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Abstract

In this paper, a meta-model called IRM4MLS, that aims to be a generic
ground to specify and execute multi-level agent-based models is presented. It re-
lies on the influence/reaction principle and more specifically on IRM4S (Michel,
2007a,b). Simulation models for IRM4MLS are defined. The capabilities and
possible extensions of the meta-model are discussed.

Keywords: multi-level simulation, influence/reaction model

1 Introduction
The term "multi-level modeling" refers to the modeling of a system considered at
various levels of organization. E.g., a biological system can be considered at different
levels:

... → molecule→ cell→ tissue→ organ→ ... ,

that basically correspond to the segmentation of biological research into specialized
communities:

... → molecular biology→ cell biology→ histology→ physiology→ ... .

Each research area has developed its own ontologies and models to describe the
same reality observed at different levels. However, this reductionist approach fails
when considering complex systems. E.g., it has been shown that living systems are
co-produced by processes at different levels of organization (Maturana and Varela,
1980). Therefore, an explanatory model of such systems should consider the in-
teractions between levels. Agent-based modeling (ABM) is a paradigm of choice to
study complex systems. But, while it seems more interesting to integrate knowledge
from the different levels studied and their interactions in a single model, ABM often
remains a pure bottom-up approach (Drogoul et al., 2003).

Thus, recently1 various research projects have aimed at developing multi-level
agent-based models (ML-ABM) in various fields such as histology, ethology or so-
ciology (An, 2008; Gil-Quijano et al., 2008; Lepagnot and Hutzler, 2009; Morvan
et al., 2008, 2009; Pumain et al., 2009; Zhang et al., 2009). A good analysis of some
of these models, and the motivations of these works can be found in Gil-Quijano
et al. (2009).

Various issues should be addressed when developing a ML-ABM. For instance
one major problem is the automatic detection of emergent phenomena that could
influence other levels (Chen et al., 2009; David and Courdier, 2009; Prévost and
Bertelle, 2009). Another important problem is the temporal and spatial mappings of
model levels and thus the scheduling of the simulations (Hoekstra et al., 2007). More
exhaustive presentations of these issues can be found in Gil-Quijano et al. (2009);
Morvan et al. (2009).

In the models found in literature, these issues have been addressed according to
the specificity of the problem. Indeed, they are based on ad-hoc meta-models and the
transferability of ideas from one to another seems difficult.

1It has to be noted that the eleven year old model RIVAGE pioneered the field of ML-ABM (Servat
et al., 1998).
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In this paper, a meta-model that aims to be a generic ground to specify and exe-
cute ML-ABM is presented. It is based on IRM4S (an Influence Reaction Model for
Simulation) proposed in Michel (2007a,b), itself based on IRM (Influences and Reac-
tion model) originally presented in Ferber and Müller (1996). IRM4S is described in
section 2 and its multi-level extension, called IRM4MLS (Influence Reaction Model
for Multi-level Simulation), in section 3. Section 4 introduces two simulation models
for IRM4MLS. The first one is very simple and similar to IRM4S but supposes that
all levels have the same temporal dynamics while the second one has a more gen-
eral scope but relies on temporal constraints and thus, is more complicated and time
consuming.

2 The IRM4S meta-model
IRM was developed to address issues raised by the classical vision of action in Artifi-
cial Intelligence as the transformation of a global state: simultaneous actions cannot be
easily handled, the result of an action depends on the agent that performs it but not
on other actions and the autonomy of agents is not respected (Ferber and Müller,
1996).

While IRM addresses these issues, its complexity makes it difficult to implement.
IRM4S is an adaptation of IRM, dedicated to simulation, that clarifies some ambigu-
ous points. It is described in the following.

Let δ(t ) ∈∆ be the dynamic state of the system at time t :

δ(t ) =<σ(t ),γ (t )>, (1)

where σ(t ) ∈ Σ is the set of environmental properties and γ (t ) ∈ Γ the set of influ-
ences, representing system dynamics. The state of an agent a ∈ A is characterized
by:

• necessary, its physical state φa ∈Φa with Φa ∈Σ (e.g., its position),

• possibly, its internal state sa ∈ Sa (e.g., its beliefs).

Thus, IRM4S distinguishes between the mind and the body of the agents.
The evolution of the system from t to t + d t is a two-step process:

1. agents and environment produce a set of influences2 γ ′(t ) ∈ Γ′:

γ ′(t ) = I n f l uence(δ(t )), (2)

2. the reaction to influences produces the new dynamic state of the system:

δ(t + d t ) = Reac t i on(σ(t ),γ ′(t )). (3)

As Michel (2007b) notes, "the influences [produced by an agent] do not directly
change the environment, but rather represent the desire of an agent to see it changed
in some way". Thus, Reac t i on computes the consequences of agent desires and
environment dynamics.

2the sets of producible influence sets and influences produced at t are denoted respectively Γ′ and γ ′(t )
to point out that the latter is temporary and will be used to compute the dynamic state of the system at
t + d t .
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An agent a ∈ A produces influences through a function Be havi o ra : ∆ 7→ Γ′.
This function is decomposed into three functions executed sequentially:

pa(t ) = Pe r ce p t i ona(δ(t )), (4)

sa(t + d t ) =M e mo r i zat i ona(pa(t ), sa(t )), (5)

γ ′a(t ) =Deci s i ona(sa(t + d t )). (6)

The environment produces influences through a function Nat u ralω :∆ 7→ Γ′:

γ ′
ω
(t ) =Nat u ralω(δ(t )). (7)

Then the set of influences produced in the system at t is:

γ ′(t ) = {γ (t )∪ γ ′
ω
(t )∪

⋃

a∈A

γ ′a(t )}. (8)

After those influences have been produced, the new dynamic state of the system
is computed by a function Reac t i on :Σ×Γ′ 7→∆ such as:

δ(t + d t ) = Reac t i on(σ(t ),γ ′(t )). (9)

Strategies for computing Reac t i on can be found in Michel (2007b).

3 The influence reaction model for multi-level simula-
tion (IRM4MLS)

3.1 Specification of the levels and their interactions
A multi-level model is defined by a set of levels L and a specification of the rela-
tions between levels. Two kinds of relations are specified in IRM4MLS: an influence
relation (agents in a level l are able to produce influences in a level l ′ 6= l ) and a per-
ception relation (agents in a level l are able to perceive the dynamic state of a level
l ′ 6= l ), represented by directed graphs denoted respectively< L, EI > and< L, EP >,
where EI and EP are two sets of edges, i.e., ordered pairs of elements of L. Influence
and perception relations in a level are systematic and thus not specified in EI and EP
(cf. eq. 10 and 11).

E.g.,∀l , l ′ ∈ L2, if EP = {l l ′} then the agents of l are able to perceive the dynamic
states of l and l ′ while the agents of l ′ are able to perceive the dynamic state of l ′.

The perception relation represents the capability, for agents in a level, to be "con-
scious" of other levels, e.g., human beings having knowledge in sociology are con-
scious of the social structures they are involved in. Thus, in a pure reactive agent
simulation, EP = ;. EP represents what agents are able to be conscious of, not what
they actually are: this is handled by a perception function, proper to each agent.

The in and out neighborhood in < L, EI > (respectively < L, EP >) are denoted
N−I and N+I (resp. N−P and N+P ) and are defined as follows:

∀l ∈ L,N−I (l ) (resp. N−P (l )) = {l} ∪ {l
′ ∈ L : l ′ l ∈ EI (resp. EP )}, (10)
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∀l ∈ L,N+I (l ) (resp. N−P (l )) = {l} ∪ {l
′ ∈ L : l l ′ ∈ EI (resp. EP )}, (11)

E.g., ∀l , l ′ ∈ L2 if l ′ ∈N+I (l ) then the environment and the agents of l are able to
produce influences in the level l ′; conversely we have l ∈N−I (l

′), i.e., l ′ is influenced
by l .

3.2 Agent population and environments
The set of agents in the system at time t is denoted A(t ). ∀l ∈ L, the set of agents
belonging to l at t is denoted Al (t ) ⊆ A(t ). An agent belongs to a level iff a subset
of its physical state φa belongs to the state of the level:

∀a ∈A(t ),∀l ∈ L,a ∈Al (t ) iff ∃φl
a(t )⊆φa(t )|φ

l
a(t )⊆ σ

l (t ). (12)

Thus, an agent belongs to zero, one, or more levels. An environment can also belong
to different levels.

3.3 Influence production
The dynamic state of a level l ∈ L at time t , denoted δ l (t ) ∈ ∆l , is a tuple <
σ l (t ),γ l (t ) >, where σ l (t ) ∈ Σl and γ l (t ) ∈ Γl are the sets of environmental prop-
erties and influences of l .

The influence production step of IRM4S is modified to take into account the
influence and perception relations between levels. Thus, the Be havi o r l

a function of
an agent a ∈Al is defined as:

Be havi o r l
a :

∏

lP∈N+P (l )

∆lP 7→
∏

lI∈N+I (l )

ΓlI ′. (13)

This function is described as a composition of functions. As two types of agents
are considered (tropistic agents, i.e., without memory and hysteretic agents, i.e., with
memory3), two types of behavior functions are defined Ferber (1999).

An hysteretic agent ha in a level l acts according to its internal state. Thus, its
behavior function is defined as:

Be havi o r l
ha =Deci s i on l

ha ◦M e mo r i zat i onha ◦ Pe r ce p t i on l
ha , (14)

with
Pe r ce p t i on l

ha :
∏

lP∈N+P (l )

∆lP 7→
∏

lP∈N+P (l )

P lP
ha

, (15)

M e mo r i zat i onha :
∏

l∈L|ha∈Al

∏

lP∈N+P (l )

P lP
ha
× Sha 7→ Sha , (16)

Deci s i on l
ha : Sha 7→

∏

lI∈N+I (l )

ΓlI ′. (17)

There is no memorization function specific to a level. Like in other multi-agent
system meta-models —e.g., MASQ (Stratulat et al., 2009)—, we consider that an agent

3While the tropistic/hysteretic distinction is made in IRM, it does not appear clearly in IRM4S. How-
ever, in a multi-level context, it is important if multi-level agents are considered.
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can have multiple bodies but only one mind (i.e., one internal state). Moreover, the
coherence of the internal state of the agents would have been difficult to maintain
with several memorization functions.

A tropistic agent t a in a level l acts according to its percepts:

Be havi o r l
t a =Deci s i on l

t a ◦ Pe r ce p t i on l
t a , (18)

with Pe r ce p t i on l
t a following the definition of eq. 15 and

Deci s i on l
t a :

∏

lP∈N+P (l )

P lP
t a 7→

∏

lI∈N+I (l )

ΓlI ′. (19)

The environment ω of a level l produces influences through a function:

Nat u ral l
ω

:∆l 7→
∏

lI∈N+I (l )

ΓlI ′. (20)

3.4 Reaction to influences
Once influences have been produced, interactions between levels do not matter any-
more. Thus, the reaction function defined in IRM4S can be re-used:

Reac t i on l :Σl ×Γl ′ 7→∆l , (21)

where Reac t i on l is the reaction function proper to each level.

4 Simulation of IRM4MLS models
In this section, two simulation models for IRM4MLS are proposed. The first one
(section 4.1) is directly based on IRM4S. It supposes that all levels have the same
temporal dynamics. The second one (section 4.2) has a more general scope but is
also more complicated and time consuming. These models are compatible with the
different classical time evolution methods (event-to-event or fixed time step) used in
multi-agent simulation. In the following, t0 and T denote the first and last simulation
times.

4.1 A simple simulation model
In this section, a model with single temporal dynamics is introduced. As there is
no synchronization issue, it is very similar to the model of IRM4S. Eq. 22 to 28
describe this simple temporal model. HA(t ) and TA(t ) denote respectively the sets
of hysteretic and tropistic agents in the system.

First, behavior sub-functions are executed for each agent:

∀l ∈ L, pa(t ) =< Pe r ce p t i on l
a(<δ

lP (t ) : lP ∈N+P (l )>) : a ∈Al (t )>, (22)

∀a ∈HA(t ), sa(t + d t ) =M e mo r i zat i ona(pa(t )), (23)

∀l ∈ L,∀a ∈HAl (t ),< γ
lI
a
′(t ) : lI ∈N+I (l )>=Deci s i on l

a(sa(t + d t )), (24)
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∀l ∈ L,∀a ∈TAl (t ),< γ
lI
a
′(t ) : lI ∈N+I (l )>=Deci s i on l

a(pa(t )). (25)

Then, environmental influences are produced:

∀l ∈ L,< γ lI
ω
(t ) : lI ∈N+I (l )>=Nat u ral l

ω
(δ l (t )). (26)

The set of temporary influences in a level l ∈ L at t is defined as:

γ l ′(t ) = {γ l (t )
⋃

lI∈N−I (l )

γ lI
ω
′(t )

⋃

a∈AlI

γ lI
a
′(t )}. (27)

Finally, the new state of the system can be computed:

∀l ∈ L,δ l (t + d t ) = Reac t i on l (σ l (t ),γ l ′(t )). (28)

Algorithm 1 summarizes this simulation model.

Algorithm 1: simple simulation model of IRM4MLS
Input: < L, EI , EP >,A(t0),δ(t0)
Output: δ(T )

1 t = t0;
2 while t ≤ T do
3 foreach a ∈A(t ) do
4 pa(t ) =< Pe r ce p t i on l

a(<δ
lP (t ) : lP ∈N+P (l )>) : a ∈Al >;

5 if a ∈HA(t) then
6 sa(t + d t ) =M e mo r i zat i ona(pa(t ));
7 end
8 end
9 foreach l ∈ L do

10 < γ lI
ω
′(t ) : lI ∈N+I (l )>=Nat u ral l

ω
(δ l (t ));

11 foreach a ∈HAl (t ) do
12 < γ lI

a
′(t ) : lI ∈N+I (l )>=Deci s i on l

a(sa(t + d t ));
13 end
14 foreach a ∈ TAl (t ) do
15 < γ lI

a
′(t ) : lI ∈N+I (l )>=Deci s i on l

a(pa(t ));
16 end
17 end
18 foreach l ∈ L do
19 γ l ′(t ) = {γ l (t )

⋃

lI∈N−I (l )
γ lI
ω
′(t )
⋃

a∈AlI
γ lI

a
′(t )};

20 δ l (t + d t ) = Reac t i on l (σ l (t ),γ l ′(t )) ;
21 end
22 t = t + d t ;
23 end
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4.2 A simulation model with level-dependent temporal dynamics
In this section, a simulation model with level-dependent temporal dynamics is in-
troduced. In the following, t l and t l + d t l denote respectively the current and next
simulation times of a level l ∈ L. Moreover t =< t l : l ∈ L> and t+d t =< t l+d t l :
l ∈ L> denote respectively the sets of current and next simulation times for all levels.
It is mandatory to introduce rules that constraint perceptions, influence production
and reaction computation. These rules rely primarily on the causality principle:

• an agent cannot perceive the future, i.e.,

∀l ∈ L, lP ∈N+P (l ) is perceptible from l if t l ≥ t lP , (29)

• an agent or an environment cannot influence the past, i.e.,

∀l ∈ L, lI ∈N+I (l ) can be influenced by l if t l ≤ t lI . (30)

However, the causality principle is not sufficient to ensure a good scheduling. A
coherence principle should also guide the conception of the simulation model:

• an agent can only perceive the latest available dynamic states, i.e.,

∀l ∈ L, lP ∈N+P (l ) is perceptible from l if t l < t lP + d t lP , (31)

• as a hysteretic agent can belong to more than one level, its internal state must
be computed for the next simulation time at which it is considered, i.e.,

∀l ∈ L, sa(ta + d ta) =M e mo r i zat i ona(pa(t
l )), (32)

such as

ta + d ta = t l + d t l |∀t l ′+ d t l ′, t l + d t l ≥ t l ′+ d t l ′

⇒ t l + d t l = t l ′+ d t l ′ ∧ a ∈Al ,
(33)

• an agent or an environment can influence a level according to its latest state,
i.e.,

∀l ∈ L, lI ∈N+I (l ) can be influenced by l if t l + d t l > t lI , (34)

• reaction must be computed for the next simulation time, i.e.,

∀l ∈ L, Reac t i on l is computed if t l + d t l ∈ mi n(t + d t ). (35)

Moreover, a utility principle should also be applied:

• perceptions should be computed at once, i.e.,

∀l ∈ L,∀a ∈Al , Pe r ce p t i on l
a is computed

if ∀lP ∈N+P (l ), t l ≥ t lP .
(36)

• as well as influences, i.e.,

∀l ∈ L,Nat u ral l
ω

and ∀a ∈Al , Deci s i on l
a are computed

if ∀lI ∈N+I (l ), t l ≤ t lI ∨ t l + d t l < t lI + d t lI .
(37)
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It is easy to show that the rule defined in eq. 36 subsums the rule defined in
eq. 29. Moreover, the rule defined in eq. 35 implies the rule defined in eq. 31.

According to eq. 37, influences are not necessarily produced at each time from a
level l to a level lI ∈ N+I (l ). Thus, a function cI , defines influence production from
the rules defined by the eq. 34 and 36:

∀l ,∈ L,∀lI ∈N+I (l ), cI (l , lI ) =
�

γ lI ′(t lI ) if t l ≤ t lI ∧ t l + d t l > t lI

; else. (38)

The simulation model can then be defined as follows. First, if the condition
defined in the eq. 36 is respected, agents construct their percepts and consecutively
hysteretic agents compute their next internal state:

∀a ∈A(t ),

pa(t
l ) =< Pe r ce p t i on l

a(<δ
lP (t lP ) : lP ∈N+P (l )>) : l ∈ LP >, (39)

sa(ta + d ta) =M e mo r i zat i ona(pa(t
l )) if a ∈HA(t ), (40)

with LP = {l ∈ L : a ∈Al (t )∧∀lP ∈N+P (l ), t l ≥ t lP }.
Then, if the condition defined in eq. 37 is respected, agents and environments

produce influences:

∀l ∈ LI ,

< cI (l , lI ) : lI ∈N+I (l )>=Nat u ral l
ω
(δ l (t l )), (41)

∀a ∈HAl ,< cI (l , lI ) : lI ∈N+I (l )>=Deci s i on l
a(sa(ta + d ta)), (42)

∀a ∈TAl ,< cI (l , lI ) : lI ∈N+I (l )>=Deci s i on l
a(pa(t

l )), (43)

with LI = {l ∈ L : ∀lI ∈N+I (l ), t l ≤ t lI ∨ t l + d t l < t lI + d t lI }.
The set of temporary influences in a level l ∈ L at t l is defined as:

γ l ′(t l ) = {γ l (t l )
⋃

lI∈N−I (l )

cI (lI , l )}. (44)

Finally, reactions are computed for levels that meet the condition defined in
eq. 35:

∀l ∈ LR,
δ l (t l + d t l ) = Reac t i on l (σ l (t l ),γ l ′(t l )), (45)

with LR = {l ∈ L : t l + d t l ∈ mi n(t + d t )}.
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The algorithm 2 summarizes this simulation model.

Algorithm 2: simulation model of IRM4MLS with level-dependent temporal
dynamics

Input: < L, EI , EP >,A(t0),δ(t0)
Output: δ(T )

1 foreach l ∈ L do
2 t l = t0;
3 end
4 while ∃t l ≤ T do
5 foreach a ∈A(t ) do
6 LP = {l ∈ L : a ∈Al (t )∧∀lP ∈N+P (l ), t l ≥ t lP };
7 pa(t l ) =< Pe r ce p t i on l

a(<δ
lP (t lP ) : lP ∈N+P (l )>) : l ∈ LP >;

8 if a ∈HA(t) then
9 sa(ta + d ta) =M e mo r i zat i ona(pa(t l ));

10 end
11 end
12 LI = {l ∈ L : ∀lI ∈N+I (l ), t l ≤ t lI ∨ t l + d t l < t lI + d t lI };
13 foreach l ∈ LI do
14 < cI (l , lI ) : lI ∈N+I (l )>=Nat u ral l

ω
(δ l (t l )) ;

15 foreach a ∈HAl (t ) do
16 < cI (l , lI ) : lI ∈N+I (l )>=Deci s i on l

a(sa(ta + d ta));
17 end
18 foreach a ∈ TAl (t ) do
19 < cI (l , lI ) : lI ∈N+I (l )>=Deci s i on l

a(pa(t l ));
20 end
21 end
22 LR = {l ∈ L : t l + d t l ∈ mi n(t + d t )};
23 foreach l ∈ LR do
24 γ l ′(t l ) = {γ l (t l )

⋃

lI∈N−I (l )
cI (lI , l )};

25 δ l (t l + d t l ) = Reac t i on l (σ l (t l ),γ l ′(t l ));
26 t l = t l + d t l ;
27 end
28 end

5 Discussion, conclusion and perspectives
In this paper, a meta-model of ML-ABM, called IRM4MLS, is introduced. It is
designed to handle many situations encountered in ML-ABM: hierarchical or non-
hierarchical multi-level systems with different spatial and temporal dynamics, multi-
level agents or environments and agents that are dynamically introduced in levels.
Moreover, IRM4MLS relies on a general simulation model contrary to the exist-
ing works published in literature. While this model is, in general, complicated, its
implementation could be simplified to be more efficient in specific situations (sin-
gle perception function, reactive simulation, etc.). Afterwards, examples of typical
ML-ABM situations as well as ideas to treat them in the context of IRM4MLS are
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presented.
In some models an agent can belong to different levels:

• in the model of bio-inspired automated guided vehicle (AGV) systems pre-
sented in Morvan et al. (2009), an AGV (a micro level agent) can become a
conflict solver (a macro level agent) if a dead lock is detected in the system,

• in the SIMPOP3 multi-level model an agent representing a city plays the role
of interface between two models and then is member of two levels (Pumain
et al., 2009).

The simulation of these models has been addressed using different strategies:

• in the first example (a control problem), a top-first approach is used: the higher
level takes precedence over the lower one,

• in the second example (a simulation problem), levels are executed alternately.

These solutions are context-dependent and likely to generate bias. In IRM4MLS,
the multi-level agent situation is handled by a single simulation model that general-
izes the two previous ones without scheduling bias, thanks to the influence/reaction
principle.

In many multi-level agent-based models, interactions between entities in a level
affect the population of agents in another level. E.g., in RIVAGE, a model of runoff
dynamics, macro level agents (representing water ponds or ravines) emerge from mi-
cro level agents (representing water balls) when conditions are met (Servat et al.,
1998). Then, the quantity and the flow of water become properties of macro level
agents: water balls are no longer considered as agents. Conversely, micro level agents
can emerge from macro level agents. Similar situations can be found in hybrid mod-
eling of traffic flows (El hmam et al., 2006). In IRM4MLS, the introduction of an
agent a in a level l is performed by the reaction function of l that introduces envi-
ronmental properties representing the physical state of a in σ l (t ). Conversely, the
reaction function can delete an agent from the level. An agent that does not belong
to any level is inactive but can be reactivated later.

Finally, the definition of IRM4MLS is not closed in order to offer different pos-
sibilities of implementation or extension. E.g., levels could be defined a priori or
discovered during the simulation (Gil-Quijano et al., 2009). While this approach has
never been used in any model so far, it seems particularly promising. In IRM4MLS,
only the first possibility has been handled so far. It would be necessary to consider
L and < L, EI > and < L, EP > as dynamic directed graphs.

The two main perspectives of this work are the design of a modeling and simula-
tion language and a platform that comply to the specifications of IRM4MLS as well
as the re-implementation of existing models to demonstrate the capabilities of the
meta-model and its simulation models.
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