1, 3]. The following lemma shows that the equality relations among tracks are
preserved while widening multi-track automata.

Lemma 1. if L(M) ⊆ L(x = y) andL(M ′) ⊆ L(x = y), L(M∇M ′) ⊆ L(x = y).

Summarization We compute procedure summaries in order to handle procedurecalls.
We assume parameter-passing with call-by-value semanticsand we are able to handle
recursion. Each functionf is summarized as a multi-track DFA, denoted asMf , that
captures the relation among its input variables and return values.

Consider the recursive functionf shown in Figure 2 with one parameter.f non-
deterministically returns its input (goto 3) or makes a selfcall (goto 2) by concatenating
its input and a constanta. The generated summary for this function is also shown in
Figure 2.Mf is a 2-track DFA, where the first track is associated with its parameter
Xp1

, and the second track is associated withXo representing the return values. The
edge(Σ, Σ) represents a set of identity edges. In other words,δ(q, (Σ, Σ)) = q′ means
∀a ∈ Σ, δ(q, (a, a)) = q′. The summary DFAMf precisely captures the relationXo =
Xp1

.a∗ between the input variable and the return values.
During the summarization phase, (possibly recursive) functions are summarized as

unaligned multi-track DFAs that specify the relations among their inputs and return
values. We first build (possibly cyclic) dependency graphs to specify how the inputs
flow to the return values. Each node in the dependency graph isassociated with an
unaligned multi-track DFA that traces the relation among inputs and the value of that
node. An unaligned multi-track DFA is a multi-track DFA whereλs might not be right
justified. Return values of a function are represented with an auxiliary output track.
Given a functionf with n parameters,Mf is an unaligned(n + 1)-track DFA, wheren

8

tracks represent then input parameters and one trackXo is the output track representing
the return values. We iteratively compute post images of reachable relations and join
the results until we reach a fixpoint. Upon termination, the summary is the union of the
unaligned DFAs associated with the return nodes. To composethese summaries at the
call site, we also propose an alignment algorithm to align (so thatλ’s are right justified)
an unaligned multi-track DFA.

Once the summary DFAMf has been computed, it is not necessary to reanalyze
the body off . To compute the post-image of a call tof we intersect the values of
input parameters withMf and use existential quantification to obtain the return values.
Let M be a one-track DFA associated withX whereL(M) = {b}. POST(M , X :=
call f(X)) returnsM ′ whereL(M ′) = ba∗ for the example function shown above.
As another example, letM be a2-track DFA associated withX, Y that is precise with
respect toX = Y . ThenPOST(M , X := call f(X)) returnsM ′ which is precise
with respect toX = Y.a∗ precisely capturing the relation betweenX andY after the
execution of the function call. As discussed above,M ′ is computed by(∃X, Xp1

.M ∩
MI ∩ Mf)[X/Xo], whereL(MI) = CONSTRUCT(Xp1

= X , +).

5 Experiments

We evaluate our approach against three kinds of benchmarks:1) Basic benchmarks, 2)
XSS/SQLI benchmarks, and 3) MFE benchmarks. These benchmarks represent typi-
cal string manipulating programs along with string properties that address severe web
vulnerabilities.

In the first set, we demonstrate that our approach can prove implicit equality prop-
erties of string systems. We wrote two small programs. CheckBranch (B1) has if branch
(X1 = X2) and else branch (X1 6= X2). In the else branch, we assign a constant string
c to X1 and then assign the same constant string toX2. We check at the merge point
whetherX1 = X2. In CheckLoop (B2) we assign variablesX1 andX2 the same con-
stant string at the beginning, and iteratively append another constant string to both in
an infinite loop. We check whetherX1 = X2 at the loop exit. LetM accept the values
of X1 andX2 upon termination. The equality assertion holds whenL(M) ⊆ L(Ma),
whereMa is CONSTRUCT(X1 = X2, −). We use ”−” to construct (under approxima-
tion) automata for assertions to ensure the soundness of ouranalysis. Using multi-track
DFAs, we prove the equality property (result “true”) whereas we are unable to prove it
using single-track DFAs (result “false”) as shown in Table 1(B1 and B2). Though these
benchmark examples are simple, to the best of our knowledge,there are no other string
analysis tools that can prove equality properties in these benchmarks.

In the second set, we check existence of Cross-Site Scripting (XSS) and SQL Injec-
tion (SQLI) vulnerabilities in Web applications with knownvulnerabilities. We check
whether at a specific program point, a sensitive function maytake an attack string as
its input. If so, we say that the program is vulnerable with respect to the given attack
pattern. To identify XSS/SQLI attacks, we check intersection emptiness against all pos-
sible input values that reach a sensitive function at a givenprogram point and the attack
strings specified as a regular language. Though one can checksuch vulnerabilities using
single-track DFAs [14], using multi-track automata, we canprecisely interpret branch

9

conditions, such as$www=$url, that cannot be precisely expressed using single-track
automata, and obtain more accurate characterization of inputs of the sensitive functions.
For the vulnerabilities identified in these benchmarks (S1 to S4), we did not observe
false alarms that result from the approximation of the branch conditions.

The last set of benchmarks show that the precision that is obtained using multi-
track DFAs can help us in removing false alarms generated by single-track automata
based string analysis. These benchmarks representmalicious file execution(MFE) at-
tacks. Such vulnerabilities are caused because developersdirectly use or concatenate
potentially hostile input with file or stream functions, or improperly trust input files.
We systematically searched web applications for program points that execute file func-
tions, such asinclude andfopen, whose arguments may be influenced by external
inputs. At these program points, we check whether the retrieved files and the external
inputs are consistent with what the developers intend. We manually generate a multi-
track DFAMvul that accepts a set of possible violations for each benchmark, and apply
our analysis on the sliced program segments. Upon termination, we report that the file
function is vulnerable ifL(M) ∩ L(Mvul) 6= ∅. M is the composed DFA of the listed
single-track DFAs in the single-track analysis. As shown inTable 1 (M1 to M5), using
multi-track DFAs we are able to verify that MFE vulnerabilities do not exist whereas
string analysis using single-track DFAs raises false alarms for all these examples.

We have shown that multi-track DFAs can handle problems thatcannot be handled
by multiple single-track DFAs, but at the same time, they usemore time and memory.
For these benchmarks, the cost seems affordable. As shown inTable 1, in all tests, the
multi-track DFAs that we computed (even for the composed ones) are smaller than the
product of the corresponding single-track DFAs. One advantage of our implementation
is symbolic DFA representation (provided by the MONA DFA library [5]), in which
transition relations of the DFA are represented as Multi-terminal Binary Decision Dia-
grams (MBDDs). Using the symbolic DFA representation we avoid the potential expo-
nential blow-up that can be caused by the product alphabet. However, in the worst case
the size of the MBDD can still be exponential in the number of tracks.

6 Conclusion

In this paper, we presented a formal characterization of thestring verification problem,
investigated the decidability boundary for string systems, and presented a novel veri-
fication technique for string systems. Our verification technique is based on forward
symbolic reachability analysis with multi-track automata, conservative approximations
of word equations and summarization. We demonstrated the effectiveness of our ap-
proach on several benchmarks.

References

1. C. Bartzis and T. Bultan. Widening arithmetic automata. In CAV, pages 321–333, 2004.
2. N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility analysis for string-manipulating

programs. InTACAS, pages 307–321, 2009.

10

Single-track Multi-track
Result DFAs/ Composed DFA Time Mem Result DFA Time Mem

Ben state(bdd) user+sys(sec)(kb) state(bdd)user+sys(sec)(kb)

B1 false 15(107), 15(107) /33(477) 0.027 + 0.006 410 true 14(193) 0.070 + 0.009 918
B2 false 6(40), 6(40) / 9(120) 0.022+0.008 484 true 5(60) 0.025+0.006 293

S1 vul 2(20), 9(64), 17(148) 0.010+0.002 444 vul 65(1629) 0.195+0.150 1231
S2 vul 9(65), 42(376) 0.017+0.003 626 vul 49(1205) 0.059+0.006 4232
S3 vul 11(106), 27(226) 0.032+0.003 838 vul 47(2714) 0.153+0.008 2684
S4 vul 53(423), 79(633) 0.062+0.005 1696 vul 79(1900) 0.226+0.003 2826

M1 yes 2(8), 28(208) / 56(801) 0.027+0.003 621 no 50(3551) 0.059+0.002 1294
M2 yes 2(20), 11(89) / 22(495) 0.013+0.004 555 no 21(604) 0.040+0.004 996
M3 yes 2(20), 2(20) / 5(113) 0.008+0.002 417 no 3(276) 0.018+0.001 465
M4 yes 24(181), 2(8), 25(188) / 1201(25949)0.226+0.025 9495 no 181(9893) 0.784+0.07 19322
M5 yes 2(8), 14(101), 15(108) / 211(3195)0.049+0.008 1676 no 62(2423) 0.097+0.005 1756

Table 1. Experimental results. DFA(s): the minimized DFA(s) associated with the
checked program point. state: number of states. bdd: numberof bdd nodes. Bench-
mark: Application, script (line number). S1: MyEasyMarket-4.1, trans.php (218). S2:
PBLguestbook-1.32, pblguestbook.php(1210), S3:Aphpkb-0.71, saa.php(87), and S4:
BloggIT 1.0, admin.php (23). M1: PBLguestbook-1.32, pblguestbook.php(536). M2:
MyEasyMarket-4.1, prod.php (94). M3: MyEasyMarket-4.1, prod.php (189). M4: php-
fusion-6.01, dbbackup.php (111). M5: php-fusion-6.01, forumsprune.php (28).

3. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. InCAV, pages
372–386, 2004.

4. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. InCAV, pages
403–418, 2000.

5. BRICS. The MONA project.http://www.brics.dk/mona/.
6. A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis of string expressions.

In SAS, pages 1–18, 2003.
7. X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A static analysis framework for

detecting sql injection vulnerabilities. InCOMPSAC, pages 87–96, 2007.
8. C. Gould, Z. Su, and P. Devanbu. Static checking of dynamically generated queries in

database applications. InICSE, pages 645–654, 2004.
9. Y. Minamide. Static approximation of dynamically generated web pages. InWWW, pages

432–441, 2005.
10. Open Web Application Security Project (OWASP). Top ten project. http://www.

owasp.org/, May 2007.
11. D. Shannon, S. Hajra, A. Lee, D. Zhan, and S. Khurshid. Abstracting symbolic execution

with string analysis. InTAICPART-MUTATION, pages 13–22, DC, USA, 2007.
12. G. Wassermann and Z. Su. Static detection of cross-site scripting vulnerabilities. InICSE,

pages 171–180, 2008.
13. F. Yu, M. Alkhalaf, and T. Bultan. Stranger: An automata-based string analysis tool for php.

In TACAS, pages 154–157, 2010.
14. F. Yu, T. Bultan, M. Cova, and O. H. Ibarra. Symbolic string verification: An automata-based

approach. InSPIN, pages 306–324, 2008.
15. F. Yu, T. Bultan, and O. H. Ibarra. Symbolic string verification: Combining string analysis

and size analysis. InTACAS, pages 322–336, 2009.
16. F. Yu, T. Bultan, and O. H. Ibarra. Verification of string manipulating programs using multi-

track automata. Technical Report 2009-14, Computer Science Department, University of
California, Santa Barbara, August 2009.

