# Upward Point-Set Embeddability 

Markus Geyer, ${ }^{1}$ Michael Kaufmann, ${ }^{1}$ Tamara Mchedlidze, ${ }^{2}$ Antonios Symvonis ${ }^{2}$<br>${ }^{1}$ Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany. \{geyer,mk\}@informatik.uni-tuebingen.de<br>${ }^{2}$ Dept. of Mathematics, National Technical University of Athens, Athens, Greece. \{mchet, symvonis\}@math.ntua.gr


#### Abstract

We study the problem of Upward Point-Set Embeddability, that is the problem of deciding whether a given upward planar digraph $D$ has an upward planar embedding into a point set $S$. We show that any switch tree admits an upward planar straight-line embedding into any convex point set. For the class of $k$-switch trees, that is a generalization of switch trees (according to this definition a switch tree is a 1 -switch tree), we show that not every $k$-switch tree admits an upward planar straightline embedding into any convex point set, for any $k \geq 2$. Finally we show that the problem of Upward Point-Set Embeddability is NP-complete.


## 1 Introduction

A planar straight-line embedding of a graph $G$ into a point set $S$ is a mapping of each vertex of $G$ to a distinct point of $S$ and of each edge of $G$ to the straight-line segment between the corresponding end-points so that no two edges cross each other. Gritzmann et al. [8] proved that outerplanar graphs is the class of graphs that admit a planar straight-line embedding into every point set in general position or in convex position. Efficient algorithms are known to embed outerplanar graphs [3 and trees [4] into any point set in general or in convex position. From the negative point of view, Cabello [5] proved that the problem of deciding whether there exists a planar straight-line embedding of a given graph $G$ into a point set $P$ is NP-hard even when $G$ is 2-connected and 2-outerplanar. For upward planar digraphs, the problem of constructing upward planar straight-line embeddings into point sets was studied by Giordano et al. [7], later on by Binucci et al. [2] and recently by Angelini et al. [1]. While some positive and negative results are known for the case of upward planar digraphs, the complexity of testing upward planar straight-line embeddability into point sets has not been known.
In this paper we continue the study of the problem of upward planar straight-line embedding of directed graphs into a given point set. Our results include:

- We extend the positive results given in [12] by showing that any directed switch tree admits an upward planar straight-line embedding into every point set in convex position.
- We study directed $k$-switch trees, a generalization of switch trees (a 1switch tree is exactly a switch tree). From the construction given in 2 (Theorem 5), we know that for $k \geq 4$ not every $k$-switch tree admits an upward planar straight-line embedding into any convex point set. Then we fill the gap for 2 and 3 -switch trees, by showing that, for any $k \geq 2$ there is a class of $k$-switch trees $\mathcal{T}_{n}^{k}$, and a point set $S$ in convex position, such that any $T \in \mathcal{T}_{n}^{k}$ does not admit an upward planar straight-line embedding into $S$.
- We study the computational complexity of the upward embeddability problem. More specifically, given a $n$ vertex upward planar digraph $G$ and a set of $n$ points on the plane $S$, we show that deciding whether there exists an upward planar straight-line embedding of $G$ so that its vertices are mapped to the points of $S$ is NP-Complete. The decision problem remains NP-Complete even when $G$ has a single source and the longest simple cycle of $G$ has length four and, moreover, $S$ is an $m$-convex point set, for some integer $m>0$.


## 2 Preliminaries

We mostly follow the terminology of [2]. Next, we give some definitions that are used throughout this paper.
Let $l$ be a line on the plane, which is not parallel to the $x$-axis. We say that point $p$ lies to the right of $l$ (resp., to the left of $l$ ) if $p$ lies on a semi-line that originates on $l$, is parallel with the $x$-axis and is directed towards $+\infty$ (resp., $-\infty$ ). Similarly, if $l$ is a line on the plane, which is not parallel to the $y$-axis, we say that point $p$ lies above $l$ (resp., below $l$ ) if $p$ lies on a semi-line that originates on $l$, is parallel with the $y$-axis and is directed towards $+\infty$ (resp., $-\infty$ ).
A point set in general position, or general point set, is a point set such that no three points lie on the same line and no two points have the same $y$-coordinate. The convex hull $H(S)$ of a point set $S$ is the point set that can be obtained as a convex combination of the points of $S$. A point set in convex position, or convex point set, is a point set such that no point is in the convex hull of the others. Given a point set $S$, we denote by $b(S)$ and by $t(S)$ the lowest and the highest point of $S$, respectively. A one-sided convex point set $S$ is a convex point set in which $b(S)$ and $t(S)$ are adjacent in the border of $H(S)$. A convex point set which is not one-sided, is called a two-sided convex point set. In a convex point set $S$, the subset of points that lie to the left (resp. right) of the line through $b(S)$ and $t(S)$ is called the left (resp. right) part of $S$. A one-sided convex point set $S$ is called left-heavy (resp., right-heavy)convex point set if all the points of $S$ lie to the left (resp., to the right) of the line through $b(S)$
and $t(S)$. Note that, a one-sided convex point set is either a left-heavy or a right-heavy convex point set.
Consider a point set $S$ and its convex hull $H(S)$. Let $S_{1}=S \backslash H(S), S_{2}=$ $S_{1} \backslash H\left(S_{1}\right), \ldots, S_{m}=S_{m-1} \backslash H\left(S_{m-1}\right)$. If $m$ is the smallest integer such that $S_{m}=\emptyset$, we say that $S$ is an $m$-convex point set. A subset of points of a convex point set $S$ is called consecutive if its points appear consecutive as we traverse the convex hull of $S$ in the clockwise or counterclockwise direction.
The graphs we study in this paper are directed. By $(u, v)$ we denote an arc directed from $u$ to $v$. A switch-tree is a directed tree $T$, such that, each vertex of $T$ is either a source of a sink. Note that the longest directed path of a switch-tree has length on 3 . Based on the length of the longest path, the class of switch trees can be generalized to that of $k$-switch trees. A $k$-switch tree is a directed tree, such that its longest directed path has length $k$. According to this definition a switch tree is a 1 -switch tree. A digraph $D$ is called path-DAG, if its underlying graph is a simple path. A monotone path $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a path-DAG containing $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$, $1 \leq i \leq k-1$.
An upward planar directed graph is a digraph that admits a planar drawing where each edge is represented by a curve monotonically increasing in the $y$-direction. An upward straight-line embedding (UPSE for short) of a graph into a point set is a mapping of each vertex to a distinct point and of each arc to a straight-line segment between its end-points such that no two arcs cross and each arc $(u, v)$ has $y(u)<y(v)$. The following results were presented in [2] and are used in this paper.

Lemma 1 (Binucci at al. [2]). Let $T$ be an n-vertex tree-DAG and let $S$ be any convex point set of size $n$. Let $u$ be any vertex of $T$ and let $T_{1}, T_{2}, \ldots, T_{k}$ be the subtrees of $T$ obtained by removing $u$ and its incident edges from $T$. In any UPSE of $T$ into $S$, the vertices of $T_{i}$ are mapped into a set of consecutive points of $S$, for each $i=1,2, \ldots, k$.

Theorem 1 (Binucci at al. [2]). For every odd integer $n \geq 5$, there exists a $(3 n+1)$-vertex directed tree $T$ and a convex point set $S$ of size $3 n+1$ such that $T$ does not admit an UPSE into $S$.

## 3 Embedding a switch-tree into a point set in convex position

In this section we enrich the positive results presented in [12] by proving that, any switch-tree has an UPSE into any point set in convex position. During the execution of the algorithms, presented in the following lemmata, which embed a tree $T$ into a point set $S$, a free point is a point of

[^0]

Fig. 1. The construction of Lemma 2 and Lemma 4
$S$ to which no vertex of $T$ has been mapped yet. The following lemma treats the simple case of a one-sided convex point set and is an immediate consequence of a result by Heath et al. 9].

Lemma 2. Let $T$ be a switch-tree, $r$ be a sink of $T, S$ be a one-sided convex point set so that $|S|=|T|$, and $p$ be $S$ 's highest point. Then, $T$ admits an UPSE into $S$ so that vertex $r$ is mapped to point $p$.

Proof. Let $T_{1}, \ldots, T_{k}$ be the sub-trees of $T$ that are connected to $r$ by an arc and let $r_{1}, \ldots, r_{k}$ be the vertices of $T_{1}, \ldots, T_{k}$, respectively, that are connected to $r$ (see Figure 1,b). Observe that, since $T$ is a switch tree and $r$ is a sink, vertices $r_{1}, \ldots, r_{k}$ are sources. We draw $T$ as follows: We map $r$ to $p$, then we map $T_{1}$ to the $\left|T_{1}\right|$ highest points of $S$, so that $r_{1}$ is mapped to the lowest of them. This can be trivially done if $T_{1}$ consists of a single vertex, i.e. of $r_{1}$. Assume now that $T_{1}$ contains more than one vertex. Denote by $S_{1}$ the $\left|T_{1}\right|$ highest free points of $S$. Let, $T_{1}^{1}, \ldots, T_{f}^{1}$ be the sub-trees of $T_{1}$, connected to $r_{1}$ by an arc, and let $r_{1}^{1}, \ldots, r_{f}^{1}$ be the vertices of $T_{1}^{1}, \ldots, T_{f}^{1}$, respectively, to which $r_{1}$ is connected. Since $r_{1}$ is a source, $r_{1}^{1}, \ldots, r_{f}^{1}$ are all sinks. Using the lemma recursively we draw $T_{1}^{1}$ on the $\left|T_{1}^{1}\right|$ consecutive highest points of $S_{1}$ so that $r_{1}^{1}$ is mapped to the highest point (Figure 1. a). Similarly we draw trees $T_{2}^{1}, \ldots, T_{f}^{1}$ on the remaining free points of $S_{1}$. Finally we map $r_{1}$ to the last free point of $S_{1}$, i.e. to its lowest point. Since all of $r_{1}^{1}, \ldots, r_{f}^{1}$ are drawn higher than $r_{1}$, the arcs $\left(r_{1}, r_{1}^{1}\right), \ldots,\left(r_{1}, r_{f}^{1}\right)$ are drawn in upward fashion. Since each of $T_{1}^{1}, \ldots, T_{f}^{1}$ is drawn on the consecutive points of $S$ in an upward planar fashion we infer that the drawing of $T_{1}$ is upward planar and is placed on the consecutive points of $S$.
In a similar way, we map $T_{2}$ to the $\left|T_{2}\right|$ highest consecutive free points of $S$ so that $r_{2}$ is mapped to the lowest of them. We continue mapping the rest of the trees in the same way on the remaining free points. Note that for any $i=1, \ldots, k$, arc $\left(r_{i}, r\right)$ does not intersect any of $H\left(P_{j}\right)$, where $P_{j}$ is a point set where the vertices of the subtree $T_{j}$ are mapped. Hence for any


Fig. 2. The construction of Lemma 4
$i=1, \ldots, k$, arc $\left(r_{i}, r\right)$ does not cross any other arc of the drawing. Since $p$ is the highest point of $S$ and $r$ is mapped to $p$, we infer that $\operatorname{arcs}\left(r_{i}, r\right)$, $i=1, \ldots, k$ are drawn in upward fashion. Since, by construction, the drawings of $T_{1}, \ldots, T_{k}$ are upward and planar, we infer that the resulting drawing of $T$ is upward and planar.

The following lemma is symmetrical to Lemma 2 and can be proved by a symmetric construction.

Lemma 3. Let $T$ be a switch-tree, $r$ be a source of $T, S$ be a one-sided convex point set so that $|S|=|T|$, and $p$ be $S$ 's lowest point. Then, $T$ admits an UPSE into $S$ so that vertex $r$ is mapped to point $p$.

Now we are ready to proceed to the main result of the section.
Theorem 2. Let $T$ be a switch-tree and $S$ be a convex point set such that $|S|=|T|$. Then, $T$ admits an UPSE into $S$.

The proof of the theorem is based on the following lemma, which extends Lemma 2 from one-sided convex point sets to convex point sets.

Lemma 4. Let $T$ be a switch-tree, $r$ be a sink of $T, S$ be a convex point set such that $|S|=|T|$. Then, $T$ admits an UPSE into $S$ so that vertex $r$ is mapped to the highest point of $S$.

Proof. Let $T_{1}, \ldots, T_{k}$ be the sub-trees of $T$ that are connected to $r$ by an edge (Figure 1, b) and let $r_{1}, \ldots, r_{k}$ be the vertices of $T_{1}, \ldots, T_{k}$, respectively, that are connected to $r$. Observe that, since $T$ is a switch tree and $r$ is a sink, vertices $r_{1}, \ldots, r_{k}$ are sources.
We draw $T$ on $S$ as follows. We start by placing the trees $T_{1}, T_{2}, \ldots$ on the left side of the point set $S$ as long as they fit, using the highest free points first. This can be done in an upward planar fashion by Lemma 3
(Figure 2, a). Assume that $T_{i}$ is the last placed subtree. Then, we continue placing the trees $T_{i+1}, \ldots, T_{k-1}$ on the right side of the point set $S$. This can be done due to Lemma 3, Note that the remaining free points are consecutive point of $S$, denote these points by $S^{\prime}$. To complete the embedding we draw $T_{k}$ on $S^{\prime}$. Let $T_{1}^{k}, \ldots, T_{l}^{k}$ the subtrees of $T_{k}$, that are connected to $r_{k}$ by an arc. Let also $r_{1}^{k}, \ldots, r_{l}^{k}$ be the vertices of $T_{1}^{k}, \ldots, T_{l}^{k}$, respectively, that are connected to $r_{k}$ (Figure (1)b). Note that $r_{1}^{k}, \ldots, r_{l}^{k}$ are all sinks. We start by drawing $T_{1}^{k}, T_{2}^{k}, \ldots$ as long as they fit on the left side of point set $S^{\prime}$, using the highest free points first. This can be done in an upward planar fashion by Lemma 2. Assume that $T_{j}^{k}$ is the last placed subtree (Figure 2, b). Then, we continue on the right side of the point set $S^{\prime}$ with the trees $T_{j+1}^{k}, \ldots, T_{l-1}^{k}$. This can be done again by Lemma 2. Note that there are exactly $\left|T_{l}^{k}\right|+1$ remaining free points since we have not yet drawn $T_{l}^{k}$ and vertex $r_{k}$ of $T_{k}$. Denote by $S^{\prime \prime}$ the remaining free points and note that $S^{\prime \prime}$ consists of consecutive points of $S$. If $S^{\prime \prime}$ is a one-sided point set then we can proceed by using the Lemma 2 again and the result follows trivially. Assume now that $S^{\prime \prime}$ is a two-sided convex point set and let $p_{1}$ and $p_{2}$ be the highest points of $S^{\prime \prime}$ on the left and on the right, respectively. W.l.o.g., let $y\left(p_{1}\right)<y\left(p_{2}\right)$. Then, we map $r_{k}$ to $p_{1}$. By using the lemma recursively, we can draw $T_{l}^{k}$ on $S^{\prime \prime} \backslash\left\{p_{1}\right\}$ so that $r_{l}^{k}$ is mapped to $p_{2}$. The proof is completed by observing that all edges connecting $r_{k}$ to $r_{1}^{k}, \ldots, r_{l}^{k}$ and $r_{1}, \ldots, r_{k}$ to $r$ are upward and do not cross each other.

Theorem 2 follows immediately if we select any sink-vertex of $T$ as $r$ and apply Lemma 4.

## $4 \quad K$-switch trees

Binucci et al. 2 (see also Theorem (1) presented a class of trees and corresponding convex point sets, such that any tree of this class does not admit an UPSE into its corresponding point set.
The $(3 n+1)$-size tree $T$ constructed in the proof of Theorem 122 has the following structure (see Figure 3a for the case $n=5$ ). It consists of: (i) one vertex $r$ of degree three, (ii) three monotone paths of $n$ vertices: $P_{u}=\left(u_{n}, u_{n-1}, \ldots, u_{1}\right), P_{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), P_{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right),(i i i)$ $\operatorname{arcs}\left(r, u_{1}\right),\left(v_{1}, r\right)$ and $\left(w_{1}, r\right)$.
The $(3 n+1)$-convex point set $S$, used in the proof of Theorem [12, consists of two extremal points on the $y$-direction, $b(S)$ and $t(S)$, the set $L$ of $(3 n-1) / 2$ points $l_{1}, l_{2}, \ldots, l_{(3 n-1) / 2}$, comprising the left side of $S$ and the set $R$ of $(3 n-1) / 2$ points $r_{1}, r_{2}, \ldots, r_{(3 n-1) / 2}$, comprising the right side of $S$. The points of $L$ and $R$ are located so that $y(b(S))<y\left(r_{1}\right)<$ $y\left(l_{1}\right)<y\left(r_{2}\right)<y\left(l_{2}\right)<\ldots<y\left(r_{(3 n-1) / 2}\right)<y\left(l_{(3 n-1) / 2}\right)<y(t(S))$. See Figure 3, b for $n=5$.


Fig. 3. (a-b) A 4-switch tree $T$ and a point set $S$, such that $T$ does not admit an UPSE into point set $S$.

Note that the $(3 n+1)$-node tree $T$ described above is a $(n-1)$-switch tree. Hence a straightforward corollary of Theorem [1[2] is the following statement.

Corollary 1 For any $k \geq 4$, there exists a $k$-switch tree $T$ and a convex point set $S$ of the same size, such that $T$ does not admit an UPSE into $S$.

From Section 3, we know that any switch tree $T$, i.e. a 1 -switch tree, admits an UPSE into any convex point set. The natural question raised by this result and Corollary $\prod$ is whether an arbitrary 2 -switch or 3 -switch tree has an UPSE into any convex point set. This question is resolved by the following theorem.

Theorem 3. For any $n \geq 5$ and for any $k \geq 2$, there exists a class $\mathcal{T}_{n}^{k}$ of $3 n+1$-vertex $k$-switch trees and a convex point set $S$, consisting of $3 n+1$ points, such that any $T \in \mathcal{T}_{n}^{k}$ does not admit an UPSE into $S$.

Proof. For any $n \geq 5$ we construct the following class of trees (see Figure (4.a). Let $P_{u}$ be an $n$-vertex path-DAG on the vertex set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, enumerated in the order they are presented in the underlying undirected path of $P_{u}$, and such that $\operatorname{arcs}\left(u_{3}, u_{2}\right),\left(u_{2}, u_{1}\right)$ are present in $P_{u}$. Let also $P_{v}$ and $P_{w}$ be two n-vertex path-DAGs on the vertex sets $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ respectively, enumerated in the order they are presented in the underlying undirected path of $P_{v}$ and $P_{w}$, and such that $\operatorname{arcs}\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)$ and $\left(w_{1}, w_{2}\right),\left(w_{2}, w_{3}\right)$ are present in $P_{v}$ and $P_{w}$, respectively. Let $T\left(P_{u}, P_{v}, P_{w}\right)$ be a tree consisting of $P_{u}, P_{v}, P_{w}$, vertex $r$ and arcs $\left(r, u_{1}\right),\left(v_{1}, r\right),\left(w_{1}, r\right)$.
Let $\mathcal{T}_{n}^{k}=\left\{T\left(P_{u}, P_{v}, P_{w}\right) \mid\right.$ the longest directed path in $P_{u}, P_{v}$ and $P_{w}$ has length $\left.k\right\}$, $k \geq 2$. So, $\mathcal{T}_{n}^{k}$ is a class of $3 n+1$-vertex $k$-switch trees. Let $S$ be a convex point set as described in the beginning of the section. Next we show that any $T \in \mathcal{T}_{n}^{k}$ does not admit an UPSE into point set $S$.


Fig. 4. (a) $k$-switch tree, $k \geq 2$. (b) The construction of the proof of Statement 1 , Cases 1 to 2.

Let $T \in \mathcal{T}_{n}^{k}$. For the sake of contradiction, we assume that there exists an UPSE of $T$ into $S$. By Lemma 1, each of the paths $P_{u}, P_{v}$ and $P_{w}$ of $T$ is drawn on consecutive points of $S$. Denote by $S_{u}, S_{v}$ and $S_{w}$ the subsets of point set $S$, in which $P_{u}, P_{v}$ and $P_{w}$ are mapped to, respectively. Hence $\left|S_{u}\right|=\left|S_{v}\right|=\left|S_{w}\right|=n$. By construction of $S$, the largest subset of $S$ which is a one-sided convex point set, contains two extremal points of $S$ and has size $\left\lceil\frac{3 n-1}{2}\right\rceil+2<2 n$, when $n \geq 5$. Thus, at least one of $S_{u}$, $S_{v}$ and $S_{w}$ is a two-sided convex point set. We denote by $S_{b}$ and $S_{t}$ any two-sided point sets, which consist of consecutive points of $S$, so that $\left|S_{b}\right|=\left|S_{t}\right|=n$, and $b(S) \in S_{b}, t(S) \in S_{t}$ respectively. Next, we show that in any UPSE of $T$ on $S, P_{u}$ can not be drawn on $S_{b}$, while $P_{v}$ and $P_{w}$ can not be drawn on $S_{t}$.

Statement 1 For any upward drawing of $P_{u}$ on $S_{t}$ there is a crossing created by the arcs of $T$.

Proof of Statement 1. Recall that $S_{t} \subset S$ is a two-sided convex point set, so that $t(S) \in S_{t}$. In any drawing of $P_{u}$ on $S_{t}$, the vertices $u_{1}, u_{2}, u_{3}$ are mapped to some points of $S_{t}$. Next we consider four cases based on whether $u_{1}, u_{2}, u_{3}$ are drawn on the same side of $S$.
Case 1. Vertices $u_{1}, u_{2}, u_{3}$ are mapped to the same side of $S$, possibly including $t(S)$, say w.l.o.g. to the left side of $S$, see Figure 4.b. Let $u_{i+1}$ be the first vertex of $P_{u}$ that is mapped to the right side of $S$. Then, since $r$ is mapped to a point of $S \backslash S_{t}$, arc $\left(r, u_{1}\right)$ crosses $\operatorname{arc}\left(u_{i}, u_{i+1}\right)$ (or arc $\left.\left(u_{i+1}, u_{i}\right)\right)$.
Case 2. Vertices $u_{2}, u_{3}$ are mapped to the same side of $S$, possibly including $t(S)$, say w.l.o.g. to the left side of $S$, see Figure 4.c. Then, $u_{1}$ is mapped to the right side of $S$. Note that $u_{2}$ can not be mapped to $t(S)$, because then there is no point for $u_{1}$ to be mapped to, so that the drawing is upward. Hence, there is at least one point $p$ higher than the


Fig. 5. (a-b) The construction of the proof of Statement 1 Cases 2 to 3. (c) The construction used in Statement 3.
end points of arc $\left(u_{2}, u_{1}\right)$, that has to be visited by path $P_{u}$. Thus, path $P_{u}$ crosses arc $\left(u_{2}, u_{1}\right)$.
Case 3. Vertices $u_{1}, u_{2}$ are mapped to the same side of $S$, possibly including $t(S)$, say w.l.o.g. to the left side of $S$. Then, $u_{3}$ is mapped to the right side of $S$ (Figure 5 a) and, as a consequence, $\operatorname{arcs}\left(r, u_{1}\right)$ and $\left(u_{3}, u_{2}\right)$ cross.
Case 4. Vertices $u_{1}, u_{3}$ are mapped to the same side of $S$, possibly including $t(S)$, say w.l.o.g. to the left side of $S$. Then, $u_{2}$ is mapped to the right side of $S$ (Figure 5.b) and, as a consequence, $\operatorname{arcs}\left(r, u_{1}\right)$ and $\left(u_{3}, u_{2}\right)$ cross.

The proof of following statement is symmetrical to the proof of Statement 1 .

Statement 2 For any upward drawing of $P_{u}$ or $P_{w}$ on $S_{b}$ there is a crossing created by the arcs of $T$.

So, we have proved that there is no upward planar mapping of $T$ into $S$ so that $P_{u}$ is mapped to a set $S_{t}$, or such that $P_{v}$ or $P_{w}$ is mapped to a set $S_{b}$. Next, we prove that there is also no upward planar mapping of $T$ on $S$ so that $P_{u}$ is mapped to $S_{b}$, and such that $P_{v}$ or $P_{w}$ is mapped to $S_{t}$.

Statement 3 There is no upward drawing of $T$ on point set $S$, such that $P_{u}$ is mapped to the points of $S_{b}$.

Proof of Statement [3. Denote by $p_{u}$ the point of $S_{b}$ with the largest $y$ coordinate, see Figure 5. 5 c. By the construction of $S$ and since $S_{b}$ is a two-sided point-set which contains $n$ points, we infer that $S \backslash S_{b}$ contains at most $n-3$ points lower than $p_{u}$. Moreover, all of these points are on the side opposite to $p_{u}$. We observe the following: (i) $r$ has to be placed
lower than $p_{u}$, and hence $r$ is placed on the opposite side of that of $p_{u}$, (ii) $v_{1}$ has to be placed lower than $r$, and since $P_{v}$ has to be mapped to consecutive points of $S$, the whole $P_{v}$ is mapped to the points on the same side with $r$ and lower than $r$. But, there are at most $n-4$ free points, a clear contradiction since $\left|P_{v}\right|=n$.
The following statement is symmetrical to Statement 3]
Statement 4 There is no upward drawing of $T$ on point set $S$, such that $P_{v}$ or $P_{w}$ is mapped to the points of $S_{t}$.

As we observed in the beginning of the proof of the theorem, at least one of $P_{u}, P_{v}, P_{w}$ is mapped to a two-sided point set containing either $b(S)$ or $t(S)$. But, as it is proved in Statements 1 to 4 this is impossible. So, the theorem follows.

## 5 Upward planar straight-line point set embeddability is NP-complete

In this section we examine the complexity of testing whether a given $n$ vertex upward planar digraph $G$ admits an UPSE into a point set $S$. We show that the problem is NP-complete even for a single source digraph $G$ having longest simple cycle of length at most 4. This result is optimal for the class of cyclic graph $\{\mathbb{4}$, since Angelini et al. [1] showed that every single-source upward planar directed graph with no cycle of length greater than three admits an UPSE into every point set in general position.

Theorem 4. Given an n-vertex upward planar digraph $G$ and a planar point set $S$ of size $n$ in general position, the decision problem of whether there exists an UPSE of $G$ into $S$ is NP-Complete. The decision problem remains $N P$-Complete even when $G$ has a single source and the longest simple cycle of $G$ has length at most 4 and, moreover, $S$ is an $m$-convex point set for some $m>0$.

Proof. The problem is trivially in NP. In order to prove the NP-completeness, we construct a reduction from the 3-Partition problem.

Problem: 3-Partition
Input: A bound $B \in \mathbb{Z}^{+}$, and a set $A=\left\{a_{1}, \ldots, a_{3 m}\right\}$ with $a_{i} \in \mathbb{Z}^{+}$, $\frac{B}{4}<a_{i}<\frac{B}{2}$.
Output: $m$ disjoint sets $A_{1}, \ldots, A_{m} \subset A$ with $\left|A_{i}\right|=3$ and $\sum_{a \in A_{i}} a=$ $B, 1 \leq i \leq m$.

We use the fact that 3-Partition is a strongly NP-hard problem, i.e. it is NP-hard even if $B$ is bounded by a polynomial in $m$ [6]. Let $A$ and $B$

[^1]

Fig. 6. (a) The graph $G$ of the construction used in the proof of NPcompleteness. (b) The point set $S$ of the construction. (c) An UPSE of $G$ on $S$. (d) The construction of Statement 5,
be the set of the $3 m$ positive integers and the bound, respectively, that form the instance $(A, B)$ of the 3-Partition problem. Based on $A$ and $B$, we show how to construct an upward planar digraph $G$ and a point set $S$ such that $G$ has an UPSE on point set $S$ if and only if the instance $(A, B)$ of the 3-partition problem has a solution.
We first show how to construct $G$ (see Figure 6. 6 for illustration). We start the construction of $G$ by first adding two vertices $s$ and $t$. Vertex $s$ is the single source of the whole graph. We then add $m$ disjoint paths from $s$ to $t$, each of length two. The degree- 2 vertices of these paths are denoted by $u_{i}, i=1, \ldots, m$. For each $a \in A$, we construct a monotone directed path $P_{i}$ of length $a$ that has $a$ new vertices and $s$ at its source. Totally, we have $3 m$ such paths $P_{1}, \ldots, P_{3 m}$.
We proceed to the construction of point set $S$. Let $b(S)$ and $t(S)$ be the lowest and the highest points of $S$ (see Figure 6.b). In addition to $b(S)$ and $t(S), S$ also contains $m$ one-sided convex point sets $C_{1}, \ldots, C_{m}$, each of size $B+1$, so that the points of $S$ satisfy the following properties:

- $C_{i} \cup\{b(S), t(S)\}$ is a left-heavy convex point set, $i \in\{1, \ldots, m\}$.
- The points of $C_{i+1}$ are higher than the points of $C_{i}, i \in\{1, \ldots, m-1\}$.
- Let $l_{i}$ be the line through $b(S)$ and $t\left(C_{i}\right), i \in\{1, \ldots, m\} . C_{1}, \ldots, C_{i}$ lie to the left of line $l_{i}$ and $C_{i+1}, \ldots, C_{m}$ lie to the right of line $l_{i}$.
- Let $f_{i}$ be the line through $t(S)$ and $t\left(C_{i}\right), i \in\{1, \ldots, m\} . C_{j}, j \geq i$, lie to the right of line $f_{i}$.
- $\left\{t\left(C_{i}\right): i=1, \ldots, m\right\}$ is a left-heavy convex point set.

The next statement follows from the properties of point set $S$.
Statement 5 Let $C_{i}$ be one of the left-heavy convex point sets comprising $S$ and let $x \in C_{j}, j>i$. Then, set $C_{i} \cup\{b(S), x\}$ is also a left-heavy convex point set, with $b(S)$ and $x$ consecutive on its convex hull.

Statement 6 We can construct a point set $S$ that satisfies all the above requirements so that the area of $S$ is polynomial on $B$ and $m$.

Proof of Statement 6: For each $i \in\{0, \ldots, m-1\}$ we let $C_{m-i}$ to be the set of $B+1$ points

$$
C_{m-i}=\left\{\left(-j-i(B+2), j^{2}-(i(B+2))^{2}\right) \mid j=1,2, \ldots, B+1\right\}
$$

Then, we set the lowest point of the set $S$, called $b(S)$, to be point ( $-(B+$ $\left.1)^{2}+((m-1)(B+2))^{2},(B+1)^{2}-(m(B+2))^{2}\right)$ and the highest point of $S$, called $t(S)$, to be point $\left(0,(m(B+2))^{2}\right)$.
It is easy to verify that all the above requirements hold and that the area of the rectangle bounding the constructed point set is polynomial on $B$ and $m$.

Statement $7|S|=|V(G)|=m(B+1)+2$.
We now proceed to show how from a solution for the 3-Partition problem we can derive a solution for the upward point set embeddability problem. Assume that there exists a solution for the instance of the 3-Partition problem and let it be $A_{i}=\left\{a_{i}^{1}, a_{i}^{2}, a_{i}^{3}\right\}, i=1 \ldots m$. Note that $\sum_{j=1}^{3} a_{i}^{j}=$ $B$. We first map $s$ and $t$ to $b(S)$ and $t(S)$, respectively. Then, we map vertex $u_{i}$ on $t\left(C_{i}\right), i=1 \ldots m$. Note that the path from $s$ to $t$ through $u_{i}$ is upward and $C_{1}, \ldots, C_{i}$ lie entirely to the left of this path, while $C_{i+1}, \ldots, C_{m}$ lie to the right of this path. Now each $C_{i}$ has $B$ free points. We map the vertices of paths $P_{i}^{1}, P_{i}^{2}$ and $P_{i}^{3}$ corresponding to $a_{i}^{1}, a_{i}^{2}, a_{i}^{3}$ to the remaining points of $C_{i}$ in an upward fashion (see Figure 6. c). It is easy to verify that the whole drawing is upward and planar.
Assume now that there is an UPSE of $G$ into $S$. We prove that there is a solution for the corresponding 3-Partition problem. The proof is based on the following statements.

Statement 8 In any UPSE of $G$ into $S$, $s$ is mapped to $b(S)$.
Statement 9 In any UPSE of $G$ into $S$, only one vertex from set $\left\{u_{1}, \ldots u_{m}\right\}$ is mapped to point set $C_{i}, i=1 \ldots m$.

Proof of Statement [: For the sake of contradiction, assume that there are two distinct vertices $u_{j}$ and $u_{k}$ that are mapped to two points of the same point set $C_{i}$ (see Figures (7). W.l.o.g. assume that $u_{k}$ is mapped to


Fig. 7. Mappings used in the proof of Statement 9
a point higher than the point $u_{j}$ is mapped to. We consider three cases based on the placement of the sink vertex $t$.
Case 1: $t$ is mapped to a point of $C_{i}$ (Figure 7 7 a ). It is easy to see that $\operatorname{arc}\left(s, u_{k}\right)$ crosses arc $\left(u_{j}, t\right)$, a clear contradiction to the planarity of the embedding.
Case 2: $t$ is mapped to $t(S)$ (Figure 7.b). Similar to the previous case since $C_{i} \cup\{b(S), t(S)\}$ is a one-sided convex point set.
Case 3: $t$ is mapped to a point of $C_{p}, p>i$, denote it by $p_{t}$ (Figure 7.c). By Statement $5 C_{i} \cup\left\{b(S), p_{t}\right\}$ is a convex point set and points $p_{t}, b(S)$ are consecutive points of $C_{i} \cup\left\{b(S), p_{t}\right\}$. Hence, arc $\left(s, u_{k}\right)$ crosses arc ( $u_{j}, t$ ), a contradiction.
By Statement 9, we have that each $C_{i}, i=1 \ldots m$, contains exactly one vertex from set $\left\{u_{1}, \ldots u_{m}\right\}$. W.l.o.g., we assume that $u_{i}$ is mapped to a point of $C_{i}$.

Statement 10 In any UPSE of $G$ into $S$, vertex $t$ is mapped to either a point of $C_{m}$ or to $t(S)$.

Proof of Statement 10: $t$ has to be mapped higher than any $u_{i}, i=1 \ldots m$, and hence higher than $u_{m}$, which is mapped to a point of $C_{m}$.

Statement 11 In any UPSE of $G$ into $S$, vertex $u_{i}$ is mapped to $t\left(C_{i}\right)$, $1 \leq i \leq m-1$, moreover, there is no arc $(v, w)$ so that $v$ is mapped to a point of $C_{i}$ and $w$ is mapped to a point of $C_{j}, j>i$.

Proof of Statement 11: We prove this statement by induction on $i, i=$ $1 \ldots m-1$. For the basis, assume that $u_{1}$ is mapped to a point $p_{1}$ different from $t\left(C_{1}\right)$ (see Figure 8 a). Let $p_{t}$ be the point where vertex $t$ is mapped. By Statement 10, $p_{t}$ can be either $t(S)$ or a point of $C_{m}$. In both cases, point set $C_{1} \cup\left\{b(S), p_{t}\right\}$ is a convex point set, due to the construction of


Fig. 8. Mappings used in the proof of Statement 11.
the point set $S$ and the Statement 5. Moreover, the points $b(S)$ and $p_{t}$ are consecutive on the convex hull of point set $C_{1} \cup\left\{b(S), p_{t}\right\}$.
Denote by $p$ the point of $C_{1}$ that is exactly above the point $p_{1}$. From Statement 9 , we know that no $u_{j}, j \neq 1$ is mapped to the point $p$. Due to Statement 10, $t$ cannot be mapped to $p$. Hence there is a path $P_{k}$, $1 \leq k \leq 3 m$, so that one of its vertices is mapped to $p$. Call this vertex $u$. We now consider two cases based on whether $u$ is the first vertex of $P_{k}$ of not.
Case 1: Assume that there is a vertex $v$ of $P_{k}$, such that there is an arc $(v, u)$. Since the drawing of $S$ is upward, $v$ is mapped to a point lower than $p$ and lower than $p_{1}$. Since $C_{1} \cup\left\{b(S), p_{t}\right\}$ is a convex point set, arc $(v, u)$ crosses arc $\left(u_{1}, t\right)$. A clear contradiction.
Case 2: Let $u$ be the first vertex of $P_{k}$. Then, arc $(s, u)$ crosses the arc $\left(u_{1}, t\right)$ since, again, $C_{1} \cup\left\{b(S), p_{t}\right\}$ is a convex point set, a contradiction. So, we have that $u_{1}$ is mapped to $t\left(C_{1}\right)$, see Figure 8 b b. Observe now that any $\operatorname{arc}(v, w)$, such that $v$ is mapped to a point of $C_{1}$ and $w$ is mapped to a point $x \in C_{2} \cup \ldots \cup C_{m} \cup\{t(S)\}$ crosses arc $\left(s, u_{1}\right)$, since $C_{1} \cup\{b(S), x\}$ is a convex point set. So, the statement is true for $i=1$.
For the induction step, we assume that the statement is true for $C_{g}$ and $u_{g}, g \leq i-1$, i.e. vertex $u_{g}$ is mapped to $t\left(C_{g}\right)$ and there is no arc connecting a point of $C_{g}$ to a point of $C_{k}, k>g$ and this holds for any $g \leq i-1$. We now show that it also holds for $C_{i}$ and $u_{i}$. Again, for the sake of contradiction, assume that $u_{i}$ is mapped to a point $p_{i}$ different from $t\left(C_{i}\right)$ (see Figure 8, C c).
Denote by $q$ the point of $C_{1}$ that is exactly above point $p_{i}$. From Statement 9, we know that no $u_{l}, l \neq i$, is mapped to the point $q$. Due to Statement 10, $t$ can not be mapped to $q$. Hence, there is a path $P_{f}$,


Fig. 9. (a-b) Mappings used in the proof of Statement 13 ,
so that one of its vertices is mapped to $q$. Call this vertex $u_{f}$. We now consider two cases based on whether $u_{f}$ is the first vertex of $P_{f}$ of not.
Case 1: Assume that there is a vertex $v_{f}$ of $P_{k}$ such that there is an arc $\left(v_{f}, u_{f}\right)$. By the induction hypothesis, we know that $v_{f}$ is not mapped to any $C_{l}, l<i$. Then, since the drawing of $S$ is upward, $v_{f}$ is mapped to a point lower than $q$ and lower than $p_{i}$. Since $C_{i} \cup\left\{b(S), p_{t}\right\}$ is a convex point set, arc $\left(v_{f}, u_{f}\right)$ crosses arc $\left(u_{i}, t\right)$. A clear contradiction.
Case 2: Let $u_{f}$ be the first vertex of $P_{k}$. Then, arc $\left(s, u_{f}\right)$ crosses the arc ( $u_{i}, t$ ) since, again, $C_{i} \cup\left\{b(S), p_{t}\right\}$ is a convex point set, a contradiction. So, we have shown that $u_{i}$ is mapped to $t\left(C_{i}\right)$, see Figure 8 d. Observe now that, any arc $(v, w)$, such that $v$ is mapped to a point of $C_{i}$ and $w$ is mapped to a point $x \in C_{i+1} \cup \ldots \cup C_{m} \cup\{t(S)\}$ crosses arc $\left(s, u_{i}\right)$, since $C_{i} \cup\{b(S), x\}$ is a convex point set. So, the statement holds for $i$.
A trivial corollary of the previous statement is the following:
Statement 12 In any UPSE of $G$ into $S$, any directed path $P_{j}$ of $G$ originating at $s, j \in\{1, \ldots, 3 m\}$, has to be drawn entirely in $C_{i}$, for $i \in\{1, \ldots, m\}$.

The following statement completes the proof of the theorem.
Statement 13 In any UPSE of $G$ into $S$, vertex $t$ is mapped to point $t(S)$.

Proof of Statement [13: For the sake of contradiction, assume that $t$ is not mapped to $t(S)$. By Statement 10 we know that $t$ has to be mapped to a point in $C_{m}$. Assume first that $t$ is mapped to point $t\left(C_{m}\right)$ (see Figure9, a). Recall that $u_{m-2}$ and $u_{m-1}$ are mapped to $t\left(C_{m-2}\right)$ and $t\left(C_{m-1}\right)$, respectively, and that $\left\{t\left(C_{i}\right): i=1 \ldots m\right\}$ is a left-heavy convex point set. Hence, points $\left\{t\left(C_{m-2}\right), t\left(C_{m-1}\right), t\left(C_{m}\right), b(S)\right\}$ form a convex point set.

It follows that segments $\left(t\left(C_{m-2}\right), t\left(C_{m}\right)\right)$ and $\left(t\left(C_{m-1}\right), b(S)\right)$ cross each other, i.e. edges $\left(s, u_{m-1}\right)$ and ( $u_{m-2}, t$ ) cross, contradicting the planarity of the drawing.
Consider now the case where $t$ is mapped to a point of $C_{m}$, say $p$, different from $t\left(C_{m}\right)$ (see Figure 9 b b). Since point $p$ does not lie in triangle $t\left(C_{m-2}\right), t\left(C_{m-1}\right), b(S)$ and point $t\left(C_{m-1}\right)$ does not lie in triangle $t\left(C_{m-2}\right), p, b(S)$, points $\left\{t\left(C_{m-2}\right), t\left(C_{m-1}\right), p, b(S)\right\}$ form a convex point set. Hence, segments $\left(t\left(C_{m-2}\right), p\right)$ and $\left(t\left(C_{m-1}\right), b(S)\right)$ cross each other, i.e. edges $\left(s, u_{m-1}\right)$ and ( $\left.u_{m-2}, t\right)$ cross; a clear contradiction.

Let us now combine the above statements in order to derive a solution for the 3-Partition problem when we are given an UPSE of $G$ into $S$. By Statement 8 and Statement 13, vertices $s$ and $t$ are mapped to $b(S)$ and $t(S)$, respectively. By Statement 9 , for each $i=1 \ldots m$, point set $C_{i}$ contains exactly one vertex from $\left\{u_{1}, \ldots, u_{m}\right\}$, say $u_{i}$ and, hence, the remaining points of $C_{i}$ are occupied by the vertices of some paths $P_{i}^{1}, P_{i}^{2}, \ldots, P_{i}^{c}$. By Statement 12, $P_{i}^{1}, P_{i}^{2}, \ldots, P_{i}^{c}$ are mapped entirely to the points of $C_{i}$. Since $C_{i}$ has $B+1$ points, the highest of which is occupied by $u_{i}$, we infer that $P_{i}^{1}, P_{i}^{2}, \ldots, P_{i}^{c}$ contain exactly $B$ vertices. We set $A_{i}=\left\{a_{i}^{1}, a_{i}^{2}, \ldots, a_{i}^{c}\right\}$, where $a_{i}^{j}$ is the size of path $P_{i}^{j}, 1 \leq j \leq c$. Since $\frac{B}{4}<a_{i}^{j}<\frac{B}{2}$ we infer that $c=3$. The subsets $A_{i}$ are disjoint and their union produces $A$.
Finally, we note that $G$ has a single source $s$ and the longest simple cycle of $G$ has length 4, moreover the point set $S$ is an $m$-convex point set for some $m>1$. This completes the proof.

## 6 Open Problems

In this paper, we continued the study of the upward point-set embeddability problem, initiated in [12/7. We showed that the problem is NPcomplete, even if some restrictions are posed on the digraph and the point set. We also extended the positive and the negative results presented in [12] by resolving the problem for the class of $k$-switch trees, $k \in \mathbb{N}$. The partial results on the directed trees presented in [12] and in the present work, may be extended in two ways: (i) by presenting the time complexity of the problem of testing whether a given directed tree admits an upward planar straight-line embedding (UPSE) to a given general/convex point set and (ii) by presenting another classes of trees, that admit/do not admit an UPSE to a given general/convex point set. It would be also interesting to know whether there exists a class of upward planar digraphs $\mathcal{D}$ for which the decision problem whether a digraph $D \in \mathcal{D}$ admits an UPSE into a given point set $P$ remains NP-complete even for a convex point set $P$.

## References

1. P. Angelini, F. Frati, M. Geyer, M. Kaufmann, T. Mchedlidze, and A. Symvonis. Upward geometric graph embeddings into point sets. In 18th International Symposium on Graph Drawing (GD '10), Lecture Notes in Computer Science, 2010. To appear.
2. C. Binucci, E. Di Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati, S. Kobourov, and G. Liotta. Upward straight-line embeddings of directed graphs into point sets. Computat. Geom. Th. Appl., 43:219-232, 2010.
3. P. Bose. On embedding an outer-planar graph in a point set. Computat. Geom. Th. Appl., 23(3):303-312, 2002.
4. P. Bose, M. McAllister, and J. Snoeyink. Optimal algorithms to embed trees in a point set. J. Graph Alg. Appl., 1(2):1-15, 1997.
5. S. Cabello. Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Alg. Appl., 10(2):353-366, 2006.
6. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA, 1979.
7. F. Giordano, G. Liotta, T. Mchedlidze, and A. Symvonis. Computing upward topological book embeddings of upward planar digraphs. In ISAAC '07, pages 172-183, 2007.
8. P. Gritzmann, B. Mohar J. Pach, and R. Pollack. Embedding a planar triangulation with vertices at specified positions. Amer. Math. Mont., 98:165-166, 1991.
9. Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput., 28(4):1510-1539, 1999.

[^0]:    ${ }^{3}$ The length of a directed path is the number of arcs in the path.

[^1]:    ${ }^{4}$ A digraph is cyclic if its underling undirected graph contains at least one cycle.

