Abstract
In this paper we propose the hybridization of the rough set concepts and statistical learning theory. We introduce new estimators for rule accuracy and coverage, which base on the assumptions of the statistical learning theory. These estimators allow us to select rules describing statistically significant dependencies in data. Then we construct classifier which uses these estimators for rule induction. In order to make our solution applicable for information systems with missing values and multiple valued attributes, we propose axiomatic representation of information systems and we redefine the indiscernibility relation as a relation on objects characterized by axioms. Finally, we test our classifier on benchmark datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Vapnik, V.N.: Statistical Learning Theory. John_Wiley, New York (1998)
Jaworski, W.: Generalized indiscernibility relations: Applications for missing values and analysis of structural objects. Transactions of Rough Sets 8, 116–145 (2008)
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Inf. Sci. 177(1), 28–40 (2007)
Skowron, A., Świniarski, R.W., Synak, P.: Approximation spaces and information granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13–30 (1963)
Jaworski, W.: Model selection and assessment for classification using validation. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 481–490. Springer, Heidelberg (2005)
Jaworski, W.: Bounds for validation. Fundam. Inform. 70(3), 261–275 (2006)
Tsumoto, S.: Accuracy and coverage in rough set rule induction. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 373–380. Springer, Heidelberg (2002)
Guillet, F., Hamilton, H.J. (eds.): Quality Measures in Data Mining. SCI, vol. 43. Springer, Heidelberg (2007)
Gediga, G., Düntsch, I.: Rough Set Data Analysis — A Road to Non-Invasive Knowledge Discovery. Methodos Publishers, UK (2000)
Asuncion, A., Newman, D.J.: UCI machine learning repository. Technical report, University of California, Irvine, School of Information and Computer Sciences (2007)
Jaworski, W.: Contents modelling of Neo-Sumerian Ur III economic text corpus. In: Proc. of the 22nd International Conference on Computational Linguistics (COLING 2008), Manchester, UK, pp. 369–376. Coling 2008 Organizing Committee (2008)
Pawlak, Z.: Information systems — theoretical foundations. Information Systems 6(3), 205–218 (1981)
Grzymała-Busse, J.W., Grzymala-Busse, W.J.: An experimental comparison of three rough set approaches to missing attribute values. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 31–50. Springer, Heidelberg (2007)
Grzymała-Busse, J.W.: A rough set approach to data with missing attribute values. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 58–67. Springer, Heidelberg (2006)
Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci. 112(1-4), 39–49 (1998)
Kryszkiewicz, M.: Properties of incomplete information systems in the framework of rough sets. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1. Methodology and Applications. Studies in Fuzziness and Soft Computing, pp. 422–450. Physica-Verlag, Heidelberg (1998)
Lipski, W.J.: On Databases with Incomplete Information. Journal of the Association of Computing Machinery 28(1), 41–70 (1981)
Bazan, J., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)
Stępień, M.: Animal Husbandry in the Ancient Near East: A Prosopographic Study of Third-Millennium Umma. CDL Press, Bethesda (1996)
Stępień, M.: Ensi w czasach III dynastii z Ur: aspekty ekonomiczne i administracyjne pozycji namiestnika prowincji w świetle archiwum z Ummy [Ensi in the Third Dynasty of Ur: Economic and Administrative Aspects of the Province Governor Position on the Basis of Umma Archive]. Wydawnictwa Uniwersytetu Warszawskiego (2006)
Sharlach, T.: Provincial Taxation and the Ur III State, Leiden-Boston (2004)
Steinkeller, P.: The administrative and economic organization of the ur iii state: The core and the periphery. In: Biggs, R.D., Gibson, M.G. (eds.) The Organization of Power: Aspect of Bureaucracy in the Ancient Near East, Chicago. SAOC, vol. 46, pp. 19–41 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jaworski, W. (2011). Hybridization of Rough Sets and Statistical Learning Theory. In: Peters, J.F., Skowron, A., Chan, CC., Grzymala-Busse, J.W., Ziarko, W.P. (eds) Transactions on Rough Sets XIII. Lecture Notes in Computer Science, vol 6499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18302-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-18302-7_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-18301-0
Online ISBN: 978-3-642-18302-7
eBook Packages: Computer ScienceComputer Science (R0)