Skip to main content

Feasibility of Organizations – A Refinement of Chemical Organization Theory with Application to P Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6501))

Abstract

In membrane computing, a relatively simple set of reaction rules usually implies a complex “constructive” dynamics, in which novel molecular species appear and present species vanish. Chemical organization theory is a new approach that deals with such systems by describing chemical computing as a transition between organizations, which are closed and self-maintaining sets of molecular species. In this paper we show that for the case of mass-action kinetics some organizations are not feasible in the space of concentrations and thus need not to be considered in the analysis. We present a theorem providing criteria for an unfeasible organization. This is a refinement of organization theory making its statements more precise. In particular it follows for the design of a membrane computing system that the desired resulting organization of a chemical computing process should be a feasible organization. Nevertheless we show that due to the membranes in a P system unfeasible organizations can be observed, suggesting a strong link between the two approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  2. Centler, F., Dittrich, P.: Chemical Organizations in Atmospheric Photochemistries: A New Method to Analyze Chemical Reaction Networks. Planet. Space Sci. 55, 413–428 (2007)

    Article  Google Scholar 

  3. Centler, F., Kaleta, C., Speroni di Fenizio, P., Dittrich, P.: Computing Chemical Organizations in Biological Networks. Bioinformatics 24, 1611–1618 (2008)

    Article  Google Scholar 

  4. Dittrich, P., Speroni di Fenizio, P.: Chemical Organization Theory. Bull. Math. Biol. 69, 1199–1231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feinberg, M., Horn, F.J.M.: Dynamics of Open Chemical Systems and the Algebraic Structure of the Underlying Reaction Network. Chem. Eng. Sci. 29, 775–787 (1974)

    Article  Google Scholar 

  6. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bull. Math. Biol. 56, 1–64 (1994)

    MATH  Google Scholar 

  7. Luhmann, N.: Soziale Systeme. Suhrkamp, Frankfurt a.M (1984)

    Google Scholar 

  8. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical Organization Theory as a Theoretical Base for Chemical Computing. Int. Jour. on Unconventional Computing 3, 285–309 (2007)

    Google Scholar 

  9. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical Organization Theory Applied to Virus Dynamics. Information Technology 48, 154–160 (2006)

    Google Scholar 

  10. Murray, J.D.: Mathematical Biology I: An Introduction. Springer, New York (2002)

    MATH  Google Scholar 

  11. Peter, S.: Chemische Organisationen und kontinuierliche Dynamik. Diploma Thesis (2008)

    Google Scholar 

  12. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, University of Bonn, Bonn (1962)

    Google Scholar 

  13. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic Pathway Analysis: Basic Concepts and Scientific Applications in the Post-genomic Era. Biotechnol. Prog. 15, 296–303 (1999)

    Article  Google Scholar 

  14. Schuster, S., Dandekar, T., Fell, D.A.: Detection of Elementary Flux Modes in Biochemical Networks: A Promising Tool for Pathway Analysis and Metabolic Engineering. Trends Biotechnol. 17, 53–60 (1999)

    Article  Google Scholar 

  15. Sensse, A.: Convex and Toric Geometry to Analyze Complex Dynamics in Chemical Reaction Systems. Ph.D. thesis, Otto-von-Guericke University Magdeburg, Magdeburg (2005)

    Google Scholar 

  16. Sensse, A., Eiswirth, M.: Feedback Loops for Chaos in Activator-inhibitor Systems. Jour. Chem. Phys. 122, 044516–044516-9 (2005)

    Google Scholar 

  17. Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback Loops for Shilnikov Chaos: The Peroxidase-oxidase Reaction, Jour. Chem. Phys. 125, 014901–014901-12 (2006)

    Google Scholar 

  18. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (2000)

    Google Scholar 

  19. Paun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  20. Bernardini, F., Manca, V.: Dynamical aspects of P systems. Biosystems 70, 85–93 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Peter, S., Veloz, T., Dittrich, P. (2010). Feasibility of Organizations – A Refinement of Chemical Organization Theory with Application to P Systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. CMC 2010. Lecture Notes in Computer Science, vol 6501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18123-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18123-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18122-1

  • Online ISBN: 978-3-642-18123-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics