
Using Constraints for Intrusion Detection : the
NeMODe System

Pedro Salgueiro1, Daniel Diaz2 and Isabel Brito3, and Salvador Abreu1

1 Departamento de Informática, Universidade de Évora
and CENTRIA FCT/UNL, Portugal

{pds,spa}@di.uevora.pt
2 University of Paris 1-Sorbonne, Paris, France

Daniel.Diaz@univ-paris1.fr
3 Departamento de Engenharia, Escola Superior de Tecnologia e Gestão,

Instituto Politécnico de Beja, Portugal
isabel.sofia@estig.ipbeja.pt

Abstract. In this work we present NeMODe a declarative system for
Computer Network Intrusion detection which provides a declarative Do-
main Specific Language for describing computer network intrusion signa-
tures that could spread across several network packets, which allows to
state constraints over network packets, describing relations between sev-
eral packets, and providing several back-end detection mechanisms which
relies on Constraint Programming (CP) methodologies to find those in-
trusions.

Keywords: Constraint Programming, Intrusion Detection Systems, Do-
main Specific Languages

1 Introduction

Network Intrusion Detection Systems are one of the most important tools in
computer network management to maintain the security, integrity and quality
of computer networks and keep the users data safe. To maintain the quality and
integrity of the services provided by a computer network, some aspects must be
verified in order to maintain the security of the users data. The description of
those conditions, together with a verification that they are met can be seen as
an Intrusion Detection task. These conditions, specified in terms of properties
of parts of the (observed) network traffic, will amount to a specification of a
desired or an unwanted state of the network, such as that brought about by a
system intrusion or another form of malicious access.

Those conditions can naturally be described using a declarative programming
approach, such as Constraint Programming [1], enabling the description of these
situations in a natural, declarative and expressive way. To help the description
of those network situations, we created a declarative, very expressive, Domain
Specific Language (DSL) [2], enabling an easy description of intrusion signa-
tures that spread across several network packets, allowing to state constraints

over network entities and express relations across several network packets. This
DSL will then translate the program into constraints that will be solved by more
than one constraint solving techniques, including Constraint Based Local Search
and Propagation-based systems such as Gecode [3]. It also have the capabilities
of running several solvers in parallel, in order to benefit from the earliest pos-
sible solution. We have already made some preliminary work on using network
constraints to perform intrusion detection [4], and have also developed a pre-
liminary implementation of such a DSL[5,6]. In this work we present a new and
more complete version version of such a DSL (NeMODe) as well as a its complete
specification to a better comprehension.

This paper is organized as follows. Section 2 presents the state of the art
and a brief description of Intrusion Detection Systems, Constraint Based Local
Search, Adaptive Search and Domain Specific Languages. Section 3 demonstrates
how to model and perform Intrusion Detection using Constraint Programming.
Section 4 details the DSL provided by NeMODe and provides some examples.
Section 5 shows the experimental results obtained by NeMODe. Section 6 evalu-
ates NeMODe and Section 7 presents the conclusions and future work. Through-
out this paper, we mention technical terms pertaining to TCP/IP and UDP/IP
network packets, such as packet flags ,URG, ACK, PSH, RST, SYN, FIN, ac-
knowledgment, source port, destination port, source address, destination address,
payload, which are described in [7].

2 State of the art

2.1 Intrusion Detection Systems

Intrusion Detection Systems(IDS) play a very important role in computer net-
work security, which focus on traffic monitoring trying to inspect traffic to look
for anomalies or undesirable communications in order to keep the network a safe
place. There are two major methods to detect intrusions in computer networks;
(1) based on the network intrusion signatures, and (2) based on the detection
of anomalies on the network [8]. With Signature Based Intrusion Detection, in-
trusions are described using their signatures, particular properties of network
packets used by the intrusion. These properties are then looked in the network
traffic to find the desired intrusion. In Anomaly-Detection Based, the systems
models the normal behavior of the network using statistical methods and/or
data mining approaches. The network behavior is then monitored, and if it is
considered anomalous according the network model, there is a great probability
of and attack. In this work, we adopted an approach based on signatures.

Snort [9] is a widely used Intrusion Detection System that relies on efficient
pattern-matching techniques to detect the desired intrusion signature. Snort is
primarily designed to detect signatures that can be identified in a single network
packet. Although it provides some basic mechanisms to write rules that spread
across several network packets, the relations between those network packets are
very simple and limited.

Snort presents some pre-processors that help to relate separate network pack-
ets; Stream4 is such a pre-processor: it gives Snort the ability to be stateful,

allowing the trace of network packets on its session and use its state on the
given session to create a rule that describes the desired signature. The Flow pre-
processor also allows snort rules to relate with other rules by using the flowbits
keyword, allowing one rule to set some flag, and later other rule can check if that
flag is set, and, if so, complete the rule to describe the desired signature.

These two pre-processors help Snort to describe network attack signatures
that span several network packets, but they do so in a very limited way, not
allowing the description of more complex relations between packets, such as the
temporal distance between two packets. Also, the way that the relation between
several rules is expressed is awkward and often counter-intuitive.

Most of the work in the area of Intrusion Detection Systems consists in
the development of faster detection methods [10]. The work described in [11]
is such an example, which implements a regular expression matching algorithm
using graphics hardware (GPUs) to perform intrusion detection. There is also
some work focused on how the network signatures are described detected. [10]
presents an algorithm and an implementation method for performing flow aware
content search based on Bloom Filters which allows to search signatures that
spread across several packets. In [12], the authors present a declarative approach
to specify intrusion signatures which are represented as a specialized graph,
allowing the description of signatures that spread across several network packets.

2.2 Constraint Programming
Constraint Programming (CP) is a declarative programming paradigm which
consists in the formulation of a solution to a problem as a Constraint Satisfaction
Problem (CSP) [1], in which a number of variables are introduced, with well-
specified domains and which describe the state of the system. A set of relations,
called constraints, is then imposed on the variables which make up the problem.
These constraints are understood to have to hold true for a particular set of
bindings for the variables, resulting in a solution to the CSP.

There are several types of constraint solvers, in this work we use: (1) Prop-
agation Based solvers; and (2) Constraint Based Local Search(CBLS).
Propagation-Based solvers Using Propagation-Based [1] solvers, the prob-

lem is described by stating constraints over each variable that composes the
problem, which states what values are allowed to be assigned to each vari-
able, then, the constraint solver will propagate all the constraints and reduce
the domain of each network variables in order to satisfy all the constraints
and instantiate the variables that compose the problem with valid results,
thus reaching a solution to the initial problem. Gecode [13] is a constraint
solver library based on propagation, implemented in C++ and designed to
be interfaced with other systems or programming languages.

Constraint Based Local Search CBLS [14] is a fundamental approach
to solve combinatorial problems such as Constraint Satisfaction Problems.
CBLS is a method that can solve very large problems, although not a com-
plete algorithm and unable to provide a complete or optimal solution. Usu-
ally, this approach initiates with an initial, candidate solution to the problem

which is then iteratively improved though small modifications until some cri-
teria is satisfied. The modifications to the candidate solution is usually driven
by heuristics that guide the solver to a solution.

Adaptive Search (AS) [15] is a Constraint Based Local Search [14] algorithm,
taking into account the structure of the problem and using variable-based
information to design general heuristics which help solve the problem. The
iterative repairs to the candidate solution in Adaptive Search are based on
variable and constraint error information which seeks to reduce errors on the
variables used to model the problem. AS computes the error of all constraints
in which it appears, projecting the errors on each individual variables. Based
on this information, the variable with the highest cost is the one that will
be chosen to change its value. After the variable with the highest cost have
been calculated, the min_conflict [1] heuristic is used to select the new value
to that variable, which is the value that provides the minimum total error
to the next solution. Adaptive Search has recently been ported to Cell/BE,
presented in [16].

2.3 Domain Specific Languages
Domain Specific Languages(DSLs) [2] allows to easily create programs to a spe-
cific and well defined domain with efficiency, generating easy to understand and
maintain programs, by using a specific jargon. Most IDSs, like Snort and Bro [17],
also a widely used IDS, provide custom languages to describe the signatures, but
they are usually scripting languages, based mostly on pattern matching and reg-
ular expressions, counter-intuitive, and don’t use a declarative approach, making
them less expressive.

3 Intrusion Detection with Constraints
Our approach to intrusion detection relies on describing the desired signatures
through the use of constraints and then identify a set of packets that match the
target network situation in the network traffic window, which is a log of the
network traffic in a given time interval.

The network intrusion needs to be modeled as a Constraint Satisfaction Prob-
lem (CSP) in order to use the constraint programming mechanisms. A CSP which
models a network situation is composed by a set of variables, V , which repre-
sents the network packets involved necessary to describe the network situation;
the domain of the network packet variables, D; and a set of constraints, C, which
relates the variables in order to describe the network situation. We call such a
CSP a network CSP. On a network CSP, each network packet variable is a tuple
of integer variables, 19 variables for TCP/IP 4 packets and 12 variables for UDP
packets 5, which represent the significant fields of a network packet necessary to
4 Here, we are only considering the “interesting” fields in TCP/IP packets, from an
IDS point-of-view.

5 Here, we are only considering the “interesting” fields in UDP packets, from an IDS
point-of-view.

model the intrusion signatures used in our experiments.

The domain of the network packet variables, D, are the values actually seen
on the network traffic window, which is a set of tuples of 19 integer values (for
the TCP variables) and 12 integer values (for the UDP variables), each tuple
representing a network packet actually observed on the traffic window and each
integer value represents each field relevant to intrusion detection. The packets
payload is stored separately in an array containing the payload of all packets
seen on the traffic window. The correspondence between the packet and its pay-
load is achieved by matching the packet number, i, which is the first variable in
the tuple representing the packets and the ith position of the array containing
the payloads.

Listing 1 shows a representation of such CSP, where P represents the set of
network packet variables, where Pn,z, is each of the individual integer variables
of the network packet variable, in a total of z fields for each network of the n
variables, with z = 19 for TCP packets and z = 12 for UDP packets.

D is the network traffic window, where Di = (Vi,1, . . . , Vi,z) ∈ D is one of the
real network packets on the network traffic window, which is part of the domain
of the packet variables P .

Data is the payloads of the network packets present in the network window,
where Datai is the payload of the packet Pi = (Vi,1, . . . , Vi,z) ∈ D.

The associated domains of the network packet variables is represented by
∀Pi ∈ P ⇒ Pi ∈ D, forcing all variables belonging to P to obtain values from
the set of packets in the network window D.

A solution to a network CSP, if it exists, is an assignment of network packet
values, Di = (Vi,1, . . . , Vi,z) ∈ D, to each packet variable, Pi = (Pj,1, . . . , Pj,z) ∈
P , that models the desired situation, thus identifying the network packets that
identify the intrusion being detected.

Listing 1 Representation of a network CSP

P = {(P1,1, . . . , P1,z), . . . , (Pn,1, . . . , Pn,z)}
D = {(V1,1, . . . , V1,z), . . . , (Vx,1, . . . , Vx,z)}
Data = {Data1, . . . , Datax}
∀Pi ∈ P ⇒ Pi ∈ D

4 NeMODe - A DSL to describe network signatures

In this work we present a declarative, intuitive domain-specific programming
language for the Network Intrusion Detection [2] of NeMODe, which talks about
network entities, their properties and relations between them, allowing to de-
scribe network intrusion signatures, and, with base on those descriptions, gen-
erate Intrusion Detection mechanisms.

The key characteristic of this DSL is to ease the way how network attack sig-
natures are described using constraint programming, hiding from the user all the

constraint programing aspects and complexity of modeling network signatures
in a Constraint Satisfaction Problem(CSP), but still using the methodologies of
CP to describe the problem at a much higher level, describing how the network
entities should relate among each other and what properties they should verify.

Maintaining the declaritivity and expressiveness of the CP, allows an easy
and intuitive way of describing the network attack signatures, by describing the
properties that must or must not be seen on the individual network packets,
as well as the relationships that should or should not exist between each of the
network packets.

The DSL is a front-end to several back-ends, one to each intrusion detec-
tion mechanism. This allows to generate several recognizers based on different
constraint solver methods, from a single description. With several recognizers,
it is possible run each of them in parallel, allowing to select the first produced
solution, as the behavior of each solver depends on the problem being solved.

NeMODe provides two back-end detection mechanisms; (1) based on the
Gecode constraint solver; and (2) based on the Adaptive Search algorithm. Each
of these detection mechanisms are based on Constraint Programming techniques,
but they are completely different in the way they perform the detection, and also
the way the signatures are described. In Sec. 2.2 each of these approaches are
explained.

4.1 NeMODe specification

A NeMODe program is composed by an optional set of initial declarations,
followed by a network case(line 1 of Listing 2), which describes the network
situation to be modeled.

Those initial declarations is a comma separated list of declarations port num-
bers and/or hostnames, which can later be used later on the description of the
problem, making the program more readable, by referring to hostnames instead
of ip addresses, and port or service names instead of port numbers.

A network case is the main part of a NeMODe program and is composed by
two parts; (1) the solver_list, (line 3 of Listing 2) containing the description of
the intrusion signature to be found and the identification of the tool which will be
used to solve the problem; and (2) the actions to take when the desired network
situation is detected, the stmt_action_list(line 1 of Listing 6). There are two
types of solvers,(line 5 of Listing 2), the filter and the solver . The solver is
used to describe and solve complex network intrusion signatures, while the filter
is only used to perform simple filtering tasks, accomplished by using a packet
analyzer tool, such as tcpdump [18].

A solver(line 5 of Listing 2) is composed by 3 parts; (1) the network traffic
source; (2) the identification of the tools that will be used to perform the filtering;
and (3) the description of the filtering/solving process. The result of this filtering
process is then stored in a variable, which could later be used as an input to
other filtering stage. The most important part of a NeMODe program is the list
of statements, stmt_list (line 8 of Listing 2), where the signatures are described.

Listing 2 NeMODe simplified grammar - The beginning of a program
1 case → ID { solver_list } => { stmt_action_list };
2
3 solver_list → solver | solver_list , solver
4 solver → ID = filter (ID , ID) { primitive_list }
5 | ID = solve (ID , ID) { stmt_list }
6
7 stmt_list → stmt | stmt_list , stmt
8 stmt → primitive | connective | ID = { stmt_list } | ID | macro_stmt | logic_stmt

There are 6 types of statements(line 8 of Listing 2); (1) the primitive state-
ments; (2) the connective statements; (3) the definition statements; (4) the
use statements; (5) the macro statements; and (6) the logical statements.

Listing 3 NeMODe simplified grammar - The most important statements
1 primitive → primitive_type (var)
2 | data (var) ~= STRING | data (var , NUMBER) == STRING
3 | address eq_op ID | address eq_op ip_address
4 | port eq_op NUMBER | port eq_op ID
5
6 primitive_type → tcp_packet | udp_packet | urg | ack | psh | rst | syn | fin | nak
7
8 connective → ack (var) eq_op var
9 | port eq_op port | address eq_op address

10 | time rel_op time
11 | data (var , NUMBER , NUMBER) == data (var , NUMBER , NUMBER)

The primitive statements (line 1 of Listing 3) allows to force some specific
properties of a network packets to hold true. This statements allows to force a
network packet to be tcp/udp packet; to have any of its tcp flags set; not to
acknowledge another tcp packet; force a packet to have a specific data on its
payload; and assure that a network packet have a specific source/destination
address or a specific source/destination port.

The connective statements (line 8 of Listing 3) allows to relate two network
packets by forcing the existence of some relations between the two of them. They
allow to force: (1) a tcp packet to acknowledge other tcp packet; (2) a destina-
tion/source port of a packet to be equal/different to other destination/source
port of other packet; (3) a destination/source address to be equal/different to
a destination/source address of other packet; (4) the payload of two network
packets to be equal/different at specific positions; and (5) two network packets
to have a temporal relation, such as their temporal distance to be inferior to a
given amount of time.

The primitive and connective can describe most of network intrusion sig-
natures, but NeMODe provides some more types of statements to help the de-
scription of such signatures, the definition statements, the use statements and
the macro statements.

The definition statements (line 8 of Listing 2) allows to define a variable as
a group of statements, which can later be used in the description of a network
situation. This type of statements have no effect on the program unless they are

used latter on the program, being only the definition of a variable.

The use statement (line 8 of Listing 2) is just the simple use of a definition
previously defined. As for the macro statements (line 1 of Listing 4), these are
built with the purpose of avoiding the repetition of unnecessary code.

Listing 4 NeMODe simplified grammar - The macro statements
1 macro_stmt → ID := repeat
2 | interval (var) eq_op time | duration (var) eq_op time
3 | connection (var , var)
4
5 repeat → repeat (NUMBER , var)

The repeat(line 5 of Listing 4) statement is one of the availablemacro state-
ments, which allows to repeat a previously defined variable a given number of
times. That repetitions are then stored under a variable, i.e. R := repeat(3,C), so
that later be possible to state constraints over a specific variable of an iteration
of the repetition.

The macro statement duration (line 2 of Listing 4) forces the overall du-
ration of a repetition to a be higher or lower than a certain amount o time,
i.e. duration(R) < secs(60). As for the macro statement interval(line 2 of
Listing 4), it forces the time between two iterations of a repetition to be high-
er/lower than a given amount of time, i.e. interval(R) < secs(60). Finally,
the last macro statement, connection(line 3 of Listing 4), forces two network
packets to be related, so that the source/destination of one packet be the desti-
nation/source of other packet.

The last type of statements is the logical statements(line 1 of Listing 5),
which allows to specify logic operations(and, or) over primitives and connec-
tive statements.

Listing 5 NeMODe simplified grammar - Logic statements
1 logic_stmt → logic_stmt logic_op logic_stmt | (logic_stmt)
2 | primitive | connective

The stmt_action_list(line 1 of Listing 6) part of a case, allows to describe
the actions to take when an intrusion is detected, which is a coma separated list
of statements, being allowed to use a previously described primitive and/or
connective statements, as well as the alert statement. This list of statements
allows to specify a set of properties over a set of network packets, being possible
to relate them with variables used in the description of the network intrusion
signature. Those new variables can later be used in the alert statement, together
with some strings to alert the network administrator for an intrusion.

Listing 7 describes some basic entities, such as port addresses, ip address and
time, used in several types of statements.

Listing 6 NeMODe simplified grammar - Action statements
1 stmt_action_list → stmt_action | stmt_action_list , stmt_action
2 stmt_action → primitive | connective | actions
3
4 actions → alert (alert_arg_list)
5 alert_arg_list → alert_arg | alert_arg_list , alert_arg
6 alert_arg → var | STRING

Listing 7 NeMODe simplified grammar - Basic entities
1 port → dst_port (var) | src_port (var)
2 address → src (var) | dst (var)
3 time → usecs (NUMBER) | secs (NUMBER) | time_arith
4 time_arith → time (var) | NUMBER
5 | time (var) arith_op time_arith

Variables
NeMODe variables, (line 1 of Listing 8), are always upper case, and can be cate-
gorized in several types: (1) the initial declarations variables; (2) the solver/-
filters variables; (3) the definitions variables; (4) the repetitions variables
and the network packet variables. The declaration of the variables is implicit,
being defined the first time they are referenced or used.

Listing 8 NeMODe simplified grammar - Variables
1 var → ID | repeat_var | filter_var
2 repeat_var → ID [NUMBER] : ID
3 filter_var → ID . ID | ID . repeat_var

Variable scope
A NeMODe program is composed by several scopes, the first one the program
itself, then, a second scope for the solvers/filters, and inside each solver there
might exist a third scope, the repetition of a definition. At each scope level,
it might be necessary to access a variable of a higher scope level. Accessing a
higher scope level variable is transparent if there is no other variable with the
same name on the current scope level, otherwise there is the need to access that
variable using a special syntax.

Accessing a variable inside a repetition To access a variable defined in a
definition, assigned to a variable, one starts to refer the repetition variable,
then the number of the iteration and finally the variable name, e.g. r[2].A.

Accessing a variable inside a solver Sometimes it is necessary to access a
variable defined inside a solver or filter , to do this, one starts to refer the
filter and then the desired variable, which can be either a simple variable,
e.g. gecode.A or a variable inside a repetition, e.g. gecode.R[2].A.

4.2 Examples
So far, we have worked with some simple network intrusion signatures: (1) a
DHCP spoofing, (2) a DNS spoofing and (3) a SYN flood attack. All of these

intrusion patterns can be described using NeMODe and the generated code was
successful in finding the desired situations in the network traffic logs. A Portscan
attack and an SSH Password brute-force attack are further explained in [5].

DHCP spoofing DHCP Spoofing is a Man in The Middle(MITM) attack,
where the attacker tries to reply to a DHCP request faster than the legit DHCP
server of the local network, allowing the attacker to provide false network config-
urations to the target host, such as the default gateway, forcing all traffic from/to
the target to pass though an attacker controlled machine, allowing it to capture
or modify the important data. This kind of intrusion can be detected by looking
for several answers to a single DHCP request, originated in different machines,
although, if the attacker spoofs its addresses, invalidates this detection method.
A NeMODe program to model a DHCP spoofing is shown in Listing 9. Line 2
describes the packet that initiates a requests a DHCP, line 3 the first reply to
the request and line 4 the second reply the DHCP request. Finally, on line 6
is stated that packets B and C(the first and second reply) should have different
source addresses.

Listing 9 A DHCP Spoofing attack programmed in NeMODe
1 dhcp_spoofing {
2 udp_packet(A), dst_port(A)==67,
3 udp_packet(B), dst_port(B)==68,
4 udp_packet(C), dst_port(C)==68,
5
6 src(B) != src(C)
7 } => {
8 alert(’DHCP Spoofing attempt’)
9 };

DNS spoofing DNS Spoofing is also a Man in The Middle (MITM) attack. In
this attack, the attacker tries to provide a false DNS query posted by the victim,
if succeeded the victim could access a machine under the control of the attacker,
thinking that it is accessing the legit machine, allowing the attacker to obtain
crucial data from the victim. In order to arrange this attack, the attacker tries
to respond with a false DNS query faster than the legit DNS server, providing
a false IP address to the name that the victim was looking for. This kind of
attacks is possible to detect by looking for several replies to the same DNS
query. Listing 10 shows how this attack can be programmed using NeMODe.
Line 2 describes the packet that makes the DNS request. Lines 4-5, describes
a first reply to the DNS request and lines 7-8 describes the second reply. Lines
10-12 states that packets B and C should be different and that the DNS id of the
replies should be the equal to the DNS request, which is the first two bytes of
the packets data.

SYN flood attack A SYN flood attack happens when the attacker initiates
more TCP/IP connections than the server can handle and then ignoring the
replies from the server, forcing the server to have a large number of half open

Listing 10 A DNS Spoofing attack programmed in NeMODe
1 dns_spoofing {
2 udp_packet(A), dst_port(A) == 53
3
4 udp_packet(B), src_port(B) == 53,
5 dst(B) == src(A), dst_port(B) == src_port(A),
6
7 udp_packet(C), src_port(C) == 53,
8 dst(C) == src(A), dst_port(C) == src_port(A),
9

10 B != C,
11 data(B,0,2) == data(A,0,2),
12 data(C,0,2) == data(A,0,2)
13 } => {
14 alert(’DNS Spoofing attempt’)
15 };

connections in standby, which leads the service to stop when this number reach
the limit of number of connections. This attack can be detected if a large number
of connections is made from a single machine to other in a very short time inter-
val. Listing 11 shows how a SYN flood attack can be described using NeMODe.
Lines 2-3 describes a TCP/IP packet with the SYN flag and assigns those prop-
erties to variable C. In line 4, the macro statement repeat is used to repeat
the properties of definition C 30 times, and assign it to variable R. Line 5 states
that the time interval between each repetition of C should be less than to 500
micro-seconds.

Listing 11 A SYN flood attack programmed with NeMODe
1 syn_flood {
2 C = { tcp_packet(A),
3 syn(A), nak(A) },
4 R := repeat(30,C),
5 max_interval(R) < usecs(500)
6 } => {
7 alert(’SYN flood attack attempt’)
8 };

4.3 Code Generation

The current implementation of NeMODe is able to generate code for the Gecode
solver and for the Adaptive Search algorithm. These two approaches to constraint
solving are completely different as well as the description of the problems, forcing
us to have several code generators for each of back-end available. We were able to
minimize this difference by creating custom libraries for each constraint solver
so that the code generation process is not completely different for each back-
end. Fig. 1 represents the architecture of the system; starting with a NeMODe
program, which is parsed into a semantic model, then it is generated code to
the appropriate back-ends used. Them, the generated code receives as input the
network traffic and produces a valid solution, if the described intrusion exists on
the current network traffic.
Generating a Gecode program: This goal is achieved by generating code

based on Gecode constraint propagators that describe the desired network

Fig. 1. NeMODe system architecture

signatures. We created a custom library that defines functions that combine
several stock arithmetic Gecode constraints with element and extensional
constraints to define custom, network related macro constraints. The same
library includes definitions for a few network-related constraint propagators
useful to implement some of the constraints needed to describe and solve
IDS problems.

Generating an A.S. program: The task of generating Adaptive Search re-
sumes to create the proper error functions so that Adaptive Search be able
to solve the problem; the cost_of_solution and cost_on_variable. To
ease the generation of this functions, a small library was created which im-
plements small error functions, specific to the network intrusion detection
domain, which are then used to generate the code for the error functions.

5 Experimental Results

While developing this work, several experiments were done. We have tested the
examples of Sect. 4.2, a DHCP Spoofing attack, a DNS Spoofing attack and
a SYN flood attack. All these network intrusions were successfully described
using NeMODe and valid Gecode and Adaptive Search code was produced for
all network signatures and then executed in order to validate the code and ensure
that it could indeed find the desired network intrusions.

The code generated for Gecode was run on a dedicated computer, an HP Pro-
liant DL380 G4 with two Intel(R) Xeon(TM) CPU 3.40GHz and with 4 GB of
memory, running Debian GNU/Linux 4.0 with Linux kernel version 2.6.18-5. As
for the Adaptive Search code, it run on an IBM BladeCenter H equipped with
QS21 dual-Cell/BE blades, each with two 3.2 GHz processors, 2GB of RAM,
running RHEL Server release 5.2. The reason to run both detection mechanisms
in different machines with a completely different architecture is because Adap-
tive Search has recently been ported to Cell/BE, and we choose this version of
Adaptive Search to run our experiments, forcing us to use the QS21 dual-Cell/BE
blades, which is incompatible with the implementation of Gecode, forcing us to
use a machine with x86 architecture to run Gecode.

In all the experiments we used log files representing network traffic which
contains the desired signatures to be detected. These log files were created with

the help of tcpdump, which is a packet sniffer, during actual attacks to a computer
to simulate the real attacks described in this work.

DHCP and DNS spoofing attacks: We programmed these two attacks
using the DSL of The attack was provided by NeMODe, which successfully
generated code for Adaptive Search as well as for Gecode and successfully
detected the intrusions. Both problems were modeled using 3 udp network
packets, each one composed of 12 integer variables, in a total of 36 integer
variables. The search space for both this problems was a set of 400 udp
network packets, each composed of 12 integer values, in a total of 4800
values.

SYN flood attack: In the SYN flood attack, we programmed with the DSL
of NeMODe which in turn generated code for Adaptive Search and Gecode.
This code was then used to successfully detect the intrusion. The problem
was modeled by 30 tcp network packet variables, each comprised of 19 integer
variables, in a total of 570 integer values. The the search space of the problem
was composed by 100 tcp network packets, each composed of 19 integer
values, in a total of 1900 values.

Table 1 presents the time(user time, in seconds) required to find the desired
network situation for the attacks presented in the present work, using both
detection mechanisms, Gecode and Adaptive Search. The times presented are
the average of 128 runs.

Table 1. Average time(in seconds) necessary to detect the intrusions using Gecode
and Adaptive Search

Intrusion to detect Gecode (seconds) A.S (seconds)
DHCP Spoofing 0.0082 0.3924
DNS Spoofing 0.0069 0.3512
SYN flood 0.0566 0.0466

6 Evaluation

The experimental results described in Sec. 5 shows that the performance varies
in a great scale depending on the problem and the recognizer. Table 1 shows
that that Gecode usually performs better than Adaptive Search, except in the
SYN flood attack. The SYN flood attack performed better in Adaptive Search
due to the fact that the network packets of the attack are close together and
there aren’t almost any other packets between the packets of the attack. The
results obtained with Gecode, are quite good, allowing us to start the detection
of intrusions in real network traffic instead of log files. Adaptive Search inferior
performance figures are explained by the lack of good heuristic, as precise tuning
of the sensitive algorithm of AS has yet to be done.

As for the DSL provided by NeMODe, it revealed to be very expressive and
powerful, allowing an easy description of all the three network intrusions and
generate valid code that could detect the desired network situation. Although

other intrusion detection systems like Snort could detect the attacks presented
in this work, they don’t allow to describe the problems with the expressiveness
used by NeMODe or even relate the several packets that make part of the attack.

7 Conclusions and Future Work

The work presented in this paper presents NeMODe, a system for Network Intru-
sion detection, which provide a declarative Domain Specific Language that gen-
erates intrusion detection recognizers based on Constraint Programming, more
specifically, using Gecode and Adaptive Search. NeMODe presents a very ex-
pressive DSL that allows to describe network intrusion signatures by expressing
relations between network packets simply by stating constraints over network
packets.

This work shows that it is possible to use a single signature description
based on CP to generate several recognizers, each one based on a different CP
paradigms, and with that recognizers detect the desired intrusions.

We proved that we can easily describe network signature attacks that spread
across several network packets, which can not me done in friendly and declarative
way in systems like Snort. Although the intrusions mentioned in this work can
be detected with other intrusion detection systems, they are modeled/described
with out relating the several network packets of the intrusion, much of the times
using a single network packet to describe the intrusion, which could in some
situations produce a large number of false positives.

A very important future work is to model more network situations as a CSP
in order to evaluate the performance of the system while working with a larger
diversity of problems. Although the DSL allows to describe a broad range of
attacks, it still needs more flexibility to cope with more types of signatures and
include more back-ends. We also need to better evaluate the the work presented
in this paper by comparing the obtained results with systems like Snort.

Also a very important future step is to start performing network intrusion
tasks on live network traffic link, allowing to apply this method in a real network
to assess its performance.

Acknowledgments

Pedro Salgueiro acknowledges FCT –Fundação para a Ciência e a Tecnologia– for
supporting him with scholarship SFRH/BD/35581/2007. The IBM QS21 dual-
Cell/BE blades used in this work were donated by IBM Corporation, in the
context of a SUR (Shared University Research) grant awarded to Universidade
de Évora and CENTRIA.

References

1. F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming. Elsevier
Science, 2006.

2. A. Van Deursen and J. Visser. Domain-specific languages: An annotated bibliog-
raphy. ACM Sigplan Notices, 35(6):26–36, 2000.

3. Gecode Team. Gecode: Generic constraint development environment, 2008. Avail-
able from http://www.gecode.org.

4. Pedro Salgueiro and Salvador Abreu. Network Monitoring with Constraint Pro-
gramming: Preliminary Specification and Analysis. In Proceedings of the 18th
International Conference on Applications of Declarative Programming and Knowl-
edge Management, 2009.

5. Pedro Salgueiro and Salvador Abreu. A DSL for Intrusion Detection based on Con-
straint Programming. In SIN 2010: Proceedings of the 3rd International Conference
on Security of Information and Networks, New York, NY, USA, 2010. ACM.

6. Pedro Salgueiro and Salvador Abreu. On using Constraints for Network Intrusion
Detection. In INForum 2010 - Simpósio de Informática, Braga, Portugal, 2010.

7. Douglas Comer. Internetworking With TCP/IP Volume 1: Principles Protocols,
and Architecture, 5th edition. Prentice Hall, 2006.

8. Y. Zhang and W. Lee. Intrusion detection in wireless ad-hoc networks. In Pro-
ceedings of the 6th annual international conference on Mobile computing and net-
working, page 283. ACM, 2000.

9. Martin Roesch. Snort - lightweight intrusion detection for networks. In LISA
’99: Proceedings of the 13th USENIX conference on System administration, pages
229–238, Berkeley, CA, USA, 1999. USENIX Association.

10. K.S.P. Arun. Flow-aware cross packet inspection using bloom filters for high speed
data-path content matching. In Advance Computing Conference, 2009. IACC 2009.
IEEE International, pages 1230 –1234, 6-7 2009.

11. Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P.
Markatos, and Sotiris Ioannidis. Regular expression matching on graphics hard-
ware for intrusion detection. In RAID ’09: Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection, pages 265–283, Berlin,
Heidelberg, 2009. Springer-Verlag.

12. S. Kumar and E.H. Spafford. A software architecture to support misuse intrusion
detection. In Proceedings of the 18th national information security conference,
pages 194–204, 1995.

13. C. Schulte and P.J. Stuckey. Speeding up constraint propagation. Lecture Notes
in Computer Science, 3258:619–633, 2004.

14. P. Van Hentenryck and L. Michel. Constraint-based local search. MIT Press, 2005.
15. P. Codognet and D. Diaz. Yet another local search method for constraint solving.

Lecture Notes in Computer Science, 2264:73–90, 2001.
16. Salvador Abreu, Daniel Diaz, and Philippe Codognet. Parallel local search for

solving constraint problems on the cell broadband engine (preliminary results).
CoRR, abs/0910.1264, 2009.

17. V. Paxson. Bro: a system for detecting network intruders in real-time* 1. Computer
networks, 31(23-24):2435–2463, 1999.

18. tcpdump web page at http://www.tcpdump.org, April, 2009.

