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Preface 

During the last decade enormous progress has been achieved in the field of 
computational fluid dynamics. This became possible by the development of 
robust and high-order accurate numerical algorithms as well as the construc
tion of enhanced computer hardware, e.g., parallel and vector architectures, 
workstation clusters. All these improvements allow the numerical simulation 
of real world problems arising for instance in automotive and aviation indus
try. Nowadays numerical simulations may be considered as an indispensable 
tool in the design of engineering devices complementing or avoiding expen
sive experiments. In order to obtain qualitatively as well as quantitatively 
reliable results the complexity of the applications continuously increases due 
to the demand of resolving more details of the real world configuration as 
well as taking better physical models into account, e.g., turbulence, real gas 
or aeroelasticity. Although the speed and memory of computer hardware are 
currently doubled approximately every 18 months according to Moore's law, 
this will not be sufficient to cope with the increasing complexity required by 
uniform discretizations. 

The future task will be to optimize the utilization of the available re
sources. Therefore new numerical algorithms have to be developed with a 
computational complexity that can be termed nearly optimal in the sense 
that storage and computational expense remain proportional to the "inher
ent complexity" (a term that will be made clearer later) problem. This leads 
to adaptive concepts which correspond in a natural way to unstructured grids. 
The conclusion is justified by results of approximation theory which clearly in
dicate that nonlinear approximations, e.g., the positions of the discretization 
points are not a priori fixed, are more efficient than linear approximations, 
e.g., uniform discretizations. For details on nonlinear approximation theory 
see [De V98]. Currently, numerous efforts of this type are made in different 
research fields such as image processing, data compression, partial differential 
equations. In this monograph, the adaptation concepts for partial differen
tial equations are of special interest which shall be briefly reviewed. A naive 
technique is the remeshing of the grid where a fixed number of mesh points 
is relocated. Obviously this concept is aiming at balancing the error with a 
fixed number of points rather than reducing the error to a given tolerance. 
In order to meet a fixed error tolerance the grid adaptation has to allow for 
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mesh enrichment, i.e., locally refining and coarsening the mesh. This may 
result in an unstructured grid with locally hanging nodes. Instead of refin
ing the grid it is also possible to increase locally the approximation order p 
or apply a different discretization operator for a fixed grid. This leads to a 
hybrid discretization. Of course both strategies can be combined. More de
tails on this subject can be found for instance in [Sch98]. For time-dependent 
problems one might also apply local time steps. In this case, the constraint 
for the time discretization due to a CFL number is locally weakened without 
causing instabilities. Hence the solution may evolve faster in time for coarse 
cells than for fine cells. Of course, the solution has to be synchronized in case 
of instationary problems but not necessarily for steady state problems. For 
details see e.g. [B084]. Instead of adapting the discretization one might also 
locally change the underlying model, e.g. linearize the model or neglect higher 
order derivatives if the corresponding physical effects are small. 

Although the above techniques differ in the adaptation strategy they have 
one problem in common, namely, the control of the adaptation. Two strategies 
that are applied in the context of grid refinement shall be briefly summarized. 
Here we distinguish between concepts based on error indicators and error es
timators, respectively. In case of error indicators, the grid is remeshed, e.g., 
according to steep (discretely approximated) gradients of a physically rele
vant quantity or other indicators. However, this strategy provides only control 
on the grid refining and coarsening but no information about the error of the 
approximation. A reliable concept is the error-balancing strategy. The goal is 
to equilibrate the error. To this end, a tolerance tol and a maximal number of 
discretization points Nmax are fixed. By means of residual-based a posteriori 
estimates the grid is locally refined until a local error estimator is propor
tional to the ratio tol/Nmax • This leads to an optimal mesh size distribution. 
In practice, it cannot be realized. Therefore one is aiming at an almost quasi 
equidistribution of the error tolerances. Numerous results on a posteriori er
ror estimates have been reported in the literature for elliptic problems, see 
[Ver95, EEHJ95, BR96, HR02], parabolic problems [EJ91, EJ95] and hyper
bolic problems see [Tad91, CCL94, Vil94, JS95, CG96, Noe96, SH97, K099]. 
During the last decade new strategies have been developed based on mul
tiscale techniques. Here wavelet techniques have become very popular. The 
basic idea is to decompose the trial space into a coarser approximation space 
and a complement space spanned by so-called wavelet functions. This decom
position is recursively applied to the coarse approximation space. Finally, we 
obtain a decomposition of the trial space into the coarsest approximation 
space and a sequence of complement spaces representing the difference be
tween the approximation spaces. Performing a change of basis the solution can 
now be equivalently represented in terms of the single-scale basis correspond
ing to the trial space of the finest approximation space and the multiscale 
or wavelet basis, respectively. Since the coefficients of the wavelet expansion, 
so-called wavelet coefficients or details, may become small whenever the so-
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lution is locally smooth, data compression can be performed applying thresh
old techniques. For instance, one only keeps the N largest coefficients. Here 
the objective is to minimize the error by N coefficients (see e.g. [CDDOl)). 
This corresponds to the idea of best N -term approximation. Alternatively, 
a tolerance E can be fixed and all details smaller than this threshold value 
are discarded. Here the idea is to reduce the total number of coefficients 
to a small number of significant coefficients where the error to the approxi
mate solution of the underlying approximation space is proportional to E (see 
e.g. [GM99a, CKMPOl)). In order to control the threshold error we need to 
relate coefficient norms to function norms. 

The present work is concerned with developing and analyzing an adap
tive finite volume scheme (FVS) for the approximation of multidimensional 
hyperbolic conservation laws. The concept is based on multiscale techniques 
which have already been mentioned above. First work on this subject has 
been reported by Harten [Har94, Har95]. Here the goal is the acceleration of 
a given FVS on a grid of uniform resolution by a hybrid flux computation. 
The core ingredient is the multiscale decomposition of a sequence of aver
ages corresponding to a grid of finest resolution into a sequence of details 
and coarse grid averages. This decomposition is performed on a sequence of 
nested grids with decreasing resolution. It can be utilized in order to dis
tinguish smooth regions of the flow field from regions with locally strong 
variations in the solution. In particular, the hybrid flux evaluation can be 
controlled by the decomposition, i.e., expensive upwind discretizations based 
on Riemann solvers are only applied near discontinuities of the solution. Else
where cheaper linear combinations of already computed numerical fluxes on 
coarser scales are used instead. These correspond to finite difference approx
imations. In the meantime this originally one-dimensional concept has been 
extended to multidimensional problems on Cartesian grids [BH97, CDOl], 
curvilinear patches [DGMOO] and triangulations [SSFOO, Abg97, CDKPOO]. 

The bottleneck of Harten's strategy is the fact that the computational 
complexity, i.e., the number of floating point operations as well as the mem
ory requirements, corresponds to the globally finest grid. In view of mul
tidimensional applications, this is a severe disadvantage. Recently, a real 
adaptive approach has been presented in [GM99a] and has been investigated 
in [CKMPOl] where the computational complexity is proportional to the 
problem-inherent degrees of freedom. The basic idea of this concept is to 
determine an adaptive grid by means of a sequence of truncated details. The 
set of significant details can be interpreted as a tree. Then the adaptive grid 
is constructed by locally refining the grid according to the tree of significant 
details. This leads to an unstructured grid with hanging nodes. In order to 
restrict the computational complexity to the number of significant details the 
multiscale transformation is only performed on the set of significant details 
and the averages corresponding to the adaptive grid. It turned out that the 
grading of the tree simplifies the local transformation without increasing the 
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complexity. In particular, the leaves of the graded tree directly correspond to 
the adaptive grid. 

In order to preserve the accuracy of the reference FVS with respect to 
the finest grid the numerical fluxes on the adaptive grid have to be evaluated 
judiciously. No error at all is introduced when locally performing the flux eval
uation by means of the averages on the finest scale. However, this requires 
a local reconstruction process by which the computational complexity is in
creased for multidimensional problems. Investigations for a one-dimensional 
scalar equation verify that for first order approximations the accuracy of the 
adaptive FVS is much less than that of the reference FVS (see [CKMPOl]). 
However, parameter studies show that in case of higher order accurate FVS 
based on reconstruction techniques this constraint can be weakened. Here it 
is possible to utilize the given local averages directly instead of computing the 
averages on the finest scale. The target accuracy is still preserved by means 
of the solver-inherent reconstruction step. 

A point of special interest is the reliability of the scheme, i.e., the per
turbation error introduced by the truncation process can be controlled over 
all time levels. For this purpose analytically rigorous estimates have to be 
derived by which the details on the new time level can be estimated by those 
already computed in the previous time step. For the one-dimensional scalar 
case this prediction has been analytically investigated in [CKMPOl]. The re
sults derived there justify for the first time the heuristic approach suggested 
by Harten. 

By now the new adaptive multiresolution concept has been applied by sev
eral groups with great success to different applications, e.g., 2D-steady state 
computations of compressible fluid flow around air wings modeled by the 
Euler and Navier-Stokes equations, respectively, on block-structured curvi
linear grid patches [BGMH+Ol], non-stationary shock-bubble interactions 
on 2D Cartesian grids for Euler equations [Mii102], backward-facing step 
on 2D triangulations [CKP02] and simulation of a flame ball modeled by 
reaction-diffusion equations on 3D Cartesian grids [RS02]. 

This book presents a self-contained account of the above adaptive con
cept for conservation laws. The main objectives are the construction and the 
analysis of the local multiscale transformation, the derivation of the adap
tive FVS and a rigorous error analysis. New applications on Cartesian and 
curvilinear grids for the 2D Euler equations are presented which verify that 
the solver can be applied to real world problems. According to this the out
line of the present work is as follows: In Chap. 1 the governing equations 
are presented and some of the characteristic properties are summarized. This 
is concluded by a brief introduction to Godunov-type schemes which form 
an important class of FVS frequently applied to approximate the solution of 
conservation laws. The multiscale setting is outlined in Chap. 2. It is based 
on a hierarchy of nested grids. As a simple but important example the Haar 
basis is presented to outline the basic principles and the goal of the multiscale 
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setting. This motivates the general framework of biorthogonal wavelets and 
stable completions. Modifying the Haar basis appropriately leads to a new 
basis with "good" cancellation properties which is utilized in the adaptive 
scheme. In Chap. 3 the local multiscale analysis is introduced by means of 
the modified basis. In particular, the tree of significant details, the grading 
of the tree and the construction of the adaptive grid are investigated in some 
detail. The performance of the local multiscale transformation is analyzed 
in detail which results in sufficient conditions for the grading of the details. 
The construction of the adaptive FVS is presented in Chap. 4. In particular, 
several strategies for the evaluation of the numerical fluxes are discussed and 
the construction of the prediction set of significant details on the new time 
level is outlined. An error analysis is presented in Chap. 5. It is based on an 
ansatz originally considered by Harten [Har95] in the context of his hybrid 
scheme and the results derived in [CKMP01]. An efficient implementation of 
the adaptive scheme crucially depends on the data structures by which the 
algorithm is realized. This is no longer a trivial task as it is for schemes based 
on structured meshes. In order to realize optimal computational complexity 
the data structures have to be adapted judiciously to the underlying adap
tive algorithm. Such appropriate data structures are discussed in Chap. 6. 
Finally, in Chap. 7, some relevant numerical examples illustrate the computa
tional complexity and accuracy behavior of the scheme and problems arising 
in engineering applications are presented. 
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